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Abstract

High-precision and real-time deformation monitoring of open-pit mine slopes provides reliable data support for slope safety early
warning and governance, which is directly related to the production efficiency of open-pit mines and the safety of personnel and
property. Compared with traditional measurement technologies, Ground-Based Synthetic Aperture Radar Interferometry (GBInSAR),
as a novel deformation monitoring technology developed in the past two decades, possesses significant advantages including all-
weather operation, all-time coverage, large-scale monitoring, non-contact measurement, high precision, and real-time observation. It
has become one of the core technical equipment for monitoring dangerous slopes in open-pit mines and is widely applied in open-pit
mine slope safety monitoring scenarios. Against this background, how to effectively integrate ground-based InSAR data with
advanced prediction models to enhance the early prediction capability of slope deformation has become a crucial research direction
in this field. To address this issue, this paper proposes a GBInSAR time-series data processing method based on the Long Short-Term
Memory (LSTM) model. Firstly, the initial deformation information of a slope is extracted from the pre-monitoring data of the IBIS
system, and then an LSTM-based slope deformation prediction model is constructed to achieve short-term accurate prediction of
future deformation trends. By organically combining the LSTM model with ground-based InSAR data, this paper deeply explores the
temporal evolution characteristics of slope deformation and establishes a slope deformation prediction model. This study aims to
explore the application of ground-based InSAR in slope deformation monitoring based on the LSTM model; by constructing a slope
deformation prediction model and a risk early warning mechanism, it provides effective technical support and decision-making basis

for the safety management of open-pit mine slopes.

1. Introduction

Stability of slopes in the open-pit mines is a key assurance in
the mine safety and normal functioning. Due to the mining
activities of ore body, the geological stress distribution of the
slope changes, whereby slope deformation as well as its long
term and short term stability could be realized. Therefore, it is
of significant importance how the deformation of the slope can
be acquired correctly and a scientific and reasonable early
warning system developed to reduce the risk of mine landslide
disasters. The available slope deformation monitoring
technologies are mostly composed of traditional contact
monitoring (e.g., total stations, GNSS, leveling surveys) (Li et
al., 2023) and sophisticated remote sensing monitoring
technologies (Izumi et al., 2021). Their accuracy, however, is
limited by certain factors including climate, time and visibility.
GBInSAR represents one of the technologies that can be highly
beneficial as a complement to the space-borne synthetic
aperture radar interferometry (InSAR) technology (Xiao et al.,
2021; Chen et al., 2024; Zhang and Zhou, 2024). Not only does
it have the best observation positions and constant performance
of observation but has such advantages as flexibility and
variability, high resolution, stable platforms, short observation
cycles, and relatively low costs (Cui et al., 2024). The
GBInSAR being a non-contact type of measurement is suitable
in real-time measurements of dangerous slopes deformation. In
different weather conditions, GBInSAR is capable of delivering
accuracy of sub-millimeter level in large-scale deformations,
achieves continuous dynamic monitoring of the slope, and has
extensive data support of slope stability analysis(Han et al.,
2022). However, despite the fact that the data provided by
GBInSAR on deformation can determine the dynamics of the
slope, there is some delay in early warning used on the basis of
monitoring data, and it is not easy to observe possible trends of

instability in time (Izumi et al., 2020). Thus, to further improve
the foresight and precision of early warning systems, there is a
necessity to combine deep learning prediction models to
perform trend extrapolation on the deformation data. This also
illustrates why the LSTM-based GBInSAR time-series
processing model presented in this paper is needed, i.e., using
the powerful side of learning the temporal features of the LSTM
models, which is the capacity of strong learning, to extract the
inherent correlation of GBInSAR-monitored deformation data
with time, it can effectively offset the laggardiness of the pure
monitoring data and offer more timely and reliable technical
assistance in early warning of slope instability risk (Zhou et al.,
2014). This form of combined strategy does not only open the
maximum extent of application value of GBInSAR to slope
monitoring, but also encourages the enhancement of open-pit
mine slope safety management by turning it into a pre-warning
form instead of post-monitoring, which has significant practical
value to the maintenance of safety in mine production and
minimization of the losses incurred by landslides.

