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Abstract

This study evaluates land cover responses to extreme rainfall in the Monterrey Metropolitan Area (Mexico) using Sentinel-2 imagery
and remote sensing techniques. Two land cover maps were generated through Random Forest classification with stratified random
sampling, considering six classes: dense vegetation, medium vegetation, sparse vegetation, built-up area, bare soil, and water bodies.
Three spectral indices were incorporated: the Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index
(SAVI), and the Normalized Difference Water Index (NDWI). The pre- and post-event models achieved overall accuracies of 0.93 and
0.83, with Kappa coefficients of 0.91 and 0.79, respectively. Integration with a multi-index Change Vector Analysis (CVA) enabled
the detection of both categorical and magnitude-based changes, revealing significant vegetation disturbance at higher elevations,
vegetation recovery in mid-elevation zones, and increased surface moisture along riparian corridors after Tropical Storm Hanna (2020).
These findings demonstrate the dual effects of extreme precipitation in semi-arid mountainous urban regions and highlight the value
of combining vegetation and water indices for short-term change detection. The proposed methodology is transferable to other hazard-
prone mountain cities worldwide, supporting disaster risk reduction, urban planning, and environmental monitoring. Limitations
include the reliance on only two temporal scenes and spectral confusion between vegetation classes, which future studies could address

through multi-temporal datasets, higher-resolution imagery, and integration of ancillary environmental data.

1. Introduction

Climate change has altered hydrological patterns worldwide,
intensifying both rainfall events and prolonged droughts. The
population of northeastern Mexico has been particularly affected
by these contrasting phenomena within short temporal intervals,
largely due to hydro-meteorological systems originating in the
Atlantic Ocean and the Gulf of Mexico. These events, often
associated with hurricanes that subsequently weaken into tropical
storms, may still produce rainfall intensities exceeding those
recorded during past extreme events (Touma et al., 2019). Such
conditions have significant consequences for urban areas in the
region, underscoring the need for holistic urban and
environmental planning approaches that differ from the rest of
the country (Froude and Petley, 2018; Pereira et al., 2020).

Within this context, the Monterrey Metropolitan Area (MMA)—
commonly referred to as the “City of the Mountains” due to its
rugged topography—stands out as one of the largest metropolitan
areas in Latin America, and the second most important city in
Mexico, with an estimated population of 5.3 million inhabitants
(Secretaria de Desarrollo Agrario, Territorial y Urbano,
SEDATU, 2024) which is a rapidly expanding urban region
surrounded by steep mountainous terrain, which makes it highly
vulnerable to extreme precipitation events. Tropical Storm
Hanna, which struck on July 26, 2020, represents the most recent
tropical cyclone to directly impact the region, producing intense
rainfall and triggering widespread disturbances in vegetation and
land cover.

This rapid urban growth has increased exposure and vulnerability
to slope failures, often exacerbated by land use/land cover
(LULC) changes or inadequate land management practices (Di
Napoli et al., 2023; Pacheco Quevedo et al., 2023; Abdo and
Richi, 2024).

Monitoring and quantifying these land surface changes is
essential for urban planning and hazard mitigation and can be
effectively achieved through remote sensing techniques at local,
regional, and national scales, for example, by comparing two or
more aerial or satellite images acquired over time (Isbaex &
Coelho, 2021; Ansari et al., 2025).

Previous research has shown that land cover dynamics are
influenced by both climatic drivers and anthropogenic pressures
(Promper et al., 2014; Chen et al., 2019), and that these changes
may significantly affect the likelihood of landslides in mountain
urban regions. Understanding how extreme precipitation events
influence vegetation and land cover conditions, and how these
relate to slope instability, is therefore a critical research challenge
in northeastern Mexico, where climatic extremes are recurrent.

This study addresses this gap by combining Sentinel-2 imagery,
Random Forest (RF) land cover classification, vegetation and
water indices: the Normalized Difference Vegetation Index
(NDVI), the Soil Adjusted Vegetation Index (SAVI), and the
Normalized Difference Water Index (NDWI), and a multi-index
Change Vector Analysis (CVA) to evaluate land cover responses
to Tropical Storm Hanna. The specific objectives are: (i) to
classify pre- and post-event land cover and validate accuracy
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with a confusion matrix; (ii) to quantify vegetation- and water-
related changes through NDVI, SAVI, and NDWTI; (iii) to apply
a multi-index CVA to estimate the magnitude of spectral change;
and (iv) to highlight the broader applicability of this
methodological framework to other mountainous urban regions
worldwide exposed to extreme rainfall events.

