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Abstract

This study addresses the challenges of accessibility and laborious intensity in visual inspections of public metropolitan
mobility infrastructure, such as elevated Metro systems. It explores an experimental 3D-Mapping Inspection and Classification

Evaluation method (3D-MICE) utilizing UAV imagery and geometric mensuration from 3D point clouds. The method introduces two
classification techniques: Condition Classification by Intensity (CCI) and Geometry Classification by RGB color (GCC), applied to
orthomosaics. 3D-MICE enables semi-automatic detection, segmentation, and measurement of cracks and stains in reinforced

concrete by selecting areas of interest based on intensity and geometric features. This approach offers a promising, efficient, and
precise alternative to traditional inspection methods. 3D-MICE can detect, segment and measure, semi-automatically, cracks
and stains of reinforced concrete structures by selecting areas of interest based on intensity and geometry.

1. Introduction

All structures require inspections at varying intervals depending
on their type and usage. Recently, many urban structures have
become obsolete due to factors such as increased load demands,
heightened contamination, and more intense hurricanes. Some
authors (Hao et al., 2023; Lee & Ellingwood, 2017) recognize the
future challenges for civil engineering structures to be
multihazard resistant, resilient, and smart in response to climate
uncertainties. Preventive maintenance and regular inspections
enable decision-makers to detect issues early, take timely
corrective actions, and ensure the structure functions as designed.
Inspections are among the most effective measures to reduce
maintenance costs and prevent catastrophic failures (Chen et al
2020; Mandirola et al., 2022). For instance, in Australia, annual
maintenance expenses for civil infrastructure range from 0.4% to
2% of the initial construction costs (Mahmoodian et al., 2022).
Inspection activities have intensified recently, with researchers
from Geomatics and Civil Engineering contributing diverse
inspection methodologies (Dolati et al, 2022). Examples of these
inspections cover urban (Wetherley et al., 2017; Salem aet al,
2020), hydraulic (Zhang & Gao,2020), and transport
infrastructures [10, 11]. The integration of remote sensing and
robotic survey technologies enhances the quality, speed,
affordability, and accessibility of inspections, while prioritizing
safety and cost-effectiveness (Wetherley et al., 2017).

Unmanned Aerial Vehicle (UAV) has become one of the
preferred techniques for infrastructure inspection, for example
since 2013 [0001] used the synergy of LiDAR + RGB for data
acquisition and analysis based on ground and aerial sensors.

Besides, pathology in structures is defined as the science
dedicated to studying the problems or diseases that arise in
buildings after they have been constructed (Pan et al, 2019).

These injuries can appear in any part of a structure and can
originate from many causes, which must be identified to solve
them (Chen et al, 2019). The most common pathologies in RC
elements are cracking, flaking, delamination, outliers, wear or
abrasion, collision damage, polishing, and overload (McGuire, et
al. 2016. Moreover, concrete has the capacity to resist high
compressive stresses. However, it does not perform well under
tensile and shearing stresses (Zhang & Gao,2020). RC structures
are subjected to stresses and strains which depend on bending,
axial load, shear and torsion (Pan et al, 2019). Steel bars could
mitigate these stresses on the RC structure in areas where tensile
and shearing stresses are expected to develop under service
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Table 1. Advantages and disadvantages of Terrestrial Laser
Scanners (based on Kaartinen et al., 2022).
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Cracks are breaks however, could appear in RC at different
lengths, thicknesses, and depths, and are manifested externally in
different elements of the structure with linear development.
Cracks in concrete are attributed to multiple causes and can affect
the appearance of a building and could indicate potential
structural failure. Cracks can also indicate other problems,
including poor concrete curing, shrinkage, thermal variations,
chemical attack, external loads, excessive loads, errors in
execution, errors in design, and differential displacement in
foundations, among others (Gopalakrishnan et. al.2018; Dawood
et al., 2018)

Researchers have studied structure strength and serviceability,
including three principal basics: resistance, stiffness, and stability
(Hao et al., 2023). Resistance refers to the ability of the structure
to withstand the design loads. Stiffness means that there should
be no deformations or vibrations that make users feel
uncomfortable. Stability refers to the ability of the structure and
all its elements to hold together and keep their original position
over the years. Moreover, infrastructure durability is the ability
to resist the action of weathering, chemical attack, abrasion, or
any other deterioration process, and the durable concrete must
maintain its original shape, quality, and service characteristics
when exposed to this environment (ACI, 2016)

Besides, technologies based on sensor systems for inspecting
structures have been evaluated (Wang, et al. 2020; Delatte et al.,
2003). Visual inspection of big civil structures is generally used
to detect surface defects such as cracks, spalling, and corrosion,
among other deteriorations that produce an obvious change.
Visual inspection is a subjective, labor intensive and costly
method that can cause safety risks to the operators (Kim et al.,
2015; Liang et al., 2020). Other Non-Destructive-Technique
(NDT) methods that include remote sensors are capable of
generating information such as images or point clouds that
capture these defects (Adhikari et al., 2014). Several NDT
methods use image detection to detect them (Kim et al., 2019)
automatically. Challenges for the NDT methods are light
conditions and the need for extra information for the analyses
(Adhikari et al., 2014; Hutchinson et al., 2006).