According to current studies, slope deformation characteristic
prediction is mainly done based on surface deformation
measurements obtained through conventional ground based
observations. As an example, the Baishuihe Landslide in the
Three Gorges Reservoir Area was chosen as the object of the
study by Liu et al. (2023), where the monitoring of GPS
displacement was used along with a PSO-SVR coupling model
to predict displacement. The findings showed that the
estimation outcomes were close to the actual trends of
displacement variations, which confirmed the efficiency of the
given conventional data-driven prediction technique. Regarding
the development of monitoring technologies, such Italian
scholars like Tarchi D. investigated a ground-based SAR system
and compared its monitoring outputs with other traditional
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methods of monitoring, thus confirming the possibility of
ground-based SAR systems implementation to slope
deformation monitoring (Zou et al., 2023). A ground-based
SAR system was used by Noferini L. in 2007 in monitoring
landslides in Karawanken Alps (note: geographical accuracy
should be Karina Alps) was used. Noferini L. was able to
examine the accuracy of Lean ground-based SAR systems by
correlating the accuracy with the findings of the GPS
monitoring. As well, Luzi G. had performed monitoring of the
Alpine glacier displacement by means of Ground-Based SAR
(GB-SAR) and the experimental outcomes showed that GB-
SAR technology was capable of detecting the small-scale
displacement changes of the glaciers and hence validated the
application of the technology in non-slopes cases like glacier
monitoring. Ground-based SAR deformation monitoring
technology was also presented as a part of the deformation
simulation of building during an earthquake (Dai et al., 2022),
which demonstrated the fact that it was feasible in detecting
building deformations outside the frames of geotechnical
engineering (Gong et al., 2024). As the new information
technologies continue to be developed like artificial intelligence,
machine learning and nonlinear prediction models are widely
used in predicting deformation of landslides. Xu et al. (2025)
used the case of the Fangian Landslide in the Three Gorges
Reservoir Area as an example to carry out surface deformation
monitoring research by using SBAS-InSAR time-series data
with the LSTM model. It has been shown that the correlation
coefficients of the prediction performance of the LSTM were
0.9455 and 0.9829 and were much higher than in Back
Propagation (BP) neural network model and the Support Vector
Machine (SVM) model. This demonstrates the excellence of
deep learning models such as LSTM in time-series deformation
input activities. Moreover, Chang et al. (2022) used the
Squeeze-and-Excitation ~ Capsule  Network  (SE-CapNet)
architecture to estimate the likelihood of landslides in the
Yichang Region of the Yangtze River Basin and found that the
landside detection accuracy of this architecture in the region
conducted 96.29, which is useful information in integrating
advanced neural network designs in geohazard analysis.

All of these studies prove that slope deformation monitoring has
shifted towards more complex non-contact technologies and
more innovative approaches to slope deformation prediction,
verification, or intelligence-driven deep learning methods have
been developed (Yang et al.,, 2022). Nevertheless, it is still
necessary to optimize better the combination of high-precision
GBInSAR time-series data with potent deep-learning models
(including LSTM) further, which is one gap to be filled by the
proposed study in the given paper. This study aims to address
this existing research gap through the visualization of the
synergy between high-quality monitoring data offered by
GBInSAR and strong temporal feature extraction capabilities of
LSTM thus contributing to the practical use of integrated
monitoring-prediction system in the operation of mine safety
(Lv et al., 2024).

In the recent past as the world keeps enhancing the concept of
artificial intelligence and the deployment of deep learning
technology, data-based methods have displayed enormous
application prospects in the prediction of slope deformation.
One of these approaches is the LSTM network, a deep learning
model that can be used to analyze time series data, so it can
thoroughly address the time dynamics of the monitoring
information (Ma & Lu, 2023). The model can be trained on the
historical values of deformation using the GBInSAR monitoring,
but through this, a slope deformation prediction system can be

formed, and, consequently, the future trends of the deformation
can be predicted accurately within a short period.

To sum up, the proposed solution of using GBInSAR
technology and the LSTM prediction model is a new method of
slope deformation monitoring and early alert in open pit mines.
The paper aims to discuss the hybrid use of GBInSAR and
LSTM, and develop intelligent early warning algorithm with
deep learning. It is aimed at enhancing quality and timeliness of
slope monitoring and early warning in the open-pit mines, and
offer theoretical support and technical certification of mine
safety management.