1.1 Study Area

The study area covers approximately 1,414 km? within the
Monterrey Metropolitan Area (MMA), located in the state of
Nuevo Leodn, northeastern Mexico (Figure 1). The MMA
currently comprises 13 municipalities: Monterrey, Guadalupe,
San Nicolas de los Garza, San Pedro Garza Garcia, General
Escobedo, Santiago, Santa Catarina, Garcia, El Carmen, Juérez,
Cadereyta Jiménez, Apodaca, and Pesqueria. However, the latter
two municipalities are not included in this study due to their
peripheral location and limited exposure to slope-related
processes. The core of the MMA is situated within a tectonic
depression surrounded by prominent mountain ranges belonging
to the Sierra Madre Oriental, a morphotectonic province
characterized by folded and thrusted sedimentary rocks formed
during the Laramide orogeny (Padilla y Sanchez, 2007).
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Figure 1. Location of the study area and track of Tropical
Cyclone Hanna.

Elevation in the study area ranges from 353 m to 2,350 metres
above sea level (m a.s.l.), creating strong topographic contrasts
that directly influence hydrology, land use, and susceptibility to
slope instability. Climatically, the MMA is located in a semi-arid
to subtropical transitional zone, where rainfall is highly seasonal
and concentrated during summer months (June—September).
Average annual precipitation ranges between 500 and 900 mm;
however, this balance is often disrupted by extreme tropical
systems that generate localized but intense rainfall in short
periods. Such events can surpass the regional hydrological

capacity, resulting in flash floods, soil saturation, and slope
failures.

In this context, Tropical Storm Hanna represents a relevant case
study. Initially classified as a tropical depression in the Atlantic
Ocean on July 22, 2020, Hanna intensified into a Category 1
hurricane on July 25 with sustained winds of 120 km/h,
approximately 250 km northeast of Barra El Mezquital,
Tamaulipas, Mexico. By July 26, the system weakened to a
tropical storm as it tracked westward, directly crossing the
Monterrey Metropolitan Area. According to the Mexican
National Water Commission (Comision Nacinal del Agua,
CONAGUA, 2020), Hanna delivered maximum sustained winds
of ~55 km/h and accumulated precipitation of up to 533 mm
within the MMA.

Despite these hydrometeorological impacts in the region,
coupled with past events (e.g., Hurricane Gilberto in 1988,
Hurricane Alex in 2010, and Tropical Storm Ingrid in 2013),
previous studies on land cover responses to extreme rainfall in
northeastern Mexico are scarce (e.g., Yépez-Rincon et al., 2013;
Aguilar Duran, 2017; Aguilar-Barajas et al., 2019).

2. Methodology

The methodological framework of this study is presented in

Figure 2, integrating a sequential workflow to evaluate short-

term land cover changes caused by Tropical Storm Hanna.
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Figure 2. Flow chart of the adopted methodology based on
Chrysafi et al. (2024) and Ansari et al. (2025).

2.1 Satellite imagery and preprocessing

Two cloud-free (<1% cloud cover) Sentinel-2 Level-2A
multispectral images were acquired from the Copernicus Open
Access Hub through Google Earth Engine (GEE). The selected
scenes correspond to dates immediately before and after the
landfall of Tropical Storm Hanna on 26 July 2020: July 13, 2020,
and September 22, 2020, respectively, with a temporal gap of
approximately one month to ensure minimal cloud
contamination.

2.2 Vegetation and Water Indices
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From the Sentinel-2 imagery, three spectral indices were
calculated to assess post-event changes: NDVI to evaluate
vegetation health, SAVI to reduce soil brightness effects, and
NDWTI to assess surface water content. These indices were
selected because they jointly capture the most relevant
biophysical responses to extreme rainfall-vegetation stress or
recovery, soil-vegetation contrast in partially vegetated areas,
and hydrological changes following heavy precipitation (Ansari
et al., 2025). All indices were derived from Sentinel-2 spectral
bands with a spatial resolution of 10 m (Table 1).

Sentinel-2A

Bands Wavelenght  Bandwith Spatial
(nm) (nm) resolution (m)
B3 — Green 559.8 36 10
B4 —Red 664.6 31
B9 — Near- 832.8 106
infrared

Table 1. Sentinel-2A data.
2.2.1 Normalized Difference Vegetation Index (NDVI)

NDVI is one of the most widely used spectral indices to assess
the state of vegetation health (Cabello et al., 2021; Zeng et al.,
2024). It is obtained by the following equation (Rouse et al.,
1974):

NIR (B8) — Red (B4)

NDVI = NIR (B8) + Red (B4)

@

The NDVI value varies between a range of -1 and +1, where
positive values represent vegetation in good condition, while
negative values or close to zero can indicate soil, artificial
surfaces, or bodies of water.

