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Abstract 

This study addresses the challenges of accessibility and laborious intensity in visual inspections of public metropolitan 

mobility infrastructure, such as elevated Metro systems. It explores an experimental 3D-Mapping Inspection and Classification 

Evaluation method (3D-MICE) utilizing UAV imagery and geometric mensuration from 3D point clouds. The method introduces two 

classification techniques: Condition Classification by Intensity (CCI) and Geometry Classification by RGB color (GCC), applied to 

orthomosaics. 3D-MICE enables semi-automatic detection, segmentation, and measurement of cracks and stains in reinforced 

concrete by selecting areas of interest based on intensity and geometric features. This approach offers a promising, efficient, and 

precise alternative to traditional inspection methods. 3D-MICE can detect, segment and measure, semi-automatically, cracks 

and stains of reinforced concrete structures by selecting areas of interest based on intensity and geometry. 

1. Introduction

All structures require inspections at varying intervals depending 

on their type and usage. Recently, many urban structures have 

become obsolete due to factors such as increased load demands, 

heightened contamination, and more intense hurricanes. Some 

authors (Hao et al., 2023; Lee & Ellingwood, 2017) recognize the 

future challenges for civil engineering structures to be 

multihazard resistant, resilient, and smart in response to climate 

uncertainties. Preventive maintenance and regular inspections 

enable decision-makers to detect issues early, take timely 

corrective actions, and ensure the structure functions as designed. 

Inspections are among the most effective measures to reduce 

maintenance costs and prevent catastrophic failures (Chen et al 

2020; Mandirola et al., 2022). For instance, in Australia, annual 

maintenance expenses for civil infrastructure range from 0.4% to 

2% of the initial construction costs (Mahmoodian et al., 2022). 

Inspection activities have intensified recently, with researchers 

from Geomatics and Civil Engineering contributing diverse 

inspection methodologies (Dolati et al, 2022). Examples of these 

inspections cover urban (Wetherley et al., 2017; Salem aet al, 

2020), hydraulic (Zhang & Gao,2020), and transport 

infrastructures [10, 11]. The integration of remote sensing and 

robotic survey technologies enhances the quality, speed, 

affordability, and accessibility of inspections, while prioritizing 

safety and cost-effectiveness (Wetherley et al., 2017). 

Unmanned Aerial Vehicle (UAV) has become one of the 

preferred techniques for infrastructure inspection, for example 

since 2013 [0001] used the synergy of LiDAR + RGB for data 

acquisition and analysis based on ground and aerial sensors. 

Besides, pathology in structures is defined as the science 

dedicated to studying the problems or diseases that arise in 

buildings after they have been constructed (Pan et al, 2019). 

These injuries can appear in any part of a structure and can 

originate from many causes, which must be identified to solve 

them (Chen et al, 2019). The most common pathologies in RC 

elements are cracking, flaking, delamination, outliers, wear or 

abrasion, collision damage, polishing, and overload (McGuire, et 

al. 2016. Moreover, concrete has the capacity to resist high 

compressive stresses. However, it does not perform well under 

tensile and shearing stresses (Zhang & Gao,2020). RC structures 

are subjected to stresses and strains which depend on bending, 

axial load, shear and torsion (Pan et al, 2019). Steel bars could 

mitigate these stresses on the RC structure in areas where tensile 

and shearing stresses are expected to develop under service 

actions. 

Table 1. Advantages and disadvantages of Terrestrial Laser 

Scanners (based on Kaartinen et al., 2022). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W3-2025 
Conference on Geoinformation 2025, 24–28 November, Mérida, Yucatán, México

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-145-2026 | © Author(s) 2026. CC BY 4.0 License.

 
145



Cracks are breaks however, could appear in RC at different 

lengths, thicknesses, and depths, and are manifested externally in 

different elements of the structure with linear development. 