Alternatively, Light detection and ranging (LiDAR) applied in
terrestrial equipment such as Ground Laser Scanners (GLS), are
used to produce 3D point clouds which are highly accurate and
permit detection of the depth of the defects by capturing the XYZ
dimensions (Mizoguchi et al., 2013). GLS emits laser pulses at
high rates and registers the beam echoes on the receiver,
obtaining, in addition to the spatial information, other values,
such as the reflectivity of the object or intensity, that are collected
for every point, and it’s a function of the near-infrared spectral
band (Liu et al., 2011), and the number of returns per pulse. GLS
provides the required accuracy to calculate major and minor
defects such as cracks (Olsen et al., 2013). Some authors consider
photogrammetric techniques to be very efficient at detecting the
texture of damaged surfaces (Lang et al.,2009; Guldur & Hajjar,
2016). Combining GLS with lower-cost technologies such as
photogrammetry provides an opportunity for a synergistic
method that can be more efficient in defect (Ghasemi et al., 2021;

Demir & Baltsavias, 2012; Popescu et al., 2019). Different NDT
studies applying LIDAR, photogrammetric technologies or their
combinations are explained with research [30-33].

Figure 1. Applications of LIDAR for SHM (modified from
Author, year).

The authors of this paper aim to determine the strengthen of the
concrete structure and cracks. Nevertheless, this is a novel
approach experimenting with a synergistic remote sensors tool
called 3D-MICE for mapping, inspecting, classifying and
evaluating the superficial deteriorations of reinforced concrete
(RC) structures, using the synergy of LIDAR and
photogrammetric technologies with aerial, mobile and ground
platforms. This method uses the Condition classification by
intensity (CCI), based on probability functions of the intensity
and geometry, and the Geometry Classification by RGB images
(TCC) that classifies 2D and orthomosaic true color images. 3D-
MICE can semi-automatically detect, segment and measure
cracks and stains on the concrete surfaces of the general structure.
The method may improve future assessments to better understand
the structures' condition and design future management,
conservation, and mitigation practices.

This research recognizes the following critical points related to
structural health monitoring of civil structures inspections:

e Need for systematic inspections: Preventive maintenance and
regular inspections are essential to detect early deterioration,
reduce costs, and avoid catastrophic failures.

e Understanding reinforced concrete pathologies: Common
defects such as cracks, spalling, delamination, and corrosion
must be identified, since they directly affect resistance, stiffness,
stability, and durability.

e Advances in inspection technologies: Remote sensing and
non-destructive techniques (e.g., UAVs, LiDAR,
photogrammetry, and ground laser scanning) provide accurate,

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-145-2026 | © Author(s) 2026. CC BY 4.0 License. 146



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W3-2025
Conference on Geoinformation 2025, 24—28 November, Mérida, Yucatan, México

safe, and cost-effective alternatives to traditional visual

inspections.

¢ Innovation through integrated approaches: The proposed 3D-
MICE method, combining LiDAR and photogrammetry, enables
semi-automatic mapping, classification, and evaluation of
surface deteriorations, offering a novel framework for improving
structural health monitoring and future maintenance strategies.

2. Methodology

2.1 UAV-based LiDAR data acquisition

For this research, the Metro transportation system (Metro)
located in Monterrey Metropolitan Area (MMA), North East
Mexico, was used as a base element of civil engineering,
representing an RC structure. This structure has cracks that have
been enlarged since its construction in 1994. The Metro system
comprises three Lines with a total length of 40.08 km. For this
study, 1.09 km of Line 2 was examined, which has a total length
of 13.75 km. This segment represents 2.73% of the total system
and 7.96% of Line 2 length. This line has 2 defined parts, one
elevated and the other underground. The elevated part is 6.76 km
long with 214 columns. 67 of these columns were scanned based
on visual inspection results, and 5 were selected to be analyzed
(Figure 2).
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acquisition and continuing through point cloud processing,
building footprint digitization, topographic profile extraction, and
flood risk analysis. This schematic provides a comprehensive
overview of the sequential steps and the tools used at each stage,
enabling replication and understanding of the integrated
geospatial approach adopted for dam impact assessment.

2.1. Ground Laser Scanner (GLS)

A GLS-1500 unit by Topcon Co. achieves 4 mm accuracies
at a 150 m range and 6” of angle (H&V) reference. The device
has a class 1 laser, invisible and eye safe, using a 1,535 nm
wavelength (not operational on water or other wet materials).
Spot diameter of the laser is approximately 16 mm at a distance
of 100 m. For this study, the distance was set to 80 m.
Measurement speed reaches 30,000 points per second and
captures intensity values and RGB data (2 megapixels) (Table
2).

Table 2. Technical specifications for the GLS-1500.

