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Abstract

The Monterrey Metropolitan Area (MMA), characterized by complex lithology, rugged topography, intense rainfall, and increasing
anthropogenic pressures, faces increasing landslide hazards. This study applies a quantitative approach using the weight of evidence
(WoE) method to assess landslide susceptibility across the MMA. A total of 292 historical landslide events were mapped using aerial
imagery and archival data, with a 70/30 split for model training and validation. Twelve conditioning factors—including slope, lithology,
elevation, hydrology, and land use—were analyzed to determine their influence on landslide occurrence. The resulting susceptibility
map was classified into five risk categories using the Natural Breaks method. Model validation using the Receiver Operating
Characteristic (ROC) curve yielded an Area Under the Curve (AUC) value of 0.77, indicating good predictive accuracy. These results
demonstrate the effectiveness of the WoE method in landslide susceptibility mapping and provide a valuable tool for risk management

and territorial planning in the region.

1. Introduction

Landslides are geodynamic phenomena that severely affect
mountainous regions with urban occupation, generating both
material and social impacts. Various factors, including
uncontrolled urban expansion, land use changes, and an increase
in the frequency of extreme weather events, have intensified the
population's exposure to these processes (Alcantara-Ayala,
2025).

The Monterrey Metropolitan Area (MMA) in Mexico has been
experiencing landslides due to its location in a valley surrounded
by mountains. Rapid population growth has led to urban
development on the hillsides, which increases vulnerability to
these landslides. Additionally, extraordinary rainfall associated
with hurricanes, such as Category 1 Hurricane Hanna in July
2020 and Tropical Storm Alberto in June 2024, contributes to the
problem. As climate change is expected to increase the frequency
of such weather events, the risk to the area may rise further
(Touma et al., 2019).

Among the various methods used to assess susceptibility to mass
movements, the statistical approach of weight of evidence (WoE)
has established itself as a solid alternative when an inventory of
landslides and environmental layers with adequate resolution is
available. This method allows quantitative relationships to be
established between the occurrence of landslides and terrain-
related factors, making it particularly useful in contexts where a
reproducible, spatially based approach is required (Sujatha and
Sudharsan, 2024).

In this context, the present study aims to assess the susceptibility
to landslides in the MMA using the WoE method, integrating
topographic, geological, and land cover factors, to generate
technical input that contributes to risk management in this
metropolitan region.

Previous studies have successfully implemented the WoE
method for landslide susceptibility mapping in various geological
contexts, often comparing its performance with other statistical
and machine learning techniques such as logistic regression (LR),
support vector machine (SVM) and random forest (Hussain et al.,
2021; Nwazelibe et al., 2023), where WoE has been shown to
provide robust and interpretable results when a reliable landslide
inventory is available, justifying its use as a reference approach
in this research.

_1.1 Study Area

The study area covers approximately 1409 km? in northeastern
Nuevo Leodn, Mexico (Figure 1). The MMA comprises thirteen
municipalities with an estimated population of 5.3 million
inhabitants, making it the second-largest metropolitan area in the
country after Mexico City (Instituto Nacional de Estadistica y
Geografia, INEGI, 2020).
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Figure 1. Location of the study area showing elevation and
mapped landslide inventory. Abbreviations of anticlines: LS: La
Silla, LM: Los Muertos, LL: Loma Larga, LM: Las Mitras, TP:

Topo Chico, dF: del Fraile.

Morphologically, this area is located in a valley surrounded by
mountains that form part of the Sierra Madre Oriental, which is
characterized by a heterogeneity of sedimentary rocks, folded
and thrust by tectonic effects (Padilla y Sanchez, 1982), favoring
the generation of steep slopes and unstable areas, which the
mountains have peaks over 2300 m .a.s.l. with valley floors of
350 m.

The region has a semi-arid climate (BSh according to the
modified Képpen classification), in a transition between the sub-
humid tropics and the desert (Aguilar Barajas and Ramirez
Orozco, 2021), with an average annual temperature of around
23.6 °C (Comision Nacional del Agua, CONAGUA, 2024a) and
average annual precipitation of 650.2 mm (CONAGUA, 2024b),
concentrated mainly in the summer months during the hurricane
season.