2. LSTM Model

The LSTM network is a particular version of RNN model. The
hypothesis was first introduced by Sepp Hochreiter and Jurgen
Schmidhuber in 1997. This model is aimed at resolving the
problems of gradient decay and gradient explosion in
conventional RNN when utilizing long sequences training (Chai
et al., 2021). As Figure 1 shows, it implies that LSTM is not
seemingly similar to RNN. In order to improve the memory and
expression functions (storage and transmission of information)
of RNN, LSTM introduces three gating dynamics and a cell
state that allow the model to autonomously determine which
information should be maintained and which should be
forgotten in order to better represent the long-term dependencies
in the sequence (Zhang et al., 2025).

The basic structure of LSTM includes a recurrent unit and three
gating units: the input gate, the forget gate, and the output gate.
The recurrent unit takes the current input and the previous
output as inputs, and outputs the current output and passes it to
the next state. The input gate controls the influence of the
current input on the state, the forget gate controls the influence
of the previous state on the current state, and the output gate
controls the influence of the current state on the output
(Chataoui, 2024). The memory unit is used to store and transmit
long-term information. Based on this, LSTM has long-term
memory capabilities and the characteristic of preventing
gradient disappearance, so this paper selects LSTM as the
training basis for the inventory prediction model.
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Figure 1. LSTM model cell structure.

Among them, the calculation formulas for the input gate, the
forget gate and the output gate are as follows:
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3. Study Area and Data
3.1 Study Area

The experimental object is a certain open-pit mine slope in
Xilinhot City, Xilingol League, Inner Mongolia Autonomous
Region. The mine is located 6 kilometers north of Xilinhot City,
Inner Mongolia, with geographical coordinates of 116° 00’

05.26" east longitude and 43° 59’ 02.29" north latitude. The
overall shape is a north-east to south-west (NE-SW) strip, with
asymmetrical wide gentle anticlines on both sides. This open-pit
mining area slope is a typical rock slope, with a large height
difference of the slope, a steep slope, and the mining area has
smog, dust, and poor visibility. As this open-pit coal mine
continues to expand and extend, the stability of the southern
slope has become an important factor restricting its safe
production (Yin et al., 2024). Therefore, real-time monitoring of
the slope stability is required.

The study area of this article is the middle part of the southern
slope, which is in a stepped shape, as shown in Figure 3. The
IBIS system used in this experiment was installed in a stable
area opposite to the monitoring slope, at a distance of 1600
meters from the monitoring slope (Huang et al., 2019). It was
equipped with a radar, a linear track, a laptop computer and a
power supply. The location of the radar provided good visibility
for the monitoring area, ensuring that the entire slope could be
monitored. This computer software is used for real-time
monitoring of slope deformation (Chen et al., 2023).

Figure 3. (a) Full view of the slope; (b) Experimental area of the
slope and the layout of the IBIS-L; (c¢) IBIS-L sensor; (d) Linear
Scanner; (e) Power supply module; (f) Control and acquisition
notebook.

3.2 Experimental Result

The key parameters measured during this process are illustrated
in Table 1:

Parameter Value
Measuring distance 700~1600m
range

Rail length 2m

Band Ku Band
Range resolution 0.75m
Azimuthal 4.38mrad
resolution

Time interval 6min
between two images

Time 78h

Table 1. SAR data acquisition parameters

This experiment was conducted from 08:21 on October 15,
2024 to 15:01 on October 18, 2024 (China Standard Time),
using the GBInSAR technology for monitoring. During the 4
day monitoring period, a total of 436 images were obtained. As
shown in the figure, at several points on the slope, the
deformation amplitude reached -5mm to Smm during the
experiment. Based on the three parameter indicators of thermal
signal-to-noise ratio, estimated signal-to-noise ratio, and
correlation, three high-quality deformation points were selected.
After data processing, the cumulative deformation amplitudes of
the experimental area were obtained. To further analyze the
deformation trend of the slope body, characteristic points P1, P2,
and P3 were selected in the areas with significant deformation,
as shown in Figure 6. The cumulative deformation amplitudes
of P1, P2, and P3 were 135.3 mm, 114.2 mm, and 102.7 mm,
respectively.
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Figure 4. Landslide deformation value and characteristic point
positions.
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4. Deformation prediction