Parameters Characteristics

Maximum range 90% reflectivity 330m

Maximum range 18% reflectivity 150m

Scanning mechanism Rotating/oscillating

Single point accuracy (short

range 1 to 70m and medium 2mm and 4mm

range 71- 150m) respectively
[ [ |
Scan rate 30,000 points/second
[ [ |
Laser type Pulsed (time of flight)
[ [ |
Wavelength 1535nm (invisible,
eye-safe)
[ [
Intensity values and
Captured data RGB
[ [
Laser class 1

Figure 2. Location of the study area.

LiDAR sensor operated at a peak acquisition rate of 240,000
points per second and supported up to five returns per pulse,
enabling detailed vertical structure characterization, particularly
in densely vegetated areas. The resulting point clouds were
processed, classified, and filtered to produce both a Digital
Surface Model (DSM) and a bare-earth Digital Terrain Model
(DTM), derived entirely from LiDAR data, with a spatial
resolution of 5 cm. These high-resolution topographic datasets
allowed for the accurate delineation of terrain features,
identification of vegetated and built-up zones, and flood-prone
area assessment (Zhang et al., 2019; Wang et al., 2021).

Figure 2 illustrates the complete methodological workflow
implemented in this study, starting from UAV-based data

GLS emits laser pulses at high rates and registers the beam echoes
on the receiver, obtaining, in addition to, spatial information.
Other values, such as the object's reflectivity or intensity are
collected for every point and are a function of the near-infrared
spectral band (Brodu, N., & Lague, D. 2012) (Table 1), and the
number of returns per pulse.

2.2. Unmanned Aerial Vehicle (UAV)

A low-cost multirotor DJI Phantom 4 Professional was used
(Table 3). It has a maximum flight height range of 6000 m.a.s.1.,
with GPS / GLONASS positioning mode and an estimated flight
time of 23 min (per battery/approximately), equipped with a 20
megapixels / FOV 94° camera (Dawood et al., 2018).

2.3 Digital cameras
A Nikon D5600 camera with a resolution of 24.2

megapixels and a sensor size 0of 23.5 mm x 15.6 mm was used for
short-range photography. A GoPro Hero 6 camera with 12

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-145-2026 | © Author(s) 2026. CC BY 4.0 License. 147



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W3-2025
Conference on Geoinformation 2025, 24—28 November, Mérida, Yucatan, México

megapixels and 4K video mounted on a mobile platform with a
stabilizer was used for mobile photography.

Table 3. Technical specifications for the UAV and camera sensor.

Parameters Characteristics
[ [
Maximum
height 6000 m.a.s.l.
| [
Scanning . —
mechanism Rotating/oscillating
Sensor 1" CMOS Effective pixels: 20M
[ [ [
FOV 84° 8.8 mm/24 mm (35
Lens mm format equivalent) £/2.8
— f/11 auto focus at 1 m -
(o0}
[ [
Video: 100 - 3200 (Auto) 100 - 6400
ISO Range (Manual) Photo: 100 - 3200 (Auto)
100- 12800 (Manual)
[ [
Mechanical
Shutter Speed §-1/2000s
[ [
Electronic
Shutter Speed 8- 1/8000s

2.4. Previous visual inspection

A mobile survey was conducted in two series on each side
of the elevated Metro Line. Complete coverage of the study
section was obtained by placing the cameras facing north (front)
and south (rear). It was necessary to conduct four photographic
series, two series from each side of the avenue bordering the
structure, so both sides of the structure were covered. In order to
perform the four photographic series, the GoPro camera was
mounted on the roof of a pickup truck using a suction cup adapter,
and a time-lapse mode was set every 0.5 s.

2.5. Point cloud specifications and preparation

The complete 3D point cloud of the structure was produced
by the synergy of the LIDAR and photogrammetry techniques
explained below.

2.5.1. Point clouds produced with LIDAR (pcL)

A Leica FlexLine plus TS02 Topographic Total Station was
used for geo-positioning control points on both sides of the Metro
structure. At these points, the XYZ coordinates were obtained
and marked on the sidewalks to position the scanner at known
points and to reference the scans. The scans were performed by
placing the scanner on the sidewalks at a distance between 15 and
20 m from the Metro structure. The GLS was placed at the height
of approximately 1.5 m and a range distance of 80 m. Scans were
performed at approximately 50 m intervals. The resolution for all
scans was set to 0.002 m.

2.5.2. Point clouds produced with photogrammetry (pcP)

Two techniques were used to take the photographs of the
Metro structure: (1) for short-range photogrammetry, a Nikon
D5600 DSLR camera was used. The camera was placed at the

height of 1.5 m and a distance of 15 - 20 m from the structure,
with 70% overlap for post-processing photo alignments. (2) for
aerial photogrammetry, a low-cost UAV was used, DJI Phantom
IV pro, at the height of 40m and with a speed of 13 km/h. These
settings were used in the upper section of the structure, with 75%
overlap and around the selected columns.

Laser Scanner

Photogrammetry

Ground Ground Mobile Aerial

Direct Point data produc tion

Indirect Point data production

BRI
e o e

Figure 3. Workflow for 3D mapping, indicating point cloud data
production GLS and photogrammetry, postprocessing and
classifications by condition and geometrical analysis.