In terms of its hydrography, the MMA is crossed by major
watercourses, including the Santa Catarina River, which runs
from east to west through the central portion of the MMA, the La
Silla River to the south, and the Pesqueria River to the north.

In brief, the physical and climatic conditions, rapid urban
expansion, particularly on hillsides, have intensified pressure on
the physical environment, altering the geomorphological balance
and increasing vulnerability to landslides.

2. Methodology

A comprehensive overview of the methodology is presented in
Figure 2.
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Figure 2. Methodological workflow for landslide susceptibility
mapping in the study area.

2.1 Landslide Inventory Map
The use of a landslide inventory map is essential in this study, as

the WoE method relies on the assumption that past events are
indicative of future occurrences. Accordingly, this layer

constitutes a fundamental input for landslide susceptibility
assessment (Kontoes et al., 2021).

The inventory was compiled from multiple sources, including
official records from INEGI (https://gaia.inegi.org.mx/mdmo6/),
municipal reports, news articles, time-series photointerpretation
using Google Earth®, and field observations. A total of 292
landslides were identified within the study area and digitized as
point features, which were subsequently converted into raster
format using ArcGIS Pro environment (Figure 1).

Figure 3 illustrates different types of landslides in the MMA,
including their causes and vulnerability to occurrence, which is
primarily due to lithology, karst processes, precipitation, and
irregular settlements.

B ain B X A
Figure 3. Examples of location and causes of landslides in the
study area with aerial photographs. (A) Rock falls in the central
portion of the southwestern flank of Las Mitras anticline; (B, C)
Landslides near the “Grutas de Garcia” and karstification
processes as local causes of landslides in the del Fraile anticline;
(D) Debris flow tracks on the southwest-facing slopes of the
Los Muertos anticline; (E, F) Vulnerability to landslides due to
irregular settlements in the Los Muertos anticline and in the

central portion of the La Silla anticline.

The complete inventory was randomly divided into two subsets:
70% of the data were used to train the susceptibility model, while
the remaining 30% were reserved for model validation.

2.2 Landslide Conditioning Factors

In this study, twelve conditioning factors were selected to
develop the landslide susceptibility model (LSM), encompassing
topographic, geological, hydrological, vegetation-related, and
anthropogenic variables. The selection was based on previous
studies conducted in similar contexts (Montalvo-Arrieta et al.,
2010; Chapa-Guerrero et al., 2017; Ramirez-Serrato, 2019;
Salinas-Jasso et al., 2020). These factors include elevation, slope,
aspect, profile curvature, planar curvature, TWI (topographic
wetness index), lithology, distance to lineaments, NDVI
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(normalized difference vegetation index), landcover type,
distance to streams, and distance to roads.

All input layers were prepared and processed in ArcGIS Pro,
generating raster outputs with a spatial resolution of 5 m and
projected using the WGS 84 UTM Zone 14 coordinate system.
This spatial resolution was selected according to the highest
freely available accuracy, corresponding to the LiDAR-derived
terrain DEM provided by INEGI
(https://www.inegi.org.mx/app/mapa/espacioydatos/).

Elevation has been widely used in landslide susceptibility
analyses (e.g., Batar and Watanabe, 2021; Hussain et al., 2022)
and was reclassified into five classes in this study, with values
ranging from 323 to 2,349 m a.s.l. (Figure 4A).

Slope is one of the main factors in landslide occurrence,
particularly in areas with complex mountainous morphology,
such as the MMA. In this study, slope values ranged from < 15°
to 87° and were reclassified into five classes with a 10° interval
(Figure 4B).

Aspect represents the orientation of the slope concerning cardinal
directions, which is exposed to environmental conditions that can
influence the instability of rock masses (Qazi et al., 2023). It was
reclassified into nine classes (Figure 4C).
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Curvature describes the geometric shape of the terrain surface.
Profile curvature is measured along the direction of the slope.
Indicates the acceleration (concave) or deceleration (convex) of
surface flow. Planar curvature, measured perpendicular to slope
direction, reflects the convergence or divergence of the flow
(Achu et al., 2023). Both curvature types were reclassified into
three categories: concave, flat, and convex (Figures 4D and E,
respectively).

Figure 4. Landslide conditioning factors for the study area: (A)
elevation; (B) slope; (C) aspect; (D) profile curvature; (E)
planar curvature; (F) topographic wetness index; (G) lithology;
(H) distance to lineaments; (I) normalized difference vegetation
index; (J) landcover type; (K) distance to streams; and (L)
distance to roads.