2.2.2 Soil-Adjusted Vegetation Index (SAVI)

SAVI is an index proposed by Huete (1988), which is usually
useful for detecting land cover when vegetation cover is scarce
or heterogeneous (Mohamed Eid et al., 2020; Azedou et al., 2023;
Illan Fernandez et al., 2024). Additionally, Gedle et al. (2024)
reported an efficacy when applied during the growing season,
because it allows separating bare soil from vegetation areas. To
obtain the value of SAVI the following equation is used:

NIR (B8) — Red (B4)
NIR (B8) + Red (B4) + L

SAVI = S (1+1) )

Where L represents the correction factor with respect to the
influence of soil brightness in areas with scarce vegetation, which
its value varies from 0 to 1, with high values being high when
there is scarce vegetation cover, while low values are suitable for
dense vegetation. That said, in this study, an average value (L =
0.5) was chosen.

2.2.3 Normalized Difference Water Index (NDWI)

NDWI is applied for the detection and analysis of surface water,
so it is usually useful in land cover studies to distinguish it from
other classes (Haldar et al., 2023; Thepvongsa and Butar Butar,
2025). To obtain the value of NDWI, the following equation is
applied (Gao, 1996):

Green (B3) — NIR (B8)

NDWI = Green (B3) + NIR (B8)

3)

Where the values vary between -1 and +1, with positive values
associated with water surfaces, while negative values or close to
zero indicate another type of cover such as vegetation, bare soil
or artificial surfaces.

2.2 Univariate image differencing (UID)

The UID is a type of change detection method proposed by Singh
(1989), which evaluates variations in a spectral index of different
dates, such as the evaluation of changes caused by extreme
precipitation events (Chrysafi et al., 2025), identifying areas of
loss or gain of a certain type of land cover.

In this work, the differences of the NDVI, SAVI and NDWI
indices corresponding to pre- and post-Hanna were calculated
from the following equation:

Al = Ipre - Ipost 4)

where I represent the value of each spectral index, where positive
values refer to a loss or decrease after the event, while negative
values indicate an increase.

2.3 Change Vector Analysis (CVA)

The CVA allows quantifying the magnitude of the total impact,
that is, considering the spectral changes of each index (Ansari et
al., 2025). That said, this integral value allows us to detect in
greater detail the areas where there was a greater post-Hanna
spectral change. To calculate the total magnitude of the land
cover change, a calculation of rasters was performed in GIS by
applying a square root function with the values of the change of
each index previously calculated, as expressed in the following
equation:

cvA
(NDVIype — NDVIpos) + (SAVIyre — SAVI,ps)? +

(NDWI,ye — NDWlype)?

®)

Where the highest value obtained refers to areas with a greater
magnitude of change in land cover, while the lowest values
indicate that there was no change between the type of cover.

2.2 Land cover classification

A supervised land cover classification was performed in GEE
using the RF algorithm implemented in JavaScript. RF has been
widely applied for land cover mapping due to its robustness, ease
of implementation, and high classification accuracy compared to
traditional methods (Zhao et al., 2021; Svoboda et al., 2022;
Macarringue et al., 2023).

The strata corresponded to the land cover classes defined in Table
2. A total of 296 points were selected, of which approximately
80% were used for training and 20% for independent validation,
using the stratified random sampling method. The number of
samples per class was allocated proportionally to the areal extent
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of each class, in order to minimize sampling bias, distributed as
follows: dense vegetation (53), medium vegetation (40), sparse
vegetation (45), built-up (88), bare soil (55), water (15). While
this sample size is lower than the commonly recommended upper
range of 300-500 samples, RF performance has been found to be
markedly improved by increasing training data to approximately
250-300 samples, while improvements in accuracy are typically
minimal outside of that threshold (Bouasria et al., 2023).

The performance of the RF classifier was evaluated through
confusion matrices and overall accuracy metrics computed
separately for the pre-event and post-event classifications. This
allowed a quantitative assessment of the reliability of the
resulting land cover maps.

Land Description Differentiation
cover criteria
Water Rivers, dams, canals, and NDVI <0.0 and
bodies permanent or temporary low reflectance in
bodies of water NIR
Bare soil Areas without vegetation NDVI  between
cover, eroded areas, or 0.0-0.1, high
areas with exposed soil reflectance in red
bands
Built-up Settlements, roads, Low NDVI <0.2,
area industrial ~ zones or distinctive
buildings reflectance in
visible light,
identified mainly
by training points
Dense Dense tree cover or highly NDVI >0.45
vegetation  photosynthetically active
vegetation
Medium Areas with intermediate, NDVI  between
vegetation shrubby or transitional 0.30-0.45
vegetation.
Sparse Grasslands and scrublands NDVI  between
vegetation with low green biomass 0.10-0.30

density

Table 2. Description of land cover classes in the study area.