2.5.3. LiDAR Point Cloud treatment

All scans needed to be aligned to cover its entire surface and 3D
form to fully visualize a column. To align and georeference the
point clouds, the coordinates of the control points were used.
When the scans are set in the registration process, points are
aligned, and the noise has to be removed. Point clouds are
visualized in intensity range (Figure 4A), but can also be observed
in true color, using the RGB photos taken by the scanner (Figure
4B). The total point cloud was sectioned, and 5 columns were
selected and exported into independent point clouds to facilitate its
management use the.LAS format (Figure 4C).

The columns were selected using the previous visual inspection
(UAV and GOPRO images). For each column, the most visible
surface cracks were located and then exported using four steps: (1)
the intensity ramp colors for the pcL, (2) the pcP in true color
coloration and (3) corroborating its location with the observations
made from the Google Earth, Street View program (from previous
years) and the full set of photographs taken during this study with
both the mobile and ground surveys.

Column

Figure 4. A first view of the aligned structure. (A) The aligned
point cloud displayed with intensities and (B) The aligned pcL
merged with the RGB
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2.6. 3D-MICE
2.6.1. Condition classification by intensity (CCI)
2.6.1.1. Filtering process

Four filters were used to segment the point clouds: (1) Intensity
filter, which reclassifies the pcL according to the intensity range
for each specific class, then implements the probability density
functions. (2) Elevation filter reclassifies the selected pcL or pcP
based on their absolute elevation value (Z). This filter was used to
determine the elements of the structure (girder, capital and
columns). (3) Analysis of planes filter, which finds and reclassifies
groups of point clouds that form plane surfaces. It can specify
different angles of flat surfaces (girder or capital faces) and does
not require a reference surface to separate features, and (4)
reclassify filters which reclassify all pcL that are at a specific
elevation above or below a surface.

2.6.1.1. Intensity statistics and probability density functions

Similar areas of the structure were defined and grouped based on
the statistical characteristics of intensity value for the pcL samples.
A dense point cloud with intensity values from the GLS aloud to
map the complete columns and shows an intensity profile that
automatically detects the cracks and stains. By taking 7 to 11
samples from each part of the structure (girder, capital and
column), their unique intensity ranges and frequency distribution
can be determined.

Probability density functions have been used systematically in
remote sensing research to understand the radiative transfer
behavior of objects (Wang, W. et.al., 2018). Intensity ranges of the
point clouds for each column and parts of the column were
analyzed using two probability density functions: Gaussian and
Weibull (Equations 1 and 2). (Mastin et al., 2009; Peppa et al.,
2019; Kang & Doh, 2020).

Gaussian distribution

Eq. (1)

f00= V() [2mx) A3 ) explic} [(-ux-py2)/(2u2 %)) )

Where AL is a continuous parameter (and is a continuous
parameter)

Weibull distribution
Eq.(2)

)= /B (x/B)*(a-Dexp (-(x/B)"a)

Where oo is the continuous shape parameter (), and is the
continuous parameter).

2.6.1.2. Morphology

The filter CANUPO (Girardeau-Montaut, 2016) was used to
identify the morphological features that characterize pcL. This

software distinguishes the heterogeneity of natural surfaces and
their distinctive properties, allowing the automatic segmentation
of pc. This allows the option to split angles and classes from the
structural analysis (Barsanti et al, 2017; Corso et al, 2017; Sanchez
Aparicio et al, 2019) using the CANUPO Class and CANUPO
Confidence filters (Figure 7).

2.6.2. TCC
2.6.2.1. Supervised classification

Supervised classification of images and orthomosaics was
performed. The algorithm used was the ISODATA clustering
technique, for image recognition classification (Tou and Gonzales,
1974; Zaczek-Pepliska and Osinska-Skotak, 2018) and to
automatically categorize the continuous raster data into discrete
thematic groups with similar spectral-radiometric values. The
clustering technique evaluates the similarities or differences of the
pixel values then groups the pixels into separate classes. Several
iterations of this process are required to reach a convergence
threshold. The information obtained is used to map deteriorations
in different classes (Figure 7).

2.6.2.2. Convolution and threshold filters

Gaussian convolution filters have been reported as an NDT for
concrete (Fujita et al, 2008) or for bridge pavement (Sarmiento et
al, 2019). Convolution filters were used as a common spatial
enhancement operation that applies a matrix of small
neighborhoods of cells (3x3 pixels) to compute a neighborhood
average as the matrix moves with a non-directional edge filter to
highlight the boundaries, or edges occurring between
homogeneous groups, similar to Fujita et al, (2008). A supervised
classification method using a threshold filter can be set as the
numeric input, using chi-square statistics or Euclidean spectral
distance. This process helps to delimit crack contours (Ozen &
Guler, 2014).

3. Results
3.1. Visual inspection

The total studied area was represented by 67 columns of Metro
Line 2. The visual inspection using Google Earth from past years,
and the updated information from the surveys with UAV and the
mobile photogrammetry (GoPro Hero 6), revealed that 95% of the
capitals, 94% of the columns and 61% of the girder sections
presented at least a small visually detectable crack. In the case of
stains, they were found in 30% of the columns, 36% of the capitals
and 18% of the girders (Figure 5).

