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Abstract

Simulating fire spread and identifying potential propagation pathways in the Wildland–Urban Interface (WUI) are critical for wild-
fire prevention, emergency preparedness, and firefighting—especially in the wake of catastrophic events such as the 2025 Los
Angeles wildfire, the 2019–2020 Australian bushfires, and the 2023 wildfires in Greece. Despite growing awareness of wildfire
risks near urban boundaries, lightweight, high-resolution 3D simulation tools remain limited, hindering scenario-based planning
and rapid response. To address this gap, we present a voxel-based 3D wildfire propagation simulator developed in Python. The sim-
ulator integrates LiDAR-derived voxel models of urban environments, GIS-informed fuel characterizations, and high-performance
parallelism via the Taichi framework. Fire dynamics are modeled across 3D voxel grids using a hybrid of physics-based and empir-
ical approaches, incorporating key parameters such as wind speed, fuel type, and moisture content. Critical processes—including
inter-voxel heat transfer, crown fire spread, and surface fireline intensity—are captured to simulate realistic fire behavior. Simulation
results are exported in standard 3D formats for immersive visualization in platforms such as Blender and Unity. A case study using
LiDAR data from Newcastle, Australia demonstrates the tool’s real-world applicability. Designed for modularity and extensibility,
the simulator supports model replacement, parameter tuning, and integration with diverse spatial datasets. It also serves as a scalable
framework for high-fidelity modeling of inter-voxel mass and energy transfer in complex urban environments, enhancing decision-
support capabilities. Additionally, the tool generates synthetic fire spread data, enabling the training of generative AI models and
integration with broader urban and environmental simulation platforms.

1. Introduction

The 2025 Palisades and Eaton wildfires in Los Angeles were
among the most destructive urban fires in recent U.S. history,
causing billions in damages, displacing tens of thousands, and
devastating both urban and natural areas. Similarly, Australia’s
2019–2020 “Black Summer” fires burned over 24 million hec-
tares, killed an estimated one billion animals, and caused more
than $4.5 billion in losses. Smoke traveled over 11,000 kilomet-
ers to Chile and Argentina, highlighting the global reach of ex-
treme wildfire events.(Ahmed and Ledger, 2023, Natural Haz-
ards Research Australia, 2023). Collectively, these disasters un-
derscore the increasing frequency, intensity, and transboundary
impacts of wildfires, reinforcing the urgent need for advanced
predictive modeling, urban resilience planning, and ecosystem
risk mitigation.

Fires originating near the Wildland–Urban Interface (WUI) can
escalate rapidly due to dry vegetation, extreme weather, struc-
tural vulnerabilities, and strong winds. Wind-driven embers
often jump miles ahead of the main front, creating spot fires
that overwhelm emergency response efforts (Karels and Corbin,
2022). These events have destroyed thousands of structures,
disrupted critical infrastructure, and caused long-term ecolo-
gical damage. In WUI zones, firefighting and prevention are
complicated by the tight coupling between natural hazards and
the built environment (Alvis et al., 2025). Limited defensible
space, flammable urban design, and the close proximity of struc-
tures to vegetative fuels hinder suppression efforts (Miller, 2017,
Hakes et al., 2017, Baker et al., 2020). Under such constraints,
even small ignitions can rapidly develop into large, destructive
urban fires (Kendell et al., 2023), as seen in Portugal, Greece,
and Chile (Bento-Gonçalves and Vieira, 2020, Alvis et al., 2025).

Accessory structures, such as fences, gutters, roofs, and sheds,
further act as ignition vectors that create continuous combust-
ible pathways into primary residences (Hakes et al., 2017). These
dynamics underscore the need for accurate fire propagation mod-
els that explicitly represent WUI-specific features—including
3D structure–fuel interactions, ignition sources, and ember trans-
port—to support early intervention, resource optimization, and
strategic firefighting operations (Hakes et al., 2017, Gonzalez
and Ghermandi, 2024).