Cracks in concrete are attributed to multiple causes and can affect 

the appearance of a building and could indicate potential 

structural failure. Cracks can also indicate other problems, 

including poor concrete curing, shrinkage, thermal variations, 

chemical attack, external loads, excessive loads, errors in 

execution, errors in design, and differential displacement in 

foundations, among others (Gopalakrishnan et. al.2018; Dawood 

et al., 2018)  

Researchers have studied structure strength and serviceability, 

including three principal basics: resistance, stiffness, and stability 

(Hao et al., 2023). Resistance refers to the ability of the structure 

to withstand the design loads. Stiffness means that there should 

be no deformations or vibrations that make users feel 

uncomfortable. Stability refers to the ability of the structure and 

all its elements to hold together and keep their original position 

over the years. Moreover, infrastructure durability is the ability 

to resist the action of weathering, chemical attack, abrasion, or 

any other deterioration process, and the durable concrete must 

maintain its original shape, quality, and service characteristics 

when exposed to this environment (ACI, 2016) 

Besides, technologies based on sensor systems for inspecting 

structures have been evaluated (Wang, et al. 2020; Delatte et al., 

2003). Visual inspection of big civil structures is generally used 

to detect surface defects such as cracks, spalling, and corrosion, 

among other deteriorations that produce an obvious change. 

Visual inspection is a subjective, labor intensive and costly 

method that can cause safety risks to the operators (Kim et al., 

2015; Liang et al., 2020). Other Non-Destructive-Technique 

(NDT) methods that include remote sensors are capable of 

generating information such as images or point clouds that 

capture these defects (Adhikari et al., 2014). Several NDT 

methods use image detection to detect them (Kim et al., 2019) 

automatically. Challenges for the NDT methods are light 

conditions and the need for extra information for the analyses 

(Adhikari et al., 2014; Hutchinson et al., 2006). 

Alternatively, Light detection and ranging (LiDAR) applied in 

terrestrial equipment such as Ground Laser Scanners (GLS), are 

used to produce 3D point clouds which are highly accurate and 

permit detection of the depth of the defects by capturing the XYZ 

dimensions (Mizoguchi et al., 2013). GLS emits laser pulses at 

high rates and registers the beam echoes on the receiver, 

obtaining, in addition to the spatial information, other values, 

such as the reflectivity of the object or intensity, that are collected 

for every point, and it’s a function of the near-infrared spectral 

band (Liu et al., 2011), and the number of returns per pulse. GLS 

provides the required accuracy to calculate major and minor 

defects such as cracks (Olsen et al., 2013). Some authors consider 

photogrammetric techniques to be very efficient at detecting the 

texture of damaged surfaces (Lang et al.,2009; Guldur & Hajjar, 

2016). Combining GLS with lower-cost technologies such as 

photogrammetry provides an opportunity for a synergistic 

method that can be more efficient in defect (Ghasemi et al., 2021; 

Demir & Baltsavias, 2012; Popescu et al., 2019). Different NDT 

studies applying LIDAR, photogrammetric technologies or their 

combinations are explained with research [30-33].  

Figure 1. Applications of LIDAR for SHM (modified from 

Author, year).  

The authors of this paper aim to determine the strengthen of the 

concrete structure and cracks. Nevertheless, this is a novel 

approach experimenting with a synergistic remote sensors tool 

called 3D-MICE for mapping, inspecting, classifying and 

evaluating the superficial deteriorations of reinforced concrete 

(RC) structures, using the synergy of LIDAR and 

photogrammetric technologies with aerial, mobile and ground 

platforms. This method uses the Condition classification by 

intensity (CCI), based on probability functions of the intensity 

and geometry, and the Geometry Classification by RGB images 

(TCC) that classifies 2D and orthomosaic true color images. 3D-

MICE can semi-automatically detect, segment and measure 

cracks and stains on the concrete surfaces of the general structure. 

The method may improve future assessments to better understand 

the structures' condition and design future management, 

conservation, and mitigation practices.  

This research recognizes the following critical points related to 

structural health monitoring of civil structures inspections:  

• Need for systematic inspections: Preventive maintenance and

regular inspections are essential to detect early deterioration,

reduce costs, and avoid catastrophic failures.