Girder
o
o
o

Column Capital
lv} Q
1 3
Iy N

=

10 20 30 40 50 60 70

Figure 5. Concentration of the visual inspection of the 66 columns
identifying three different deteriorations. Where H is the height of
the column, DT1 are cracks, DT2 stains by stands and DT3 stains
by others.
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3.2. Intensity statistics and probability functions

The intensity values obtained with the GLS scans for each point
cloud of the different deterioration types were from samples shown
in Figure 6. Table 4 depicts the results of the probability density
functions to estimate the intensity ranges in the different elements
of the column for two types of damages. The samples obtained for
cracking have a range of intensities ranging from 59 to 1024.17,
and those from stained surfaces have a range for the samples
obtained from 36 to 1529.41.

600

500

COUNT  (HUNDREDS)

0 100
INTENSITY

Figure 6. Distribution of relative frequencies of intensities in
grouped classes for each element of the column and for the two
different types of probability functions Gauss and Weibull. The
distribution curves were plotted based on the intensity values
obtained from the GLS scans.

3.2. Condition classification by intensity

3.2.1 Morphology

The application of the CANUPO software package in the different
elements of the analyzed columns locates cracks in the concrete in

a subtle way; the precision achieved by the GLS is such that it
records this difference (Figure 7).

SSSSRE e e L R S s S

Figure 7. A girder section with two examples of cracks located
with CANUPO above with filtering data by CANUPO Class and
below by CANUPO Confidence filters.

3.3. Geometry classification
The heights of the columns along all line 2 varied from 4.42 m to
13.30 m. The girders were 1.9 m, and the capitals were 1.3 m. In

the case of the studied section, the heights varied from 6.2 mto 8.8
m.

3.3.1 Threshold, convolution and unsupervised methods

The results obtained with the ISODATA algorithm indicate that
classes of the concrete surface with different characteristics can be

distinguished based on results using the 95% confidence interval.
The combination of ISODATA, threshold and Gaussian
convolution in the TCC allows an increment of precision of 15%
compared to the CCI, which improves the 3D mapping of cracks.

3.4.3D MICE

The overlay layer is the graphical representation of the 3D MICE
indicating the location of every deterioration in each column and
is displayed in Figure 8. Differences in stains caused by soot, a
black substance formed during combustion, or separated from fuel
during combustion, are evident on the sides of the Metro,
especially in girders (Figure 8 D and F) and capitals (Figure 8 A-
C and E).

Column section

C  Crack Control Points - Cracks - Stains by pollution - -

Healthy concrete

Figure 8. The graphical representation of mapping the
deterioration using 3D MICE. Stains are dark red, cracks are bright
red, and sound concrete is in different grays. Girders are
represented by A, B, C and E, and Capital by D and F.

In addition, Table 4A and 4B illustrates the results from each
selected column with several damages.

Table 4A. Statistics of sampled columns including the geometrical
assessment where PE stands as Part of the element; D Description;
NC Number of classes; Minl Minimum intensities; MaxI
Minimum intensities.

Code PE D NC Minl MaxI

Capital Stain | 62 129 773.44
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Cl1-13 Column | Stain | 49 109 1529.41
C1-15 Capital Crack | 62 59 1024.18
Cl1-15 Girder Crack | 62 145 957.68

C1-19 Girder Stain | 62 36 1164.50

Table 4B. Statistics of sampled columns including the geometrical
assessment where SD Standard deviation; S is the Total damaged
area; CP Control points; MWC Matched with cracks.

Gauss Weibull S No. CP

- ributi
distribution distribution 1 > cp | Mwe
Mean | SD alfa beta 8.34 | 24 18

31447 | 82.99 | 2.30 | 208.54 | 7.24 | 18 17
667.35| 22937 | 2.54 | 626.27 | 5.26 | 23 15
335.05| 96.53 | 291 | 307.71 | 825 | 24 18
372.12 | 95.05 | 2.51 | 255.06 | 4.62 | 25 17
300.09 | 168.84 | 1.06 | 267.99 | 8.34 | 24 18

4. Discussion

Through systematic surveys of the Metro system using the GLS
and UAV processed with 3D MICE, the condition of this RC
structure was able to be assessed. 3D MICE is based on CCI and
TCC processes, by which it was possible to inspect a section of a
transport system RC structure, scanning 67 columns and analyzing
7.69% of the whole transport system.

CCI analyzes pcL using CANUPO filters to determine sections
and identify cracks and stains based on the morphology of the
surface. This filter obtains an 85% effectiveness in identifying
cracks and stains. However, this result varies depending on the
element of the structure, being more effective on the capitals and
girders than the columns. The filter didn’t work with the columns
because of the decorative indentations that run along it, which

creates repetitive changes in the form, so the filter overestimates
as damage to the columns.