In response to growing demand for fire spread simulation, aca-
demic researchers, government agencies, and fire management
authorities have developed a variety of modeling tools (Gonza-
lez and Ghermandi, 2024, Hostikka et al., 2008). However,
many of these systems remain inadequate for both proactive
fire prevention and real-time emergency response—particularly
within the complex conditions of WUI zones. Several critical
limitations contribute to this shortfall. First, most models sim-
ulate fire propagation in two dimensions, rendering them in-
capable of capturing vertical dynamics such as crown fires in
forests or fire spread along multi-story structures (Hostikka et
al., 2008). Second, while some advanced 3D simulators do
exist, they often rely on coarse spatial resolutions (typically
10–30 meters) and lack integration with detailed urban geo-
metries or high-resolution datasets like 1-meter LiDAR point
clouds (Comesaña-Cebral and Martı́nez-Sánchez, 2024, Moreno
et al., 2012), limiting their usefulness for street-level prediction
and tactical planning. Third, many tools are packaged as pro-
prietary, GUI-based software, which restricts modularity, flex-
ibility, and interoperability with smart city platforms such as
urban digital twins, web-based decision support systems, and
IoT-connected devices, including smartphones and virtual real-
ity (VR) tools (Xu et al., 2023). Finally, the computational
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cost of high-resolution fire models often limits their scalabil-
ity in large or densely built environments. These challenges
underscore the need for a relatively high-resolution, fully three-
dimensional modeling framework that leverages detailed spa-
tial inputs—such as LiDAR-derived fine-scale 3D urban fea-
tures—to accurately simulate fire behavior in both vertical and
horizontal dimensions across WUI settings.

This paper presents a voxel-based 3D wildfire simulator for
modeling fire behavior in complex urban and natural environ-
ments. Developed in Python and accelerated using the Taichi
parallel computing framework (Hu et al., 2019), the simulator
integrates LiDAR-derived voxel models with both physics-based
and empirical fire spread models. It incorporates key variables
such as wind, fuel type, and moisture content, while simulating
inter-voxel heat transfer, surface fireline intensity, and crown
fire dynamics. Simulation outputs are exported in standard 3D
formats (e.g., OBJ and FBX) for immersive visualization in
platforms such as Blender and Unity. A case study in New-
castle, Australia demonstrates the tool’s effectiveness in rep-
licating fire behavior using high-resolution LiDAR data. The
remainder of this paper reviews existing 3D fire spread simu-
lation approaches, highlights current limitations, and outlines
the motivation for our work. We then describe the proposed
methodology and present results from the case study.

2. Literature Review

This section reviews existing research on fire propagation sim-
ulation from multiple perspectives. We examine current fire
spread simulation tools that model propagation in both 2D and
3D, and highlight recent advances in computational technolo-
gies with the potential to accelerate large-scale fire modeling.

2.1 Fire Simulation Tools and Software

Over the past few decades, a wide range of fire simulation tools
have been developed to support wildfire prediction and real-
time response. These tools vary significantly in dimensional
fidelity, modeling approaches, and integration with geospatial
datasets. In this review, we categorize existing fire spread sim-
ulators based on their ability to model fire propagation in 2 or
3D, with particular emphasis on tools capable of 3D simula-
tion in complex urban environments. Commonly used 2D fire
simulation tools and frameworks include SPARK and Amicus,
developed by Australia’s CSIRO (Sullivan et al., 2013, Miller
et al., 2015); FARSITE and BehavePlus from the USDA Forest
Service (Finney, 1998, Andrews et al., 2005); Prometheus from
the Canadian Forest Service (Tymstra et al., 2010); and WUI-
NITY, developed at Imperial College London (Wahlqvist et al.,
2021). Many of these tools are integrated with GIS platforms
and are actively used by fire management agencies worldwide
to simulate wildfire spread across large 2D landscapes, support-
ing firefighting, rescue operations, and evacuation planning.

In 3D space, advanced fire simulation systems such as WFDS,
FIRETEC, WRF-Fire, and QUIC-Fire (Mell et al., 2013, Linn
et al., 2020) offer robust capabilities for modeling both hori-
zontal and vertical fire spread—critical for capturing dynamics
like crown fires and flame propagation along multi-story struc-
tures in WUI zones (Ghaderi et al., 2020, Robinson, 2023).
Despite their value, key limitations remain. Legacy tools like
FARSITE are limited to 2D fire spread modeling, offering only
simplified vertical representations focused on surface fire beha-
vior (Ghaderi et al., 2020). Some 3D simulators support visual-
ization in 3D space but simulate fire dynamics using 2D or 2.5D