• Understanding reinforced concrete pathologies: Common

defects such as cracks, spalling, delamination, and corrosion

must be identified, since they directly affect resistance, stiffness,

stability, and durability.

• Advances in inspection technologies: Remote sensing and

non-destructive techniques (e.g., UAVs, LiDAR,

photogrammetry, and ground laser scanning) provide accurate,
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safe, and cost-effective alternatives to traditional visual 

inspections.  

• Innovation through integrated approaches: The proposed 3D-

MICE method, combining LiDAR and photogrammetry, enables

semi-automatic mapping, classification, and evaluation of

surface deteriorations, offering a novel framework for improving

structural health monitoring and future maintenance strategies.

2. Methodology

2.1 UAV-based LiDAR data acquisition 

For this research, the Metro transportation system (Metro) 

located in Monterrey Metropolitan Area (MMA), North East 

Mexico, was used as a base element of civil engineering, 

representing an RC structure. This structure has cracks that have 

been enlarged since its construction in 1994. The Metro system 

comprises three Lines with a total length of 40.08 km. For this 

study, 1.09 km of Line 2 was examined, which has a total length 

of 13.75 km. This segment represents 2.73% of the total system 

and 7.96% of Line 2 length. This line has 2 defined parts, one 

elevated and the other underground. The elevated part is 6.76 km 

long with 214 columns. 67 of these columns were scanned based 

on visual inspection results, and 5 were selected to be analyzed 

(Figure 2).    

Figure 2. Location of the study area. 

LiDAR sensor operated at a peak acquisition rate of 240,000 

points per second and supported up to five returns per pulse, 

enabling detailed vertical structure characterization, particularly 

in densely vegetated areas. The resulting point clouds were 

processed, classified, and filtered to produce both a Digital 

Surface Model (DSM) and a bare-earth Digital Terrain Model 

(DTM), derived entirely from LiDAR data, with a spatial 

resolution of 5 cm. These high-resolution topographic datasets 

allowed for the accurate delineation of terrain features, 

identification of vegetated and built-up zones, and flood-prone 

area assessment (Zhang et al., 2019; Wang et al., 2021).  

Figure 2 illustrates the complete methodological workflow 

implemented in this study, starting from UAV-based data 

acquisition and continuing through point cloud processing, 

building footprint digitization, topographic profile extraction, and 

flood risk analysis. This schematic provides a comprehensive 

overview of the sequential steps and the tools used at each stage, 

enabling replication and understanding of the integrated 

geospatial approach adopted for dam impact assessment.  

2.1. Ground Laser Scanner (GLS) 

A GLS-1500 unit by Topcon Co. achieves 4 mm accuracies 

at a 150 m range and 6” of angle (H&V) reference. The device 

has a class 1 laser, invisible and eye safe, using a 1,535 nm 

wavelength (not operational on water or other wet materials). 

Spot diameter of the laser is approximately 16 mm at a distance 

of 100 m. For this study, the distance was set to 80 m. 

Measurement speed reaches 30,000 points per second and 

captures intensity values and RGB data (2 megapixels) (Table 

2).  

Table 2. Technical specifications for the GLS-1500. 

Parameters Characteristics 

Maximum range 90% reflectivity 330m 

Maximum range  18% reflectivity 150m 

Scanning mechanism  Rotating/oscillating 

Single point accuracy (short 

range 1 to 70m and medium 

range 71- 150m) 

2mm and 4mm 

respectively 

Scan rate  30,000 points/second 

Laser type  Pulsed (time of flight) 

Wavelength 
1535nm (invisible, 

eye-safe) 

Captured data  
Intensity values and 

RGB 

Laser class 1 

GLS emits laser pulses at high rates and registers the beam echoes 

on the receiver, obtaining, in addition to, spatial information. 

Other values, such as the object's reflectivity or intensity are 

collected for every point and are a function of the near-infrared 

spectral band (Brodu, N., & Lague, D. 2012) (Table 1), and the 

number of returns per pulse.  