The morphology filter used in CANUPO is similar to other
methods using the point cloud to visualize morphological details
in reinforced concrete structures. Virtual Reality (Omer, M., et.al.
2019) and Point Net methods (Nasrollahi, M., et.al. 2019) use the
information and transform it into images to carry out the inspection
and locate the cracks. However, the method requires advanced
hardware requirements for larger sections, but with 3D MICE, you
can choose a specific section, based on a previous visual inspection
and focus on it with a smaller set of points requiring lower
hardware requirements.

A CANUPO limitation is it only displays two types of defects,
that's why you have to run it twice, one for the cracks and another
one for the stains. However, this limitation was solved with the use
of the TCC method. Moreover, TCC uses the processes threshold,
convolution and supervised classification of the images to locate
the different classes like cracks, stains and sound concrete in one
run compared with the two needed with CCI using CANUPO.

Furthermore, the TCC uses RGB images taken from aerial angles
with the use of UAV and through a photogrammetric process pcP
were obtained. This data covers blind spots on pcL information of
the images obtained from ground level by the GLS. The TCC
processing also uses trained sites to determine the classes of
interest complementing the CCI information, increasing up to 15%
in mapping deterioration in the reinforced concrete structure. The
use of 3D MICE allows precise estimations of cracks, stains
location and dimensions throughout time.

5.Conclusions

3D MICE method speeds up data collection and helps monitor
the structure and identify changes that could affect its operation.
It also eliminates the risk of carrying out measurements on RC
structures with great height. 3D MICE can detect, segment and
measure, semi-automatically, cracks and stains on reinforced
concrete surfaces. It can also obtain geometric characteristics of
the structure with a precision of 0.002m.

The advantages of 3D MICE over other similar methods are
based on the complementary data produced with LIDAR and
photogrammetry technologies, focusing on specific sections of
the RC structure for a deeper analysis.

3D MICE can be of special interest to civil engineers and
metropolitan administrative agencies as a base of information for
the inspection advice system that can be used for structures of
interest, historical buildings, and very crowded structures, among
others.

Results can be of special interest to civil engineers and
metropolitan administrative agencies as base information for the
inspection advice system. This could result in less investment,
time, and lower risk for the personnel involved in gathering
information.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-145-2026 | © Author(s) 2026. CC BY 4.0 License. 151



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W3-2025
Conference on Geoinformation 2025, 24—-28 November, Mérida, Yucatan, México

6. Acknowledgements

The authors express their gratitude to PROVERICYT supporting
bachelor students, PAICYT and SEP-PRODEP for the financial
support of research projects 1T636-18 and 511-6/17/7538,
respectively.

7. References

American Concrete Institute, Guide to Durable Concrete,
2016). Barsanti, S.G., Guidi, G. and De Luca, L., 2017.
Segmentation of 3D models for cultural heritage
structural analysis—some critical ISPRS  Annals
of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 4, p.115.

issues.

Chen, Changkun, Lili Xu, Dongyue Zhao, Tong Xu, and
Peng Lei. (2020). A new model for describing the urban
resilience considering adaptability, resistance and recovery;
Safety science 128, DOI:  https://doi.org/10.1016/
j-5s¢1.2020.104756

Chen, S., Laefer, D. F., Mangina, E., Zolanvari, S. 1., & Byrne,
J.(2019). UAV bridge inspection through
3D reconstructions. Journal of Bridge Engineering, 24(4),
05019001. https://ascelibrary.org/doi/pdf/10.1061/%28 ASCE%
29BE. 1943-5592.0001343 8

evaluated

Corso, J., Roca, J. and Buill, F., 2017. Geometric analysis on
stone facades with terrestrial laser scanner technology.
Geosciences, 7(4), p.103.

Dawood T., Zhu Z., Zayed T. (2018) Detection and
Quantification of Spalling Distress in Subway Networks. In:
Chau K., Chan 1., Lu W., Webster C. (eds) Proceedings of the
21st International Symposium on Advancement of Construction
Management and Real Estate. Springer, Singapore. DOI: https://
doi.org/10.1007/978-981-10-6190-5_55

Delatte, N., Chen, S. E., Maini, N., Parker, N., Agrawal, A.,
Mylonakis, G., &amp; Miller, R. (2003). Application of
nondestructive  evaluation to subway tunnel systems.
Transportation Research Record: Journal of the Transportation
Research  Board, (1845), 127-135. DOI:  https://

doi.org/10.3141/1845-14

Demir, N., & Baltsavias, E. (2012). Automated modeling of 3D
building roofs using image and LiDAR data. In Proceedings of
the XXII Congress of the International Society for
Photogrammetry, Remote Sensing, Melbourne, Australia (Vol.
25). DOI: https://doi.org/10.5194/isprsannals-1-4-35-2012

Dolati, S. S. K., Mehrabi, A., Dolati, S. S. K., & Caluk, N.
(2022, April). NDT methods for damage detection in steel
bridges. In Health Monitoring of Structural and Biological
Systems X VI (Vol. 12048, pp. 385-394). SPIE.

