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Abstract 

This study evaluates land cover responses to extreme rainfall in the Monterrey Metropolitan Area (Mexico) using Sentinel-2 imagery 

and remote sensing techniques. Two land cover maps were generated through Random Forest classification with stratified random 

sampling, considering six classes: dense vegetation, medium vegetation, sparse vegetation, built-up area, bare soil, and water bodies. 

Three spectral indices were incorporated: the Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index 

(SAVI), and the Normalized Difference Water Index (NDWI). The pre- and post-event models achieved overall accuracies of 0.93 and 

0.83, with Kappa coefficients of 0.91 and 0.79, respectively. Integration with a multi-index Change Vector Analysis (CVA) enabled 

the detection of both categorical and magnitude-based changes, revealing significant vegetation disturbance at higher elevations, 

vegetation recovery in mid-elevation zones, and increased surface moisture along riparian corridors after Tropical Storm Hanna (2020). 

These findings demonstrate the dual effects of extreme precipitation in semi-arid mountainous urban regions and highlight the value 

of combining vegetation and water indices for short-term change detection. The proposed methodology is transferable to other hazard-

prone mountain cities worldwide, supporting disaster risk reduction, urban planning, and environmental monitoring. Limitations 

include the reliance on only two temporal scenes and spectral confusion between vegetation classes, which future studies could address 

through multi-temporal datasets, higher-resolution imagery, and integration of ancillary environmental data. 

1. Introduction 

Climate change has altered hydrological patterns worldwide, 

intensifying both rainfall events and prolonged droughts. The 

population of northeastern Mexico has been particularly affected 

by these contrasting phenomena within short temporal intervals, 

largely due to hydro-meteorological systems originating in the 

Atlantic Ocean and the Gulf of Mexico. These events, often 

associated with hurricanes that subsequently weaken into tropical 

storms, may still produce rainfall intensities exceeding those 

recorded during past extreme events (Touma et al., 2019). Such 

conditions have significant consequences for urban areas in the 

region, underscoring the need for holistic urban and 

environmental planning approaches that differ from the rest of 

the country (Froude and Petley, 2018; Pereira et al., 2020). 

Within this context, the Monterrey Metropolitan Area (MMA)—

commonly referred to as the “City of the Mountains” due to its 

rugged topography—stands out as one of the largest metropolitan 

areas in Latin America, and the second most important city in 

Mexico, with an estimated population of 5.3 million inhabitants 

(Secretaría de Desarrollo Agrario, Territorial y Urbano, 

SEDATU, 2024) which is a rapidly expanding urban region 

surrounded by steep mountainous terrain, which makes it highly 

vulnerable to extreme precipitation events. Tropical Storm 

Hanna, which struck on July 26, 2020, represents the most recent 

tropical cyclone to directly impact the region, producing intense 

rainfall and triggering widespread disturbances in vegetation and 

land cover. 

This rapid urban growth has increased exposure and vulnerability 

to slope failures, often exacerbated by land use/land cover 

(LULC) changes or inadequate land management practices (Di 

Napoli et al., 2023; Pacheco Quevedo et al., 2023; Abdo and 

Richi, 2024).  

Monitoring and quantifying these land surface changes is 

essential for urban planning and hazard mitigation and can be 

effectively achieved through remote sensing techniques at local, 

regional, and national scales, for example, by comparing two or 

more aerial or satellite images acquired over time (Isbaex & 

Coelho, 2021; Ansari et al., 2025).  

Previous research has shown that land cover dynamics are 

influenced by both climatic drivers and anthropogenic pressures 

(Promper et al., 2014; Chen et al., 2019), and that these changes 

may significantly affect the likelihood of landslides in mountain 

urban regions. Understanding how extreme precipitation events 

influence vegetation and land cover conditions, and how these 

relate to slope instability, is therefore a critical research challenge 

in northeastern Mexico, where climatic extremes are recurrent. 