2.2. Unmanned Aerial Vehicle (UAV) 

A low-cost multirotor DJI Phantom 4 Professional was used 

(Table 3). It has a maximum flight height range of 6000 m.a.s.l., 

with GPS / GLONASS positioning mode and an estimated flight 

time of 23 min (per battery/approximately), equipped with a 20 

megapixels / FOV 94° camera (Dawood et al., 2018).  

2.3 Digital cameras 

A Nikon D5600 camera with a resolution of 24.2 

megapixels and a sensor size of 23.5 mm x 15.6 mm was used for 

short-range photography. A GoPro Hero 6 camera with 12 
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megapixels and 4K video mounted on a mobile platform with a 

stabilizer was used for mobile photography.  

Table 3. Technical specifications for the UAV and camera sensor. 

Parameters Characteristics 

Maximum 

height 
6000 m.a.s.l. 

Scanning 

mechanism 
Rotating/oscillating 

Sensor 1'' CMOS Effective pixels: 20M 

Lens 

FOV 84° 8.8 mm/24 mm (35 

mm format equivalent) f/2.8 

- f/11 auto focus at 1 m -

∞

ISO Range 

Video: 100 - 3200 (Auto) 100 - 6400 

(Manual) Photo: 100 - 3200 (Auto) 

100- 12800 (Manual)

Mechanical 

Shutter Speed 
8 - 1/2000 s 

Electronic 

Shutter Speed 
8 - 1/8000 s 

2.4. Previous visual inspection 

A mobile survey was conducted in two series on each side 

of the elevated Metro Line. Complete coverage of the study 

section was obtained by placing the cameras facing north (front) 

and south (rear). It was necessary to conduct four photographic 

series, two series from each side of the avenue bordering the 

structure, so both sides of the structure were covered. In order to 

perform the four photographic series, the GoPro camera was 

mounted on the roof of a pickup truck using a suction cup adapter, 

and a time-lapse mode was set every 0.5 s. 

2.5. Point cloud specifications and preparation 

The complete 3D point cloud of the structure was produced 

by the synergy of the LiDAR and photogrammetry techniques 

explained below.  

2.5.1. Point clouds produced with LIDAR (pcL) 

A Leica FlexLine plus TS02 Topographic Total Station was 

used for geo-positioning control points on both sides of the Metro 

structure. At these points, the XYZ coordinates were obtained 

and marked on the sidewalks to position the scanner at known 

points and to reference the scans. The scans were performed by 

placing the scanner on the sidewalks at a distance between 15 and 

20 m from the Metro structure. The GLS was placed at the height 

of approximately 1.5 m and a range distance of 80 m. Scans were 

performed at approximately 50 m intervals. The resolution for all 

scans was set to 0.002 m. 

2.5.2. Point clouds produced with photogrammetry (pcP) 

Two techniques were used to take the photographs of the 

Metro structure: (1) for short-range photogrammetry, a Nikon 

D5600 DSLR camera was used. The camera was placed at the 

height of 1.5 m and a distance of 15 - 20 m from the structure, 

with 70% overlap for post-processing photo alignments. (2) for 

aerial photogrammetry, a low-cost UAV was used, DJI Phantom 

IV pro, at the height of 40m and with a speed of 13 km / h.   These 

settings were used in the upper section of the structure, with 75% 

overlap and around the selected columns.  

Figure 3. Workflow for 3D mapping, indicating point cloud data 

production GLS and photogrammetry, postprocessing and 

classifications by condition and geometrical analysis. 

2.5.3. LiDAR Point Cloud treatment 

All scans needed to be aligned to cover its entire surface and 3D 

form to fully visualize a column. To align and georeference the 

point clouds, the coordinates of the control points were used. 

When the scans are set in the registration process, points are 

aligned, and the noise has to be removed. Point clouds are 

visualized in intensity range (Figure 4A), but can also be observed 

in true color, using the RGB photos taken by the scanner (Figure 

4B). The total point cloud was sectioned, and 5 columns were 

selected and exported into independent point clouds to facilitate its 

management use the.LAS format (Figure 4C).  