Dawood, T., Zhu, Z., & Zayed, T. (2018). Computer vision—
based model for moisture marks detection and recognition in
subway networks. Journal of Computing in Civil Engineering,
32(2), 04017079. DOIL: https://doi.org/10.1061/
(ASCE)CP.1943-5487.0000728

Fujita, Y., Mitani, Y. & Hamamoto, Y., (2006). A method for
crack detection on a concrete structure. In 18th International
Conference on Pattern Recognition (ICPR&#39;06) (Vol. 3, pp.
901-904). IEEE. DOI; https://doi.org/10.1109/ICPR.2006.98

Ghasemi M., Varshosaz M., Pirasteh S. , Shamsipour G.
(2021).Optimizing Sector Ring Histogram of Oriented
Gradients for human injured detection from drone images,
Geomatics, Natural Hazards and Risk. 12:1, 581-604, DOI:
10.1080/19475705.2021.1884608.

Girardeau-Montaut, D., 2016. CloudCompare. Gopalakrishnan,
K., Gholami, H., Vidyadharan, A., Choudhary, A., & amp;
Agrawal, A. (2018). Crack damage detection in unmanned
aerial vehicle images of civil infrastructure using pre-trained
deep learning model. International Journal for Traffic and
Transport Engineering, 8, 1. DOI: https://doi.org/10.7708/

ijtte.2018.8(1).01

Guldur, B., & Hajjar, J. F. (2016). Automated classification of
detected surface damage from point clouds with supervised
learning. In ISARC. Proceedings of the International
Symposium on Automation and Robotics in Construction (Vol.
33, p. 1). IAARC Publications. DOI: structure defect detection.
Experimental Techniques, 35(6), 27-34. DOI: https://
doi.org/10.1111/j.1747-1567.2010.00644.x

Hao, H., Bi, K., Chen, W., Pham, T. M., & Li, J. (2023).
Towards next generation design of sustainable, durable, multi-
hazard resistant, resilient, and smart civil engineering
structures. Engineering Structures, 277, 115477.

Hutchinson, T.C. and Chen, Z. (2006). Improved image
analysis for evaluating concrete damage. Journal of Computing
in Civil Engineering, vol. 20, no. 3, pp. 210-216. DOI: https://
doi.org/10.1061/(ASCE)0887-3801(2006)20:3(210)

Kang, J., & Doh, N. L. (2020). Automatic targetless camera—
LIDAR calibration by aligning edge with Gaussian mixture
model. Journal of Field Robotics, 37(1), 158-179. DOI: https://
doi.org/10.1002/r0b.21893

Kim, H., Ahn, E., Shin, M., & Sim, S. H. (2019). Crack and
noncrack classification from concrete surface images using
machine learning. Structural Health Monitoring, 18(3), 725-

738. DOIL: https://doi.org/10.1177/1475921718768747
Kim, M. K., Sohn, H., & Chang, C. C. (2015). Localization and
quantification of concrete spalling defects using terrestrial laser
scanning. Journal of Computing in Civil Engineering, 29(6),
04014086. DOLIL: https://doi.org/10.1061/
(ASCE)CP.1943-5487.0000415

Lang M. W. and G. W. McCarty. (2009). “Lidar intensity for
improved detection of inundation below the forest canopy,”
Wetlands, vol. 29, no. 4, pp. 1166-1178. DOI: https:/
doi.org/10.1672/08-197.1

Liu, W., Chen, S., & Hauser, E. (2011). LiDAR-based bridge
structure defect detection. Experimental Techniques, 35(6),
27-34. DOL: https://doi.org/10.1111/j.1747-1567.2010.00644.x

Lee, J. Y., & Ellingwood, B. R. (2017). A decision model for
intergenerational  life-cycle risk assessment of civil
infrastructure exposed to hurricanes under climate change.
Reliability Engineering & System Safety, 159, 100-107.

Liang, Y., Xu, K., & Zhou, P. (2020). Mask Gradient Response-
Based Threshold Segmentation for Surface Defect Detection of
Milled Aluminum Ingot. Sensors, 20(16), 4519. DOI: https://
doi.org/10.3390/520164519

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-145-2026 | © Author(s) 2026. CC BY 4.0 License. 152



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W3-2025
Conference on Geoinformation 2025, 24—28 November, Mérida, Yucatan, México

Mandirola, M., Casarotti, C., Peloso, S., Lanese, I.,
Brunesi, E..& Senaldi, 1. (2022). Use of UAS for damage
inspection and assessment of bridge infrastructures.
International Journal of Disaster Risk Reduction, 72, 102824

Mahmoodian, M., Shahrivar, F., Setunge, S., & Mazaheri,
S. (2022). Development of digital twin for intelligent
maintenance of  civil infrastructure. Sustainability,
14(14), 8664.

Mizoguchi, T., Koda, Y., Iwaki, I, Wakabayashi, H.,
Kobayashi, Y., Shirai, K., & Lee, H. S. (2013). Quantitative
scaling evaluation of concrete structures based on
terrestrial laser scanning. Automation in construction, 35,
263-274. DOL: https://doi.org/10.1016/j.autcon.2013.