GIS data, reducing fidelity at fine scales—especially in urban
settings with complex street and structure layouts (Moreno et
al., 2010, Yun et al., 2011). Most advanced simulators rely on
computational fluid dynamics (CFD) to model fire behavior un-
der varying wind, fuel, and terrain conditions. While WRF-Fire
and QUIC-Fire support fully coupled atmosphere–fire interac-
tions, WFDS provides only limited coupling. PyroSim + FDS,
though effective for structural fire modeling, lacks atmospheric
integration and scalability for WUI scenarios (Robinson, 2023).
In terms of geospatial inputs, FARSITE and WRF-Fire often use
coarse-resolution data, such as 30-meter topographic maps and
111-meter atmospheric grids (Shamsaei et al., 2023), whereas
newer tools like WFDS and QUIC-Fire can incorporate sub-
meter LiDAR data, allowing detailed modeling of urban fuel
structures and ember transport (Coen et al., 2024, Robinson,
2023). Notably, QUIC-Fire employs a LiDAR-based frame-
work to simulate fire spread in heterogeneous urban environ-
ments using real 3D building data. Open-source access also dif-
ferentiates these tools: WFDS and WRF-Fire are freely avail-
able and government-supported, while FIRETEC and QUIC-
Fire typically require formal collaboration or permission for use
(Moody et al., 2023, Robinson, 2023).

Most wildfire simulation tools are compiled, GUI-based ap-
plications that limit accessibility, extensibility, and integration
with other platforms. Their lack of scripting support has driven
growing demand for more flexible, programmable alternatives.
Lightweight tools such as simfire, developed in Python, offer
improved usability and automation, enabling batch simulations
and integration with smart city systems and IoT-enabled fire
detection networks (MITRE Fireline Initiative, 2022). How-
ever, these tools are restricted to 2D modeling and lack the
scientific rigor to capture complex 3D fire dynamics—such as
crown fires, ember lofting, and flame spread in multi-story struc-
tures—which are critical for accurate WUI fire modeling.

Together, these tools reflect an evolving landscape that priorit-
izes high-resolution, 3D-capable systems integrating GIS and
atmospheric data to meet the complex demands of modern fire
management. Nonetheless, several key limitations remain:

Resolution Constraints: Many 3D simulators still rely on coarse-
resolution inputs (10–30 meters) and lack support for high-
resolution urban geometries (Shamsaei et al., 2023), lim-
iting their precision in modeling fire behavior at the street
and building scale in urban environments (Xu et al., 2025).

Limited Interoperability and Modularity: Proprietary, GUI-
centric designs restrict the integration of wildfire simu-
lators with urban digital twins, decision support systems,
broader urban and environmental simulation frameworks,
and IoT ecosystems—including sensors, smartphones, and
augmented reality (AR) tools.

Computational Challenges: Simulating large-scale urban fires
using high-resolution 3D data demands significant com-
putational resources. While tools like simfire offer modu-
larity, they often lack parallelization or High-Performance
Computing (HPC) support, resulting in performance bot-
tlenecks in complex urban environments.

Given these limitations, there is a clear need for a flexible and
efficient 3D fire propagation framework that leverages widely
adopted scientific programming languages and HPC capabilit-
ies. To ensure broad applicability, the system should be modu-
lar, deployable as libraries or packages, and accessible via well-
defined programming interfaces. Such a design would enable
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seamless integration with other scientific applications—including
urban digital twins, 3D modeling platforms, and game engines
—for use cases ranging from wildfire simulation and visualiza-
tion to serious gaming and decision support.

2.2 Parallel Programming for High-Fidelity Simulation

Building a flexible 3D fire propagation framework that lever-
ages high-resolution real-world data for large-scale urban simu-
lations presents substantial computational challenges. Fine spa-
tial granularity—particularly when using LiDAR-derived inputs
—and complex fire–atmosphere interactions can quickly ex-
ceed the limits of traditional serial processing. To address these
challenges, we review parallel computing frameworks commonly
used in scientific computing to identify suitable technologies
for scalable wildfire modeling.

In the Python ecosystem, Taichi and Numba provide JIT- com-
piled, high-performance numerical kernels with support for mul-
tithreading and GPU acceleration (Hu et al., 2019, Lam et al.,
2015). Ray and Dask enable distributed computing across mul-
ticore systems and clusters, making them well-suited for large-
scale simulations and batch processing workloads (Karau and
Kimmins, 2023). For differentiable programming and vector-
ized parallelism, JAX and PyTorch offer GPU-accelerated com-
putation and are increasingly adopted in hybrid modeling work-
flows (Sapunov, 2024). At a lower level, Kokkos provides an
abstraction layer for parallelism in C++, supporting both CPUs
and GPUs through backends such as OpenMP and CUDA (In-
cardona et al., 2023). In Julia, built-in support for threading,
SIMD, and GPU computing makes it a performant and express-
ive alternative for developing high-efficiency simulation code
(Besard et al., 2018).