The columns were selected using the previous visual inspection 

(UAV and GOPRO images). For each column, the most visible 

surface cracks were located and then exported using four steps: (1) 

the intensity ramp colors for the pcL, (2) the pcP in true color 

coloration and (3) corroborating its location with the observations 

made from the Google Earth, Street View program (from previous 

years) and the full set of photographs taken during this study with 

both the mobile and ground surveys. 

Figure 4. A first view of the aligned structure. (A) The aligned 

point cloud displayed with intensities and (B) The aligned pcL 

merged with the RGB 
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2.6. 3D-MICE 

2.6.1. Condition classification by intensity (CCI) 

2.6.1.1. Filtering process 

Four filters were used to segment the point clouds: (1) Intensity 

filter, which reclassifies the pcL according to the intensity range 

for each specific class, then implements the probability density 

functions. (2) Elevation filter reclassifies the selected pcL or pcP 

based on their absolute elevation value (Z). This filter was used to 

determine the elements of the structure (girder, capital and 

columns). (3) Analysis of planes filter, which finds and reclassifies 

groups of point clouds that form plane surfaces. It can specify 

different angles of flat surfaces (girder or capital faces) and does 

not require a reference surface to separate features, and (4) 

reclassify filters which reclassify all pcL that are at a specific 

elevation above or below a surface.  

2.6.1.1. Intensity statistics and probability density functions 

Similar areas of the structure were defined and grouped based on 

the statistical characteristics of intensity value for the pcL samples. 

A dense point cloud with intensity values from the GLS aloud to 

map the complete columns and shows an intensity profile that 

automatically detects the cracks and stains. By taking 7 to 11 

samples from each part of the structure (girder, capital and 

column), their unique intensity ranges and frequency distribution 

can be determined.  

Probability density functions have been used systematically in 

remote sensing research to understand the radiative transfer 

behavior of objects (Wang, W. et.al., 2018). Intensity ranges of the 

point clouds for each column and parts of the column were 

analyzed using two probability density functions: Gaussian and 

Weibull (Equations 1 and 2). (Mastin et al., 2009; Peppa et al., 

2019; Kang & Doh, 2020). 

Gaussian distribution 

Eq. (1)

  f(x)= √(( λ)/〖2πx〗^(3 )   exp⁡〖(-(λ(x-μ)^2)/(2μ^2 x)〗))

Where λλ is a continuous parameter (and is a continuous 

parameter) 

Weibull distribution 

 Eq. (2)

 f(x)=  α/β (x/β)^(α-1)exp (-(x/β)^α )

Where αα is the continuous shape parameter (), and is the 

continuous parameter). 

2.6.1.2. Morphology 

The filter CANUPO (Girardeau-Montaut, 2016) was used to 

identify the morphological features that characterize pcL. This 

software distinguishes the heterogeneity of natural surfaces and 

their distinctive properties, allowing the automatic segmentation 

of pc. This allows the option to split angles and classes from the 

structural analysis (Barsanti et al, 2017; Corso et al, 2017; Sanchez 

Aparicio et al, 2019) using the CANUPO Class and CANUPO 

Confidence filters (Figure 7). 

2.6.2. TCC 

2.6.2.1. Supervised classification 

Supervised classification of images and orthomosaics was 

performed. The algorithm used was the ISODATA clustering 

technique, for image recognition classification (Tou and Gonzales, 

1974; Zaczek-Pepliska and Osinska-Skotak, 2018) and to 

automatically categorize the continuous raster data into discrete 

thematic groups with similar spectral-radiometric values. The 

clustering technique evaluates the similarities or differences of the 

pixel values then groups the pixels into separate classes. Several 

iterations of this process are required to reach a convergence 

threshold. The information obtained is used to map deteriorations 

in different classes (Figure 7). 