Nasrollahi, M., Bolourian, N., & Hammad, A. (2019, June).
Concrete surface defect detection using deep neural
network based on lidar scanning. In Proceedings of the
CSCE Annual Conference, Laval, Greater Montreal, QC,
Canada (pp. 12-15).

Olsen, M. J., Chen, Z., Hutchinson, T., & Kuester, F.
(2013).0Optical ~ techniques  for  multiscale = damage
assessment. Geomatics, Natural Hazards and Risk, 4(1),
49-70. DOTI: https://doi.org/10.1080/19475705.2012.670668

Omer, M., Margetts, L., Hadi Mosleh, M., Hewitt, S.,
& Parwaiz, M. (2019). Use of gaming technology to bring
bridge inspection to  the  office.

Infrastructure Engineering, 15(10), 1292-1307.

Structure and

Ozen, M., & Guler, M. (2014). Assessment of
optimum thresholdand particle shape parameter for the image
analysis of aggregate size distribution of concrete sections.
Optics and Lasers in  Engineering, 53, 122-132.
DOI:  https://doi.org/10.1016/j.optlaseng.2013.

Pan, Y., Dong, Y., Wang, D., Chen, A.,& Ye, Z. (2019). Three-

dimensional reconstruction of structural surface model
of heritage bridges using UAV-based photogrammetric
point clouds. Remote Sensing, 11(10), 1204. DOI:
https://doi.org/10.3390/rs11101204 9

Peppa, M. V., Hall, J.,, Goodyear, J., & Mills, J. P.
(2019). Photogrammetric assessment and comparison of DJI
Phantom 4 pro and phantom 4 RTK small unmanned
aircraft systems. ISPRS Geospatial Week 2019. DOI:
https://doi.org/10.5194/isprs-archives-XLII-2-W13-503-2019,
2019

Popescu, C., Téljsten, B., Blanksvérd, T., & Elfgren, L. (2019).
3D reconstruction of existing concrete bridges using optical
methods. Structure and Infrastructure Engineering, 5(7),
912-924 DOI: https://doi.org/10.1080/15732479.2019.1594315

Salem, M., Tsurusaki, N., & Divigalpitiya, P. (2020). Landuse/
land cover change detection and urban sprawl in the peri-urban
area of greater Cairo since the Egyptian revolution of 2011.
Journal of Land Use Science, 1-15. DOI: https://
doi.org/10.1080/1747423

Sanchez-Aparicio, L.J., Del Pozo, S., Rodriguez-Gonzalvez,
P., Mufioz-Nieto, A.L., Gonzélez-Aguilera, D. & Ramos,
L.F. (2019). Integral diagnosis and structural analysis of
historical constructions by terrestrial laser scanning. Laser
Scanning: An Emerging Technology in Structural Engineering,
14, p.169. DOL: https://doi.org/10.1201/9781351018869-11

Sarmiento, J.S., Rosales, C.AM. & Fajardo, A.C,

2019, April. Non-destructive Bridge Pavement Detection
Using Impact  Sound and Convolutional Neural
Network. In Nguyen et. al. (2020).
DOI: https://doi.org/10.1145/3330482.3330521

Tou J. T., Gonzales R. C. (1974): Pattern Recognition Principles.
Reading, Massachusetts: Addison-Wesley Publishing Company,
1974.

Wang, L., Xu, S., Qiu, J., Wang, K., Ma, E., Li, C., & Guo, C.
(2020). Automatic monitoring system
in underground engineering construction:
prospect. Advances in Civil Engineering, 2020.
DOTI: https://doi.org/10.1155/2020/3697253

review and

Wang, L., Xu, S., Qiu, J., Wang, K., Ma, E., Li, C., & Guo, C.
(2020).Automatic monitoring
in underground engineering  construction:

system
review  and
prospect. Advances in Civil Engineering, 2020.
DOI: https://doi.org/10.1155/2020/3697253

Wang, W., Nemani, R., Hashimoto, H., Ganguly, S,
Huang, D.,Knyazikhin, Y., ... & Bala, G. (2018). An interplay

between photons, canopy structure, and recollision
probability: A review of the spectral
invariants theory of 3d canopy radiative transfer

processes. Remote Sensing, 10(11), 1805.

Wetherley, E. B., Roberts, D. A., & McFadden, J. P. (2017).
Mapping spectrally similar urban materials at sub-pixel
scales. Remote Sensing of Environment, 195, 170-183 DOI:
https://doi.org/10.1016/j.rse.2017.04.013

Zaczek-Peplinska, J. and Osinska-Skotak, K., 2018. Concrete
surface evaluation based on the reflected TLS laser beam’s
intensity image classification. Studia Geotechnica et
Mechanica, 40(1), pp.56-64.

Zhang, S., & Gao, H. (2020). Using the Digital Elevation Model
(DEM) to improve the spatial coverage of the MODIS based
reservoir monitoring network in South
Asia. Remote Sensing, 12(5), 745. https://doi.org/10.3390/
rs12050745

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-145-2026 | © Author(s) 2026. CC BY 4.0 License. 153