90000

TWI represents the potential for water accumulation on the
surface and is a proxy for soil saturation and hydrological
processes that influence slope instability (Karakas et al., 2023).
In this study, three types of TWI (Figure 4F) were obtained using
the following equation, calculated in ArcGIS Pro:

TWI = In(—)

tanf

(M

where a is the specific catchment area (m? per unit width
orthogonal to the flow direction), and P is the slope gradient in
radians.
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Lithology is widely recognized as a key factor influencing
landslide susceptibility (Dornik et al., 2022; Basharat et al.,
2023). The study area is characterized by a diverse collection of
folded and thrusted sedimentary rocks, formed through the
tectonic deformation associated with the Sierra Madre Oriental
orogenic belt. For this research, a lithological map was created
by vectorizing and rasterizing geological maps with a scale of
1:50,000, provided by the Servicio Geoldgico Mexicano (SGM)
and INEGI. The resulting raster layer was then reclassified into
nine lithological units: Quaternary deposits, sandstone-shale,
shale-marlstone, shale-limestone, limestone-shale, limestone,
limestone-dolomite, shale-sandstone, and gypsum-limestone (see
Figure 4G).

Recording structural lineaments, this factor considers the
presence of fractures and faults that may act as zones of weakness
within the relief’s stratigraphy. To quantify this factor, the
Euclidean Distance tool in ArcGIS Pro was applied to calculate
the distance from each raster cell to the nearest mapped
lineament. The resulting layer was reclassified into five distance
classes (Figure 4H).

NDVI represents vegetation dynamics and surface conditions and
has been widely used as a conditioning factor in landslide
susceptibility assessments (e.g., Zhou et al., 2021). Vegetation
influences slope stability by enhancing soil cohesion through root
systems and reducing surface runoff. NDVI values range from -
1 to +1, where positive values indicate the presence of vegetation,
while negative values correspond to bare soil, urban areas, or
water bodies. In this study, NDVI was calculated from a Sentinel-
2A multispectral image in Google Earth Engine with a spatial
resolution of 10 m, using the following equation:

@)

Where IR is the infrared and R is the red bands of the
electromagnetic spectrum. In this study, NDVI varies from -0.5
to 0.83, and it was reclassified into five classes (Figure 4I).

Landcover type is influenced by both climate and human
activities, which can contribute to the occurrence of landslides
(Chen et al., 2019a; Pacheco-Quevedo et al., 2023). In this study,
land cover type was determined using a Sentinel-2A
multispectral image acquired on August 22, 2020, through
Google Earth Engine. The classification process utilized the
Random Forest machine learning algorithm, based on stratified
random sampling and incorporating both NDVI and SAVI (soil
adjusted vegetation index) indices. The SAVI index, in
particular, has shown improved performance in differentiating
vegetation (e.g., Illan-Fernandez et al., 2024; Rodriguez
Gonzalez et al.,, 2024). A total of 378 sample points were
selected, with 80% allocated for training and 20% for validation.
The final classification categorized land cover into six classes:
water, soil, built-up areas, dense vegetation, medium vegetation,
and sparse vegetation (see Figure 4J). The model achieved an
overall accuracy of 89.65% and a Kappa coefficient of 0.87, as
indicated by the confusion matrix. The resulting classification
map was then exported and integrated into ArcGIS Pro, where it
was resampled from 10 to 5 m using the nearest neighbour
method to ensure spatial compatibility with the other
conditioning factors derived from the 5-m LiDAR-based terrain
DEM.

Distances to streams and roads were calculated from the drainage
and road networks provided in the topographic vector dataset

from INEGI. These vector layers were converted to raster format,
and Euclidean distances were calculated in ArcGIS. Both
resulting rasters were subsequently reclassified into five distance
classes to standardize the information (Figures 4K and 4L).

2.3 WoE method

In this study, the WoE method was applied to generate the
landslide susceptibility model. This approach is based on the
principles of Bayesian probability, as proposed by Bonham-
Carter et al. (1989). It enables the combination of multiple
evidence layers to estimate the probability of a specific event
occurring. Its core principle lies in evaluating the spatial
association between each conditioning factor and the presence or
absence of landslide events (Zhang et al., 2023).