2.6.2.2. Convolution and threshold filters 

Gaussian convolution filters have been reported as an NDT for 

concrete (Fujita et al, 2008) or for bridge pavement (Sarmiento et 

al, 2019). Convolution filters were used as a common spatial 

enhancement operation that applies a matrix of small 

neighborhoods of cells (3x3 pixels) to compute a neighborhood 

average as the matrix moves with a non-directional edge filter to 

highlight the boundaries, or edges occurring between 

homogeneous groups, similar to Fujita et al, (2008). A supervised 

classification method using a threshold filter can be set as the 

numeric input, using chi-square statistics or Euclidean spectral 

distance. This process helps to delimit crack contours (Ozen & 

Guler, 2014). 

3. Results

3.1. Visual inspection 

The total studied area was represented by 67 columns of Metro 

Line 2. The visual inspection using Google Earth from past years, 

and the updated information from the surveys with UAV and the 

mobile photogrammetry (GoPro Hero 6), revealed that 95% of the 

capitals, 94% of the columns and 61% of the girder sections 

presented at least a small visually detectable crack. In the case of 

stains, they were found in 30% of the columns, 36% of the capitals 

and 18% of the girders (Figure 5).  

Figure 5. Concentration of the visual inspection of the 66 columns 

identifying three different deteriorations. Where H is the height of 

the column, DT1 are cracks, DT2 stains by stands and DT3 stains 

by others. 
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3.2. Intensity statistics and probability functions 

The intensity values obtained with the GLS scans for each point 

cloud of the different deterioration types were from samples shown 

in Figure 6. Table 4 depicts the results of the probability density 

functions to estimate the intensity ranges in the different elements 

of the column for two types of damages. The samples obtained for 

cracking have a range of intensities ranging from 59 to 1024.17, 

and those from stained surfaces have a range for the samples 

obtained from 36 to 1529.41. 

Figure 6. Distribution of relative frequencies of intensities in 

grouped classes for each element of the column and for the two 

different types of probability functions Gauss and Weibull. The 

distribution curves were plotted based on the intensity values 

obtained from the GLS scans. 

3.2. Condition classification by intensity 

3.2.1 Morphology 

The application of the CANUPO software package in the different 

elements of the analyzed columns locates cracks in the concrete in 

a subtle way; the precision achieved by the GLS is such that it 

records this difference (Figure 7).  

Figure 7. A girder section with two examples of cracks located 

with CANUPO above with filtering data by CANUPO Class and 

below by CANUPO Confidence filters. 

3.3. Geometry classification 

 The heights of the columns along all line 2 varied from 4.42 m to 

13.30 m. The girders were 1.9 m, and the capitals were 1.3 m. In 

the case of the studied section, the heights varied from 6.2 m to 8.8 

m.  

3.3.1 Threshold, convolution and unsupervised methods 

The results obtained with the ISODATA algorithm indicate that 

classes of the concrete surface with different characteristics can be 

distinguished based on results using the 95% confidence interval. 

The combination of ISODATA, threshold and Gaussian 

convolution in the TCC allows an increment of precision of 15% 

compared to the CCI, which improves the 3D mapping of cracks.  

3.4. 3D MICE 

The overlay layer is the graphical representation of the 3D MICE 

indicating the location of every deterioration in each column and 

is displayed in Figure 8. Differences in stains caused by soot, a 

black substance formed during combustion, or separated from fuel 

during combustion, are evident on the sides of the Metro, 

especially in girders (Figure 8 D and F) and capitals (Figure 8 A- 

C and E).  

Figure 8. The graphical representation of mapping the 

deterioration using 3D MICE. Stains are dark red, cracks are bright 

red, and sound concrete is in different grays. Girders are 

represented by A, B, C and E, and Capital by D and F. 

In addition, Table 4A and 4B illustrates the results from each 

selected column with several damages. 

Table 4A. Statistics of sampled columns including the geometrical 

assessment where PE stands as Part of the element; D Description; 

NC Number of classes; MinI Minimum intensities; MaxI 

Minimum intensities.  