This study addresses this gap by combining Sentinel-2 imagery, 

Random Forest (RF) land cover classification, vegetation and 

water indices: the Normalized Difference Vegetation Index 

(NDVI), the Soil Adjusted Vegetation Index (SAVI), and the 

Normalized Difference Water Index (NDWI), and a multi-index 

Change Vector Analysis (CVA) to evaluate land cover responses 

to Tropical Storm Hanna. The specific objectives are: (i) to 

classify pre- and post-event land cover and validate accuracy 
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with a confusion matrix; (ii) to quantify vegetation- and water-

related changes through NDVI, SAVI, and NDWI; (iii) to apply 

a multi-index CVA to estimate the magnitude of spectral change; 

and (iv) to highlight the broader applicability of this 

methodological framework to other mountainous urban regions 

worldwide exposed to extreme rainfall events. 

1.1 Study Area 

 

The study area covers approximately 1,414 km² within the 

Monterrey Metropolitan Area (MMA), located in the state of 

Nuevo León, northeastern Mexico (Figure 1). The MMA 

currently comprises 13 municipalities: Monterrey, Guadalupe, 

San Nicolás de los Garza, San Pedro Garza García, General 

Escobedo, Santiago, Santa Catarina, García, El Carmen, Juárez, 

Cadereyta Jiménez, Apodaca, and Pesquería. However, the latter 

two municipalities are not included in this study due to their 

peripheral location and limited exposure to slope-related 

processes. The core of the MMA is situated within a tectonic 

depression surrounded by prominent mountain ranges belonging 

to the Sierra Madre Oriental, a morphotectonic province 

characterized by folded and thrusted sedimentary rocks formed 

during the Laramide orogeny (Padilla y Sánchez, 2007).  

 

 
 

Figure 1. Location of the study area and track of Tropical 

Cyclone Hanna.  

 

Elevation in the study area ranges from 353 m to 2,350 metres 

above sea level (m a.s.l.), creating strong topographic contrasts 

that directly influence hydrology, land use, and susceptibility to 

slope instability. Climatically, the MMA is located in a semi-arid 

to subtropical transitional zone, where rainfall is highly seasonal 

and concentrated during summer months (June–September). 

Average annual precipitation ranges between 500 and 900 mm; 

however, this balance is often disrupted by extreme tropical 

systems that generate localized but intense rainfall in short 

periods. Such events can surpass the regional hydrological 

capacity, resulting in flash floods, soil saturation, and slope 

failures. 

In this context, Tropical Storm Hanna represents a relevant case 

study. Initially classified as a tropical depression in the Atlantic 

Ocean on July 22, 2020, Hanna intensified into a Category 1 

hurricane on July 25 with sustained winds of 120 km/h, 

approximately 250 km northeast of Barra El Mezquital, 

Tamaulipas, Mexico. By July 26, the system weakened to a 

tropical storm as it tracked westward, directly crossing the 

Monterrey Metropolitan Area. According to the Mexican 

National Water Commission (Comisión Nacinal del Agua, 

CONAGUA, 2020), Hanna delivered maximum sustained winds 

of ~55 km/h and accumulated precipitation of up to 533 mm 

within the MMA.  

Despite these hydrometeorological impacts in the region, 

coupled with past events (e.g., Hurricane Gilberto in 1988, 

Hurricane Alex in 2010, and Tropical Storm Ingrid in 2013), 

previous studies on land cover responses to extreme rainfall in 

northeastern Mexico are scarce (e.g., Yépez-Rincón et al., 2013; 

Aguilar Durán, 2017; Aguilar-Barajas et al., 2019). 

2. Methodology 

The methodological framework of this study is presented in 

Figure 2, integrating a sequential workflow to evaluate short-

term land cover changes caused by Tropical Storm Hanna. 

 

Figure 2. Flow chart of the adopted methodology based on 

Chrysafi et al. (2024) and Ansari et al. (2025).  

 

2.1 Satellite imagery and preprocessing 

Two cloud-free (<1% cloud cover) Sentinel-2 Level-2A 

multispectral images were acquired from the Copernicus Open 

Access Hub through Google Earth Engine (GEE). The selected 

scenes correspond to dates immediately before and after the 

landfall of Tropical Storm Hanna on 26 July 2020: July 13, 2020, 

and September 22, 2020, respectively, with a temporal gap of 

approximately one month to ensure minimal cloud 

contamination.  