3. Results and Discussion
3.1 Land cover classification pre- and post-Hanna

Figures 3 and 4 show the pre- and post-Hanna classification
results, where an increase from 35.39% to 44.77% in dense
vegetation is highlighted, while medium vegetation increased
from 22.29% to 35.37%. On the other hand, sparse vegetation
presented a loss of 16.80% to 9.16%, which represents a net loss
of -108.12 km?. For the class of built-up area, there was also a
reduction from 23.80% to 18.96&; while bare soil experienced a
minor decrease of -0.63 km?. The water bodies presented a small
net gain of 1.12 km2. (Table 3).
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Figure 3. Pre-Hanna land cover classification map.

Therefore, the transition from less vigorous vegetation to more
vigorous vegetation after the event is determined, consistent with
the regrowth of vegetation, added to the response of extreme
precipitation, this mainly observed along the slopes of the rock
massifs and riparian corridors.

On the other hand, the apparent reduction of the built-up area can
be attributed to a spectral misclassification effect; This may be
due to the fact that wet surfaces and vegetation in peri-urban
strips were classified as dense vegetation categories.

Land Pre- % Post- % Change
cover Hanna Hanna Area
area area (Km?)
(Km?) (Km?)
Water 3.9 0.28 6.95 0.49 3.05
bodies
Bare soil 24.25 1.71 28.87 2.04 4.62
Built-up 377.16  26.67 270.39 19.11 -106.77
area
Dense 498.87 3499 60426 42.71 109.39
vegetation
Medium 27542 1947 34155 24.14 66.13
vegetation
Sparse 238.79 16.88 162.88 11.51 -75.91
vegetation

Table 3. Changes in land cover following Tropical Storm
Hanna.

To assess the accuracy of land cover classification, confusion
matrices were used starting from 20% of the points for validation.
The pre-Hanna obtained an overall accuracy of 0.93 with a Kappa
coefficient of 0.91. Table 4 shows that most of the classes
obtained high reliability, however, an error was observed
between bare soil and medium vegetation, as well as between
built-up area and sparse vegetation; This may be due to the
spectral similarity of these transition classes.
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Figure 4. Post-Hanna land cover classification map.

With respect to the post-Hanna classification, the confusion
matrix obtained an overall accuracy of 0.83 with a Kappa
coefficient of 0.79. Table 5 shows a relatively high reliability,
however, all classes presented minor errors, except for a notable
misclassification of the medium vegetation class marked as
sparse vegetation.

Water Bare Buil- Dense Medium Sparse
bodies soil up vegetation vegetation vegetation
area
Water 3 0 0 0 0 0
bodies
Bare soil 0 9 0 0 1 0
Buil-up area 0 0 13 0 0 2
Dense 0 0 0 10 0 0
vegetation
Medium 0 0 0 0 10 0
vegetation
Sparse 0 0 1 0 0 9
vegetation

Table 4. Pre-Hanna land cover classification confusion matrix.

Water Bare Buil- Dense Medium Sparse
bodies soil up vegetation vegetation vegetation
area
Water 2 0 0 0 0 1
bodies
Bare soil 0 9 0 0 0 1
Buil-up area 0 0 14 0 0 1
Dense 0 1 0 8 0 1
vegetation
Medium 0 0 0 0 6 4
vegetation
Sparse 0 0 0 0 1 9
vegetation

Table 5. Post-Hanna land cover classification confusion
matrix.

In addition, the values of Producer’s Accuracy (PA) and User’s
Accuracy (UA) were calculated for each coverage class (Table
6). For the Pre-Hanna classes, most classes showed high
reliability, with PA values between 0.86 and 1.00 and AU values

between 0.81 and 1.00, especially for water bodies, dense
vegetation and built-up areas. In contrast, medium vegetation and
sparse vegetation exhibit lower post-Hanna accuracy, probably
due to soil moisture and transition in vegetation.

Land PA UA PA UA
cover

Water 1.00 1.00 0.66 1.00
bodies

Dense 1.00 1.00 0.88 1.00
vegetation

Bare soil | 0.86 0.92 0.93 1.00
Built-up 0.90 1.00 0.90 0.90
area

Medium 1.00 0.90 0.60 0.85
vegetation

Sparse 0.90 0.81 0.90 0.52
vegetation

Table 6. Producer’s Accuracy (PA) and User’s Accuracy (UA)
for each land cover class for pre- and post-Hanna.