These computing frameworks collectively provide a robust found-
ation for building a scalable, modular 3D fire simulation en-
gine capable of meeting the real-time computational demands
of wildfire modeling in complex WUI environments.

3. Methodology

We begin by outlining the study’s motivation, target users, in-
tended use cases, and core design requirements. Next, we present
the simulator’s conceptual architecture, detailing its scientific
foundations and key geospatial inputs for 3D fire modeling in
WUI environments. Finally, we describe the implementation,
highlighting the use of advanced computing techniques to sup-
port time-critical emergency response.

3.1 Design Requirements

This study aims to develop a lightweight 3D fire simulator using
widely adopted scientific computing techniques and program-
ming languages, tailored for modeling fire propagation in WUI
zones across Australia. The simulator is designed to support
two primary user groups: (1) fire and rescue (F&R) teams con-
ducting preventative hazard reduction burns in urban-adjacent
areas, and (2) fire and rescue services (FRS) managing rural
and large-scale bushfires. The tool is intended for both pre-
paredness and real-time response, enabling simulation of fire
behavior across complex urban and natural terrains. These users
will benefit from mobile-accessible, high-resolution 3D model-
ing to inform operational decision-making, risk mitigation, and
resource allocation. The simulator aligns with recent initiat-
ives in Australia to improve bushfire management, including

satellite-based evacuation messaging (Barton et al., 2024) and
voxel-based fuel estimation using LiDAR data (Barton et al.,
2020). These use cases define the core design requirements of
the proposed simulation framework, summarized as follows:

3D Fire Spread Simulation: The tool must support fire spread
modeling in both vertical and horizontal dimensions to
capture realistic fire dynamics.

Flexibility and Efficiency: The framework must be lightweight,
efficient, and capable of running across various computing
environments, including mobile and HPC platforms.

High-Fidelity Geospatial Input: It should utilize accurate 3D
geospatial data sources such as LiDAR, 3D GIS models,
BIM, which have to be integrated in a uniform voxel-based
representation to enhance simulation precision.

Modular and Deployable Architecture: The framework should
adopt a modular design, allowing components to be re-
used, extended, or replaced for specific applications, and
be deployable as reusable libraries or packages to enable
seamless integration into broader workflows.

System Extendibility: The simulator should support integra-
tion with external systems—including urban digital twins,
3D modeling platforms, game engines, and environmental
simulation tools—through standardized APIs and data ex-
change interfaces.

Scientific Language Compatibility: It should be implemen-
ted using commonly adopted programming languages (e.g.,
C++ and Python) to ensure ease of development, mainten-
ance, and community adoption.

Based on these design requirements, we developed a Python-
based framework that integrates high-performance parallel com-
puting and supports high-resolution LiDAR data, enabling scal-
able simulations for wildfire visualization, serious gaming, de-
cision support, and emergency planning.

3.2 Overall Framework Design

We developed a voxel-based modeling framework to simulate
inter-voxel mass and energy transfer, forming the computational
backbone for 3D wildfire behavior modeling—particularly in
WUI environments where vertical interactions between vegeta-
tion and infrastructure are critical. The propagation model com-
bines physical and empirical methods, building on established
2D simulators such as SPARK. To extend these capabilities into
three dimensions, we integrated a crown fire module that cap-
tures vertical fire spread through canopies and multi-story struc-
tures, enabling realistic simulation of complex urban and peri-
urban wildfire scenarios (Rothermel, 1972). Figure 1 illustrates
the simulator’s architecture, comprising four main components:
(T1) Voxel Characterization, (T2) Inter-voxel Fire Spread Sim-
ulation, and (T3) Fire Propagation Visualization. At a concep-
tual level, fire spread is modeled as heat transfer across a voxel
grid using 18-directional spatial connectivity.
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Figure 1. Overview of the simulator design, illustrating: (a) the rationale behind voxel-based fire simulation, and (b) the
implementation of fire behavior modeling using a hybrid physical–empirical approach.
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Voxelization transforms high-resolution point clouds—collected
from low-altitude flights or UAVs via LiDAR or photogram-
metry—into a 3D voxel grid representing buildings, infrastruc-
ture, and vegetation in WUI areas. To construct a voxel-based
model, various data sources can be used, including LiDAR,
imagery, video, existing 3D models, and building information
modeling (BIM) data. For real-time bushfire response, LiDAR
point clouds are considered the most suitable for capturing the
current state of vegetation. These data can be further processed
to estimate fuel type and fuel load (Barton et al., 2020). The
resulting voxel grid preserves spatial density and topological
connectivity, forming the foundation for simulating heat trans-
fer and combustion dynamics.