2.2 Vegetation and Water Indices 
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From the Sentinel-2 imagery, three spectral indices were 

calculated to assess post-event changes: NDVI to evaluate 

vegetation health, SAVI to reduce soil brightness effects, and 

NDWI to assess surface water content. These indices were 

selected because they jointly capture the most relevant 

biophysical responses to extreme rainfall-vegetation stress or 

recovery, soil-vegetation contrast in partially vegetated areas, 

and hydrological changes following heavy precipitation (Ansari 

et al., 2025). All indices were derived from Sentinel-2 spectral 

bands with a spatial resolution of 10 m (Table 1). 

 

Sentinel-2A 

Bands Wavelenght 

(nm) 

Bandwith 

(nm) 

Spatial 

resolution (m) 

B3 – Green 559.8 36 10 

B4 – Red 664.6 31 

B9 – Near-

infrared 

832.8 106 

 

Table 1. Sentinel-2A data.  

2.2.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is one of the most widely used spectral indices to assess 

the state of vegetation health (Cabello et al., 2021; Zeng et al., 

2024). It is obtained by the following equation (Rouse et al., 

1974):  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 (𝐵8) − 𝑅𝑒𝑑 (𝐵4)

𝑁𝐼𝑅 (𝐵8) + 𝑅𝑒𝑑 (𝐵4)
  (2) 

The NDVI value varies between a range of -1 and +1, where 

positive values represent vegetation in good condition, while 

negative values or close to zero can indicate soil, artificial 

surfaces, or bodies of water.  

2.2.2 Soil-Adjusted Vegetation Index (SAVI) 

SAVI is an index proposed by Huete (1988), which is usually 

useful for detecting land cover when vegetation cover is scarce 

or heterogeneous (Mohamed Eid et al., 2020; Azedou et al., 2023; 

Illán Fernández et al., 2024). Additionally, Gedle et al. (2024) 

reported an efficacy when applied during the growing season, 

because it allows separating bare soil from vegetation areas. To 

obtain the value of SAVI the following equation is used:  

𝑆𝐴𝑉𝐼 =  
𝑁𝐼𝑅 (𝐵8) − 𝑅𝑒𝑑 (𝐵4)

𝑁𝐼𝑅 (𝐵8) + 𝑅𝑒𝑑 (𝐵4) + 𝐿
 ⋅  (1 + 𝐿) (2) 

Where L represents the correction factor with respect to the 

influence of soil brightness in areas with scarce vegetation, which 

its value varies from 0 to 1, with high values being high when 

there is scarce vegetation cover, while low values are suitable for 

dense vegetation. That said, in this study, an average value (L = 

0.5) was chosen.   

2.2.3 Normalized Difference Water Index (NDWI) 

NDWI is applied for the detection and analysis of surface water, 

so it is usually useful in land cover studies to distinguish it from 

other classes (Haldar et al., 2023; Thepvongsa and Butar Butar, 

2025). To obtain the value of NDWI, the following equation is 

applied (Gao, 1996):  

𝑁𝐷𝑊𝐼 =  
𝐺𝑟𝑒𝑒𝑛 (𝐵3) − 𝑁𝐼𝑅 (𝐵8)

𝐺𝑟𝑒𝑒𝑛 (𝐵3) + 𝑁𝐼𝑅 (𝐵8)
 (3) 

Where the values vary between -1 and +1, with positive values 

associated with water surfaces, while negative values or close to 

zero indicate another type of cover such as vegetation, bare soil 

or artificial surfaces. 

2.2 Univariate image differencing (UID) 

The UID is a type of change detection method proposed by Singh 

(1989), which evaluates variations in a spectral index of different 

dates, such as the evaluation of changes caused by extreme 

precipitation events (Chrysafi et al., 2025), identifying areas of 

loss or gain of a certain type of land cover.  

In this work, the differences of the NDVI, SAVI and NDWI 

indices corresponding to pre- and post-Hanna were calculated 

from the following equation:  

𝛥𝐼 =  𝐼𝑝𝑟𝑒 − 𝐼𝑝𝑜𝑠𝑡  (4) 

 

where I represent the value of each spectral index, where positive 

values refer to a loss or decrease after the event, while negative 

values indicate an increase. 