Code PE D NC MinI MaxI 

C1-9 Capital Stain 62 129 773.44 
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C1-13 Column Stain 49 109 1529.41 

C1-15 Capital Crack 62 59 1024.18 

C1-15 Girder Crack 62 145 957.68 

C1-19 Girder Stain 62 36 1164.50 

Table 4B. Statistics of sampled columns including the geometrical 

assessment where SD Standard deviation; S is the Total damaged 

area; CP Control points; MWC Matched with cracks. 

Gauss 

distribution 

Weibull 

distribution 

S 

(m2) 

No. 

CP 

CP 

MWC 

Mean SD alfa beta 8.34 24 18 

314.47 82.99 2.30 208.54 7.24 18 17 

667.35 229.37 2.54 626.27 5.26 23 15 

335.05 96.53 2.91 307.71 8.25 24 18 

372.12 95.05 2.51 255.06 4.62 25 17 

300.09 168.84 1.06 267.99 8.34 24 18 

4. Discussion

Through systematic surveys of the Metro system using the GLS 

and UAV processed with 3D MICE, the condition of this RC 

structure was able to be assessed. 3D MICE is based on CCI and 

TCC processes, by which it was possible to inspect a section of a 

transport system RC structure, scanning 67 columns and analyzing 

7.69% of the whole transport system.  

CCI analyzes pcL using CANUPO filters to determine sections 

and identify cracks and stains based on the morphology of the 

surface. This filter obtains an 85% effectiveness in identifying 

cracks and stains. However, this result varies depending on the 

element of the structure, being more effective on the capitals and 

girders than the columns. The filter didn´t work with the columns 

because of the decorative indentations that run along it, which 

creates repetitive changes in the form, so the filter overestimates 

as damage to the columns. 

 The morphology filter used in CANUPO is similar to other 

methods using the point cloud to visualize morphological details 

in reinforced concrete structures. Virtual Reality (Omer, M., et.al. 

2019) and Point Net methods (Nasrollahi, M., et.al. 2019) use the 

information and transform it into images to carry out the inspection 

and locate the cracks. However, the method requires advanced 

hardware requirements for larger sections, but with 3D MICE, you 

can choose a specific section, based on a previous visual inspection 

and focus on it with a smaller set of points requiring lower 

hardware requirements. 

 A CANUPO limitation is it only displays two types of defects, 

that's why you have to run it twice, one for the cracks and another 

one for the stains. However, this limitation was solved with the use 

of the TCC method. Moreover, TCC uses the processes threshold, 

convolution and supervised classification of the images to locate 

the different classes like cracks, stains and sound concrete in one 

run compared with the two needed with CCI using CANUPO. 

Furthermore, the TCC uses RGB images taken from aerial angles 

with the use of UAV and through a photogrammetric process pcP 

were obtained. This data covers blind spots on pcL information of 

the images obtained from ground level by the GLS. The TCC 

processing also uses trained sites to determine the classes of 

interest complementing the CCI information, increasing up to 15% 

in mapping deterioration in the reinforced concrete structure. The 

use of 3D MICE allows precise estimations of cracks, stains 

location and dimensions throughout time.    

5.Conclusions

3D MICE method speeds up data collection and helps monitor 

the structure and identify changes that could affect its operation. 

It also eliminates the risk of carrying out measurements on RC 

structures with great height. 3D MICE can detect, segment and 

measure, semi-automatically, cracks and stains on reinforced 

concrete surfaces. It can also obtain geometric characteristics of 

the structure with a precision of 0.002m.   

The advantages of 3D MICE over other similar methods are 

based on the complementary data produced with LIDAR and 

photogrammetry technologies, focusing on specific sections of 

the RC structure for a deeper analysis.   

3D MICE can be of special interest to civil engineers and 

metropolitan administrative agencies as a base of information for 

the inspection advice system that can be used for structures of 

interest, historical buildings, and very crowded structures, among 

others. 

Results can be of special interest to civil engineers and 

metropolitan administrative agencies as base information for the 

inspection advice system. This could result in less investment, 

time, and lower risk for the personnel involved in gathering 

information. 
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