3.2.1 T1. Voxel Characterization Following voxelization,
each voxel is assigned material and environmental properties
that influence its ignition and combustion behavior. Using GIS-
linked datasets, voxels are classified by fuel type into two cat-
egories: ”canopy” and ”non-canopy.” Environmental variables
such as wind, temperature, and moisture are incorporated to
capture dynamic fire behavior. Each voxel is associated with
a standardized set of parameters based on its classification. For
canopy voxels, key parameters include canopy base height (CBH),
canopy bulk density (CBD), and fuel moisture content (FMC).
For non-canopy voxels, relevant parameters include ignition tem-
perature (T ignition), fuel load (p f), material density (rho), fuel
bed depth (d), combustion efficiency (eta), specific heat capa-
city (c), and burn rate. Many of these values are derived from
LiDAR point density to capture spatial variability in fuel distri-
bution. To ensure interoperability, our schema aligns with the
SPARK model and the Amicus Fire Database, enabling integ-
ration with existing wildfire modeling workflows.

3.2.2 T2. Inter-voxel Fire Spread Simulation This mod-
ule simulates fire propagation by updating each voxel’s com-
bustion state—Unburned, Heating, Igniting, Burning, or Burned
—based on thermal gradients, heat transfer mechanisms, fire-
line intensity, and physical fuel characteristics. The simulation
proceeds in four key steps:

Step 1: Detect temperature differences between adjacent
voxels. Neighboring voxels are identified using 18-directional
matrix-based connectivity. A voxel transitions from Unburned
to Heating if its temperature is lower than that of an adjacent
burning voxel, indicating potential heat influx.

Step 2: Inter-voxel heat transfer. Thermal energy is trans-
ferred from adjacent burning voxels through convection and
radiation. The voxel’s temperature is incrementally updated
based on these inputs (Morvan, 2011). Once the temperature
exceeds the ignition threshold, the voxel transitions to the Ig-
niting state.

Step 3: Ignition and combustion transitions. Voxels are clas-
sified as either canopy or non-canopy, with distinct criteria gov-
erning the transition from the Igniting to Burning state for each
category:

Step 3a (Canopy Voxels): A critical fireline intensity threshold
is calculated based on canopy base height (CBH) and fuel
moisture content (FMC) (Wagner, 1977). If this threshold
is exceeded, the voxel transitions to Burning.

Step 3b (Non-Canopy Voxels): For non-canopy voxels, igni-
tion depends on whether the burned area exceeds a pre-
defined threshold. Key parameters such as fuel load, bulk

density, fuel bed depth, and combustion efficiency determ-
ine the rate and duration of burning.

Step 4: Surface fireline intensity and burn completion. Fire-
line intensity is calculated using established empirical models
(Rothermel, 1972, GM, 1959), with the rate of spread adjus-
ted according to wind, slope, and other environmental factors.
These estimates are based on equations, coefficients, and em-
pirical parameters derived from prior studies and field observa-
tions (Rothermel, 1972, Andrews, 2018). Once a voxel reaches
its predefined burn duration, it transitions to the Burned state.

This process generates a time-resolved fire spread simulation,
with each voxel annotated by its combustion state and corres-
ponding timestamp. Outputs are organized into lookup tables
containing voxel IDs, directional spread vectors, and travel dis-
tances—enabling seamless integration with real-time planning
tools, 3D visualization systems, and decision-support platforms.

3.2.3 T4. Fire Propagation Visualization Simulation out-
puts from Task T3 are exported as structured lookup tables that
record voxel state transitions and attributes at each timestep.
Results are saved in standard formats (e.g., CSV, JSON) and can
be mapped to 3D voxel objects (e.g., OBJ, FBX). For real-time
integration, data can also be streamed via web APIs (e.g., HT-
TPS, WebSockets) to IoT devices and external simulation plat-
forms, including traffic, flood, urban planning, and air quality
models. This interoperability enables seamless visualization in
tools such as Blender, Unity, and Unreal Engine, supporting im-
mersive simulations on platforms including holographic tables,
VR headsets, and AR interfaces. These visualizations enhance
the simulator’s utility for decision support, emergency response
training, public education, and community engagement.