 

 

2.3 Change Vector Analysis (CVA) 

 

The CVA allows quantifying the magnitude of the total impact, 

that is, considering the spectral changes of each index (Ansari et 

al., 2025). That said, this integral value allows us to detect in 

greater detail the areas where there was a greater post-Hanna 

spectral change. To calculate the total magnitude of the land 

cover change, a calculation of rasters was performed in GIS by 

applying a square root function with the values of the change of 

each index previously calculated, as expressed in the following 

equation:  

 

 

𝐶𝑉𝐴

=  √
(𝑁𝐷𝑉𝐼𝑝𝑟𝑒 −  𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡)

2
+ (𝑆𝐴𝑉𝐼𝑝𝑟𝑒 −  𝑆𝐴𝑉𝐼𝑝𝑜𝑠𝑡)2 +

(𝑁𝐷𝑊𝐼𝑝𝑟𝑒 − 𝑁𝐷𝑊𝐼𝑝𝑜𝑠𝑡)2

 

 

(5) 

Where the highest value obtained refers to areas with a greater 

magnitude of change in land cover, while the lowest values 

indicate that there was no change between the type of cover.  

 

2.2 Land cover classification 

A supervised land cover classification was performed in GEE 

using the RF algorithm implemented in JavaScript. RF has been 

widely applied for land cover mapping due to its robustness, ease 

of implementation, and high classification accuracy compared to 

traditional methods (Zhao et al., 2021; Svoboda et al., 2022; 

Macarringue et al., 2023). 

The strata corresponded to the land cover classes defined in Table 

2. A total of 296 points were selected, of which approximately 

80% were used for training and 20% for independent validation, 

using the stratified random sampling method. The number of 

samples per class was allocated proportionally to the areal extent 
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of each class, in order to minimize sampling bias, distributed as 

follows: dense vegetation (53), medium vegetation (40), sparse 

vegetation (45), built-up (88), bare soil (55), water (15). While 

this sample size is lower than the commonly recommended upper 

range of 300-500 samples, RF performance has been found to be 

markedly improved by increasing training data to approximately 

250-300 samples, while improvements in accuracy are typically 

minimal outside of that threshold (Bouasria et al., 2023). 

 

The performance of the RF classifier was evaluated through 

confusion matrices and overall accuracy metrics computed 

separately for the pre-event and post-event classifications. This 

allowed a quantitative assessment of the reliability of the 

resulting land cover maps. 

 

Land 

cover 

Description Differentiation 

criteria 

Water 

bodies 

Rivers, dams, canals, and 

permanent or temporary 

bodies of water  

NDVI <0.0 and 

low reflectance in 

NIR 

Bare soil Areas without vegetation 

cover, eroded areas, or 

areas with exposed soil 

NDVI between 

0.0-0.1, high 

reflectance in red 

bands 

Built-up 

area  

Settlements, roads, 

industrial zones or 

buildings 

Low NDVI <0.2, 

distinctive 

reflectance in 

visible light, 

identified mainly 

by training points 

Dense 

vegetation 

Dense tree cover or highly 

photosynthetically active 

vegetation 

NDVI >0.45 

Medium 

vegetation 

Areas with intermediate, 

shrubby or transitional 

vegetation.  

NDVI between 

0.30-0.45 

Sparse 

vegetation 

Grasslands and scrublands 

with low green biomass 

density 

NDVI between 

0.10-0.30 

 

Table 2. Description of land cover classes in the study area. 

 

 

3. Results and Discussion 

3.1 Land cover classification pre- and post-Hanna 

 

Figures 3 and 4 show the pre- and post-Hanna classification 

results, where an increase from 35.39% to 44.77% in dense 

vegetation is highlighted, while medium vegetation increased 

from 22.29% to 35.37%. On the other hand, sparse vegetation 

presented a loss of 16.80% to 9.16%, which represents a net loss 

of -108.12 km2. For the class of built-up area, there was also a 

reduction from 23.80% to 18.96&; while bare soil experienced a 

minor decrease of -0.63 km2. The water bodies presented a small 

net gain of 1.12 km2. (Table 3). 

 
Figure 3. Pre-Hanna land cover classification map. 

Therefore, the transition from less vigorous vegetation to more 

vigorous vegetation after the event is determined, consistent with 

the regrowth of vegetation, added to the response of extreme 

precipitation, this mainly observed along the slopes of the rock 

massifs and riparian corridors.  