This paper proposes a GBInSAR slope deformation prediction
method based on the LSTM model, aiming to enhance the
deformation monitoring and prediction capabilities of open-pit
mine slopes. The IBIS-L system is employed for real-time,
high-precision displacement measurement on open-pit mine
slopes, and the parameters of this system are optimized and
adjusted to obtain the deformation data of each measurement
point of the slope under the time series (Long et al., 2022).
Subsequently, a deep learning sample library is constructed
based on the pre-processed GB-InSAR deformation data set,
and the LSTM model is trained based on this data set. Through
hyperparameter optimization, the prediction accuracy and
computational efficiency of the model are improved, thereby
achieving accurate prediction of the future deformation trend of
the slope. This provides scientific and reliable deformation
warning support for open-pit mine slopes.

4.1 Data Normalization

To achieve a quicker convergence and make the predictions
more precise, the interval between values fed to the neural
network model must be kept even. The value scale of the
variables should be adapted manually and adjusted to the scale.
Techniques of common use are the following.

Normalization is the process of changing the value of the
variables to the range between 0 and 1 or between -1 and 1. To
compute first, the range of change of a given variable, the
minimum value is deducted with the maximum value of the
given variable. Thereafter, taking a single value in the variable
of X, divide the value with the range of variable X then scale
the value to an interval of 0 to 1; this procedure is known as
maximum and minimum normalization expressed as the
following equation:

( yE——— @

4.2 LSTM Network Design

Once the network architecture design has been completed, the
training dataset could be inputted into the model to be trained.
Training involves some complex structure in neural networks,
therefore, the model is prone to overfitting with the increase in
the number of iterations. A dropout layer is therefore
incorporated to the LSTM module to improve the generalization
ability of the model in addition to eliminating overfitting. The
main purpose of this layer is to randomly switch off a good
percentage of neurons in the LSTM layer every training step. It
has been experimentally shown that additional layers to the
LSTM do not produce any discernible increment in the
predictive accuracy of the model. Also, the time step size is a
very important parameter that should be chosen. To perform
experiments in this paper, a time step size of 10 is used,
implying that the deformation variable in the next time step is
estimated using deformation data before 10 time steps (Song et
al., 2020).

4.3 Hyperparameter Selection

The neural networks models have a huge number of hyper
parameters that control the architecture, functionality, and
efficiency of a model and therefore are key in producing high-
accuracy results. The grid search technique was used as a
hyperparameter search in this experiment. In particular, the

search space of hyperparameters was determined, and the model
performance was measured at a certain hyperparameter step to
obtain the combination of the best combination of
hyperparameters that produced the best model performance (Wu
et al., 2019). Such an important aspect is the choice of the loss
function that influences the level of prediction accuracy of the
model (Ma and Lu, 2023). The evaluation indicators of model
accuracy adopted in this research involved mean squared error
(MSE) and mean absolute error (MAE), with their help the
prediction performance of the model can be measured and be
used to streamline the model and bestow the appropriate model.

MAE is a measure of the average size of errors in a predictive
set of values by finding the absolute distance between the values
predicted and the observed values. The primary benefits of
MAE are that it does not take into consideration the orientation
of these errors, now it can only speak of their size, based on the
way as it can be calculated as the following:

- | ©)

MSE usually refers to the formula for calculating the average
value of the square of the difference between the predicted
value and the actual observed value (Liu et al., 2025). The
calculation method is as follows:

== (= ) )

Among them, is the true value (the target value); y; is the
predicted value; and n is the sample size.