3.3 Implementation Using Python Parallel Programming

The simulator is implemented in Python and accelerated with
the Taichi parallel programming framework to support high-
resolution, large-scale 3D wildfire simulations. Combining Py-
thon’s flexibility with Taichi’s performance ensures scalability
and portability across desktop, cloud, and edge environments
for wildfire analysis and decision support. Taichi enables effi-
cient parallel execution on CPUs and GPUs, allowing voxel-
level operations—such as heat transfer and combustion state
updates—to run concurrently across the simulation grid. The
simulator’s modular design, covering voxelization, fuel charac-
terization, fire spread, and visualization, is optimized for par-
allel processing. Core simulation loops are handled by Tai-
chi, while NumPy supports preprocessing tasks like point cloud
voxelization and GIS-based fuel classification.

4. Result and Discussion

We conducted a case study to demonstrate the effectiveness of
our voxel-based wildfire propagation framework in capturing
complex three-dimensional fire dynamics across diverse WUI
environments.

4.1 Study Area

The study area is a residential community along Bayview Street
in Newcastle, New South Wales, Australia (Figure 2). The 3D
point cloud, sourced from the dataset Newcastle201-409-LID1-
C3-AHD 3746350 56 0002 0002.las, was collected in Septem-
ber 2014, referenced to the Australian Height Datum (AHD),
and projected in UTM Zone 56S. With a typical density of 4–8
points/m2.
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B) Localized wildfire spread over non-flammable road infrastructure, driven by continuous overhead canopy connectivity

A) Community-scale wildfire propagation — a hypothetical scenario simulated near Bayview Street, Newcastle, NSW, Australia

Closed Canopy         Dry Eucalyptus           Mallee Shrubland         Medium Grass          Dirt            Houses (Wooden)   RoadwayHeating    Igniting   Burning   Burned
Voxel State Land Cover

Figure 2. Simulated 3D fire propagation in a hypothetical residential area near Bayview Street, Newcastle, New South Wales,
Australia.
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The dataset enables detailed terrain reconstruction, vegetation
analysis, and urban fire simulation. It is voxelized at a 1-meter
resolution into a 130 × 128 × 35 grid, totaling 582,400 voxels.
Fuel load properties are assigned based on ALUM land use/land
cover data and SPARK fuel classifications, with manual valida-
tion conducted via Google Earth Engine.

4.2 Fire Spread Visualization and Interpretation

The simulated scenario is configured with a westward wind at
5 m/s and an environmental temperature of 298.15 K (25°C).
The simulation spans 4,500 seconds from ignition. Figure 2A
shows a global view of fire progression, with the fire crossing
the road at T = 600 s and eventually engulfing the residential
block. Figure 2B provides a close-up, illustrating how fire tra-
verses non-burnable road surfaces via continuous tree canopy,
reaching an otherwise isolated community as early as T = 90 s
and T = 120 s. The simulation is visualized in a 3D envir-
onment, highlighting critical fire spread pathways, including
breaches across firebreaks such as roads. These insights can
inform emergency strategies, such as pruning overhead canopy
or applying fire retardants to protect defensible zones. The sim-
ulation, spanning 16,640 m2 with 582,400 voxels over 4,500
seconds, was completed in 92.4 seconds, including a 5.4-second
compilation time.

4.3 Limitations and Future Work

While the simulator effectively models wildfire spread using a
hybrid physical–empirical approach, its parameterization and
underlying fire dynamics require further refinement. The cur-
rent model has not yet been validated against real wildfire ob-
servations, and several parameters remain uncalibrated. Future
work will focus on validating the model with real fire data-
sets and controlled burn experiments, as well as conducting
a systematic performance comparison with other 3D wildfire
propagation models. We also aim to incorporate generative AI
methods to accelerate prediction and support scaling to larger
spatial domains without compromising fidelity.

5. Conclusion

In this study, we presented a voxel-based 3D wildfire simula-
tion framework designed to model the complex dynamics of fire
behavior in WUI environments. The simulator integrates high-
resolution voxel grids, environmental data, and a hybrid phys-
ical–empirical fire spread model, providing a scalable and ad-
aptable platform for simulating wildfire propagation and inter-
voxel mass and energy transfer. Implemented using the Python-
based Taichi parallel computing framework, the system delivers
high computational performance while maintaining the flexib-
ility required for diverse modeling tasks. The framework func-
tions not only as a wildfire simulation engine but also as a sci-
entific computing tool capable of real-time data integration, fire
spread simulation, and immersive 3D visualization—making
it a valuable asset for decision support, emergency response,
urban planning, and educational applications.
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