On the other hand, the apparent reduction of the built-up area can 

be attributed to a spectral misclassification effect; This may be 

due to the fact that wet surfaces and vegetation in peri-urban 

strips were classified as dense vegetation categories.  

 

Land 

cover 

Pre-

Hanna 

area 

(Km2) 

% Post-

Hanna 

area 

(Km2) 

% Change 

Area 

(Km2) 

Water 

bodies 

3.9 0.28 6.95 0.49 3.05 

Bare soil 24.25 1.71 28.87 2.04 4.62 

Built-up 

area 

377.16 26.67 270.39 19.11 -106.77 

Dense 

vegetation 

498.87 34.99 604.26 42.71 109.39 

Medium 

vegetation 

275.42 19.47 341.55 24.14 66.13 

Sparse 

vegetation 

238.79 16.88 162.88 11.51 -75.91 

 

Table 3. Changes in land cover following Tropical Storm 

Hanna. 

 

To assess the accuracy of land cover classification, confusion 

matrices were used starting from 20% of the points for validation. 

The pre-Hanna obtained an overall accuracy of 0.93 with a Kappa 

coefficient of 0.91. Table 4 shows that most of the classes 

obtained high reliability, however, an error was observed 

between bare soil and medium vegetation, as well as between 

built-up area and sparse vegetation; This may be due to the 

spectral similarity of these transition classes.  
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Figure 4. Post-Hanna land cover classification map. 

 

With respect to the post-Hanna classification, the confusion 

matrix obtained an overall accuracy of 0.83 with a Kappa 

coefficient of 0.79. Table 5 shows a relatively high reliability, 

however, all classes presented minor errors, except for a notable 

misclassification of the medium vegetation class marked as 

sparse vegetation.  

 
 Water 

bodies 

Bare 

soil 

Buil-

up 

area 

Dense 

vegetation 

Medium 

vegetation 

Sparse 

vegetation 

Water 

bodies 

3 0 0 0 0 0 

Bare soil 0 9 0 0 1 0 

Buil-up area 0 0 13 0 0 2 

Dense 

vegetation 

0 0 0 10 0 0 

Medium 

vegetation 

0 0 0 0 10 0 

Sparse 

vegetation 

0 0 1 0 0 9 

Table 4. Pre-Hanna land cover classification confusion matrix. 

 
 Water 

bodies 

Bare 

soil 

Buil-

up 

area 

Dense 

vegetation 

Medium 

vegetation 

Sparse 

vegetation 

Water 

bodies 

2 0 0 0 0 1 

Bare soil 0 9 0 0 0 1 

Buil-up area 0 0 14 0 0 1 

Dense 

vegetation 

0 1 0 8 0 1 

Medium 

vegetation 

0 0 0 0 6 4 

Sparse 

vegetation 

0 0 0 0 1 9 

  Table 5. Post-Hanna land cover classification confusion 

matrix.  

In addition, the values of Producer’s Accuracy (PA) and User’s 

Accuracy (UA) were calculated for each coverage class (Table 

6). For the Pre-Hanna classes, most classes showed high 

reliability, with PA values between 0.86 and 1.00 and AU values 

between 0.81 and 1.00, especially for water bodies, dense 

vegetation and built-up areas. In contrast, medium vegetation and 

sparse vegetation exhibit lower post-Hanna accuracy, probably 

due to soil moisture and transition in vegetation.  

 

Land 

cover 

PA UA PA UA 

Water 

bodies 

1.00 1.00 0.66 1.00 

Dense 

vegetation 

1.00 1.00 0.88 1.00 

Bare soil 0.86 0.92 0.93 1.00 

Built-up 

area 

0.90 1.00 0.90 0.90 

Medium 

vegetation 

1.00 0.90 0.60 0.85 

Sparse 

vegetation 

0.90 0.81 0.90 0.52 

Table 6. Producer’s Accuracy (PA) and User’s Accuracy (UA) 

for each land cover class for pre- and post-Hanna. 