As the model goes through its training phase, the fitting degree
of the model is determined by calculating the size of the loss
function. The model's efficacy is indicated by the eventual
achievement of equivalent loss rates in the training and
validation sets, which is indicative of a satisfactory fitting effect.
The model hyperparameter combinations determined by the grid
search method are shown in Table 2:

Hyperparameter Name Value
LSTM_units 124
Batch_size 64

Epochs 800

Table 2. LSTM model hyperparameter combination table

Loss Curve MAE Curve

Taintess | 077 Train MAE
thos J st Mae
0s

U —_— == i

00 =—————

100 200 M@ 400 S0 600 700 8GO

O 10 200 360 0 500 600 0 800 a
Epoch Epoch

Figure 5. Training set and test set MSE and MAE curves

In this graph, the horizontal axis indicate the time period, and
the vertical axis represents the model's mean square error and
average absolute error. When the Epoch reaches 800 times, the
loss rate converges well and eventually stabilizes at a value
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around 0.011. This deformation prediction model has a
relatively high prediction accuracy.

4.4 Predicted Results

The input layer of the LSTM model adopted has 5 nodes, the
output layer has 1 node, the hidden layer has 10 nodes, and
there is 1 fully connected layer (Hao et al., 2022). The delay
step size is set to 10. After the parameter settings are completed,
the cumulative deformation data obtained from feature points
P1, P2, and P3 are used as the dataset. The dataset is split into
two sets: a training set and a test set. The training set makes up
60% of the dataset, while the test set makes up 40%. Here,
dividing the training set and test set in a 6:4 ratio can ensure that
the model has sufficient data for training while also providing
sufficient test data for predicting the cumulative deformation of
feature points within the landslide area. Finally, the LSTM
model prediction results for the cumulative deformation
displacement of the 3 feature points in the landslide area are
obtained, as shown in Figure 6.

Zs_ov 25
Tuevalues

Figure 6. Test set LSTM accuracy evaluation index

As shown in Figure 6, the prediction results of the respective
LSTM models for the characteristic points P1, P2, and P located
on the surface of the slope body are consistent with the
cumulative deformation trend of the actual values. Moreover,
the goodness of fit (R?) of each characteristic point within the
sliding body area is greater than 0.80. This result indicates that
the fitting degree between the predicted values and the actual
values is relatively high (Table 3).

feature points | MAE MSE R?

P1 1.23 0.96 0.81
P2 0.45 0.64 0.89
P3 0.21 0.30 0.92

Table 3. Evaluation indicators for LSTM accuracy of the test set

By comparing the absolute errors between the predicted values
and the actual values of the three characteristic points on the
slope surface, it can be seen that the absolute errors between the
cumulative deformation prediction values calculated by the
LSTM model for points P1, P2, and P3 and the actual values are
all less than 6 mm. This result to some extent reflects the
effectiveness of the cumulative deformation prediction results
of the characteristic points obtained by using the LSTM model.

Furthermore, as can be seen from Figure 6 and Table 3, the
goodness of fit (R?) of P3 is 0.92, which is higher than that of
P1 (0.81) and P2 (0.89). This indicates that the fitting degree
between the predicted values and the actual values of P3 is
higher than that of P1 and P2. The absolute error of the

cumulative deformation result predicted by the LSTM model of
P3 is smaller than that of P1 and P2. The value of P1 is
relatively larger (Table 2), suggesting that the LSTM model
performs better than P1 and P2 in predicting the cumulative
deformation of P3.

5. Conclusion

This article uniquely blends the GB-InSAR technology and
LSTM deep learning model, which suggests a highly accurate
slope deformation narrowing and forecasting technology in
open-pit mines. To begin with, the effect of time series
deformation was monitored at the slope of a particular open-pit
mine in Xilinhot, through the application of the GB-InSAR,
which recorded time-series deformation at a high resolution, as
well as providing a solid data base upon which future models
could be built. Secondly, one LSTM prediction model of
landslide deformation was built based on the deformation data
collected to train and predict time series of the slope
deformation pattern. Through the maximum use of the nonlinear
sequential data processing capabilities of the LSTM network,
the model features a high prediction accuracy, high robustness,
and multi-scale feature extraction feature in the analysis of the
complex deformation trends. The findings of the research are
such that the proposed method may detect and track the
landslide threats at an earlier phase, which introduces a novel
research direction and efficient technical assistance to the safety
control and prior warning of the open-pit mines slopes and
reliable support of the active control and prevention of the
geological disasters.
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