While changes in coverage were quantified as area percentages,
it is important to recognize that classification errors can influence
the reported values. Although the general accuracy for pre- and
post-Hanna (0.93 and 0.83, respectively) has obtained a good
agreement, the variability in the metrics at the class level is
notorious, specifically in the classes of medium vegetation and
scattered vegetation (PA = 0.60 and AU = 0.52), so these
uncertainties must be considered when interpreting the
magnitude and spatial distribution of land cover transitions.
Future studies could incorporate the error-adjusted area
estimation framework proposed by Olofsson et al. (2014) to
formally quantify uncertainty in estimates of change, especially
when limited baseline data are available.

3.2 Index-based change detection

In a complementary analysis, change detection maps were
generated for each spectral index. The ANDVI and ASAVI maps
(Figures 5 and 6), show a general increase in vegetation
greenness across the mountainous areas of medium elevation,
particularly in the northern part of the study area. On the other
hand, the high mountain areas presented high loss values, which
indicates a loss of vegetation, probably related to mass removal
processes or surface erosion caused by the event.
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Figure 5. Change magnitude map for NDVI.

In contrast, the ANDWI change map (Figure 7) mostly shows a
positive concentration along the post-Hanna river corridors, in
addition to the temporary increase in soil moisture.

345000 360000 375000 390000
1 1 1 1

N
g g
Z- f y ra
= _al 2 b
& &
¢
g .
S )
2 re
2 %
& &
q
S Ik 2
Z- % g -
& SN &
5
Deon A
a5 Legend B A &
g 2 E - é
27 SAVI change &
& &
Strong loss g
Strong gain - i
5 A
g ey | :
Zq 0 15 P s A ra
Z —— K 11 Z
E &4
I 1 1 1
345000 360000 375000 390000

Figure 6. Change magnitude map for SAVI.

On the other hand, the negative changes of the NDWI were less
extensive, occurring in fragmented patches along the mountain
slopes, possibly related to the high slope and the infiltration or
drying by the lithological conditions as observed in the center-
east of the study area.
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Figure 7. Change magnitude map for NDWI.
3.3 Multi-index CVA results
The CVA multi-index magnitude map (Figure 8)

comprehensively represents the special distribution of post-
Hanna spectral changes, where areas with significant alterations
in vegetation cover and wet conditions are shown with higher
values (dark red), while the lighter tones correspond to areas with
minimal or no changes.
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Figure 8. Multi-index magnitude map.

The high spectral magnitude change was concentrated along the
mountain slopes and in specific areas of urban areas, particularly
in the southern and central sectors of the study area, being
consistent with the impacts expected after Tropical Storm Hanna,
where vegetation cover may be reduced due to slope instability.
surface runoff or temporary flooding. On the other hand, large
sectors in the northern and flat urbanized areas exhibit low
change, suggesting a more stable response to the event.
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4. Conclusion

This study demonstrates the applicability of integrating Sentinel-
2 imagery with remote sensing techniques to assess land cover
responses to extreme rainfall in an urban and mountainous
environment. Using stratified random sampling, six land cover
classes were determined through classification supervised with
the RF algorithm, supported by NDVI, SAVI and NDWI. The
pre- and post-Hanna models achieved overall accuracies of 0.93
and 0.83, with Kappa coefficients of 0.91 and 0.79, respectively,
which demonstrates a good to high efficacy of the RF application
for this type of studies.

Integrating these classifications with a multi-index CVA enabled
the detection of both categorical and magnitude-based changes,
determining significant vegetation disturbance and localized
water dynamics after Tropical Storm Hanna (2020). The results
highlight the dual effects of extreme precipitation: vegetation
recovery in mid-elevation areas and degradation in erosion-prone
slopes, together with increased surface moisture along riparian
corridors. This multi-index approach provides a more nuanced
understanding of short-term vegetation and hydrologic responses
than any index alone.

Despite the strong performance of the methodology, some
limitations should be acknowledged: (i) the analysis was based
on only two temporal scenes, which restricts the interpretation of
vegetation dynamics to a short-term window and may not fully
capture longer recovery trajectories; (ii) spectral confusion
between medium and sparse vegetation introduced uncertainty
into post-event classification, as reflected in class-level accuracy
metrics. Future studies could address these limitations by
incorporating multi-temporal imagery, higher spatial resolution
sensors, or additional spectral indices to improve vegetation
separability. Overall, this proposed methodology offers a
transferable framework for monitoring land cover dynamics in
other urban mountain regions of the world in the face of extreme
precipitation events.
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