While changes in coverage were quantified as area percentages, 

it is important to recognize that classification errors can influence 

the reported values. Although the general accuracy for pre- and 

post-Hanna (0.93 and 0.83, respectively) has obtained a good 

agreement, the variability in the metrics at the class level is 

notorious, specifically in the classes of medium vegetation and 

scattered vegetation (PA = 0.60 and AU = 0.52), so these 

uncertainties must be considered when interpreting the 

magnitude and spatial distribution of land cover transitions. 

Future studies could incorporate the error-adjusted area 

estimation framework proposed by Olofsson et al. (2014) to 

formally quantify uncertainty in estimates of change, especially 

when limited baseline data are available. 

 

3.2 Index-based change detection 

In a complementary analysis, change detection maps were 

generated for each spectral index. The ΔNDVI and ΔSAVI maps 

(Figures 5 and 6), show a general increase in vegetation 

greenness across the mountainous areas of medium elevation, 

particularly in the northern part of the study area. On the other 

hand, the high mountain areas presented high loss values, which 

indicates a loss of vegetation, probably related to mass removal 

processes or surface erosion caused by the event.  
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Figure 5. Change magnitude map for NDVI. 

 

 

In contrast, the ΔNDWI change map (Figure 7) mostly shows a 

positive concentration along the post-Hanna river corridors, in 

addition to the temporary increase in soil moisture.  

 

 
Figure 6. Change magnitude map for SAVI. 

 

On the other hand, the negative changes of the NDWI were less 

extensive, occurring in fragmented patches along the mountain 

slopes, possibly related to the high slope and the infiltration or 

drying by the lithological conditions as observed in the center-

east of the study area.  

 

 

 
Figure 7. Change magnitude map for NDWI. 

 

3.3 Multi-index CVA results 

 

The CVA multi-index magnitude map (Figure 8) 

comprehensively represents the special distribution of post-

Hanna spectral changes, where areas with significant alterations 

in vegetation cover and wet conditions are shown with higher 

values (dark red), while the lighter tones correspond to areas with 

minimal or no changes.  

 

 
Figure 8. Multi-index magnitude map. 

 

The high spectral magnitude change was concentrated along the 

mountain slopes and in specific areas of urban areas, particularly 

in the southern and central sectors of the study area, being 

consistent with the impacts expected after Tropical Storm Hanna, 

where vegetation cover may be reduced due to slope instability.  

surface runoff or temporary flooding. On the other hand, large 

sectors in the northern and flat urbanized areas exhibit low 

change, suggesting a more stable response to the event. 
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4. Conclusion 

 

This study demonstrates the applicability of integrating Sentinel-

2 imagery with remote sensing techniques to assess land cover 

responses to extreme rainfall in an urban and mountainous 

environment. Using stratified random sampling, six land cover 

classes were determined through classification supervised with 

the RF algorithm, supported by NDVI, SAVI and NDWI. The 

pre- and post-Hanna models achieved overall accuracies of 0.93 

and 0.83, with Kappa coefficients of 0.91 and 0.79, respectively, 

which demonstrates a good to high efficacy of the RF application 

for this type of studies.  

 

Integrating these classifications with a multi-index CVA enabled 

the detection of both categorical and magnitude-based changes, 

determining significant vegetation disturbance and localized 

water dynamics after Tropical Storm Hanna (2020). The results 

highlight the dual effects of extreme precipitation: vegetation 

recovery in mid-elevation areas and degradation in erosion-prone 

slopes, together with increased surface moisture along riparian 

corridors. This multi-index approach provides a more nuanced 

understanding of short-term vegetation and hydrologic responses 

than any index alone. 

 

Despite the strong performance of the methodology, some 

limitations should be acknowledged: (i) the analysis was based 

on only two temporal scenes, which restricts the interpretation of 

vegetation dynamics to a short-term window and may not fully 

capture longer recovery trajectories; (ii) spectral confusion 

between medium and sparse vegetation introduced uncertainty 

into post-event classification, as reflected in class-level accuracy 

metrics. Future studies could address these limitations by 

incorporating multi-temporal imagery, higher spatial resolution 

sensors, or additional spectral indices to improve vegetation 

separability. Overall, this proposed methodology offers a 

transferable framework for monitoring land cover dynamics in 

other urban mountain regions of the world in the face of extreme 

precipitation events.   
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