The method assigns a statistical weight to each class within a
conditioning factor reflecting its relative influence on landslide
occurrence. These weights are calculated based on the presence
(W) and absence (W-) of landslide events within each class, as
defined by:

_ pBID)
W = 1oge 5z
3)
P
W= l0ge 5p1ny
)

where P is the probability, B is the presence of a desired class of
landslide conditioning factor, B is the absence of a desired class
of landslide conditioning factor, D is the presence of landslides,
and D is the absence of landslides. Each class of conditioning
factor was calculated using Eqgs. 3 and 4. The difference between
the positive and negative weights is referred to as the weight
contrast (C), calculated as C = W* - W ™. The magnitude of this
contract reflects the overall spatial association between each class
of a conditioning factor and the occurrence of landslides. A
positive C value (C > 0) indicates a positive correlation, meaning
that landslides are more likely to occur in that class. In contrast,
anegative C value (C < 0) suggests a negative correlation, where
landslides are less likely to occur.

The Landslide Susceptibility Index (LSI) map was produced by
summing the weights of all conditioning factors using the Map
Algebra tool in ArcGIS Pro, following the equation:

LSMWf = (M/]‘Elevation) + (Wfslope) + (VVfAspect) +
(va Profile curvature) + (va Planar curvature) + (VVfTWI)
+(WfLithology) + (WD.to lineaments) + (Wf NDVI) +

(va Landcover type) + (va D.to streams) + (VVf D.to roads)
&)

2.4 Validation method

The performance of the landslide susceptibility map was assessed
using the Relative Operating Characteristic (ROC) method and
by calculating the percentage of observed landslides falling
within each susceptibility class. The area under the ROC curve
(AUQ) reflects the quality of the probabilistic model and its
capacity to discriminate between the occurrence and non-
occurrence of landslides. An AUC value approaching 1 denotes
high predictive accuracy, whereas a value near 0.5 indicates poor
performance (Bui et al., 2014). In this study, the success-rate
curves were generated using Python 3.12.
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3. Results and Discussion

3.1 Landslide Susceptibility Model

The WoE values for all conditioning factors are presented in
Table 1. The resulting landslide susceptibility index ranges from
—14.29 to 10.76 and was reclassified using the Jenks natural
breaks method (Jenks and Caspall, 1971) into five susceptibility
classes: Very Low, Low, Moderate, High, and Very High (Figure
5). This method is among the most widely applied in landslide
susceptibility modeling (Qazi et al., 2023), as it is particularly
suitable for datasets that are not normally distributed. It
minimizes within-class variance and maximizes between class
differences, providing a data-driven categorization that better
reflects the intrinsic distribution of susceptibility values (Chen et
al., 2019b; Abdo et al., 2024).

The analysis of evidence weights determines that slope is the
factor with the greatest influence on the occurrence of landslides,
with particularly high contrast values in the classes 35-45° (C =
1.860), > 45° (C = 1.534), and 25-35° (C = 1.380). These results
coincide with those reported by Aslam et al. (2022) and Al-kordi
et al. (2025), who point out that landslides tend to concentrate in
intermediate to high slope intervals, where the gravitational
potential energy is sufficient to overcome the shear strength of
the materials.

In terms of lithology, limestone—shale (C = 1.757) and limestone
(C = 1.513) units show the strongest positive association with the
occurrence of landslides. This behavior can be attributed to the
presence of inclined stratification planes, intercalations of
materials with different resistances, and dissolution processes in
limestone, which generate areas of weakness. Moreover, the
alternation of limestone and shale also favors water infiltration
and accumulation, reducing the cohesion of the material (Do et
al., 2022).

Distance to lineaments (< 500 m; C = 1.085) shows the influence
of fractures and faults as areas of preferential weakness for the
development of mass movements, a pattern documented in
various geological contexts.

The altitudinal analysis indicates that the interval of 752—-1151 m
(C =1.546) is the most susceptible, which could be explained by
its coincidence with mid-slope and foothill areas, where steep
slopes, the presence of roads, and greater human occupation
converge, factors that increase pressure on the stability of the
terrain.

In terms of aspect, the south class (C = 0.382) affects the
activation of landslides. Regarding profile curvature and planar
curvature, the highest values are convex (C =0.773) and concave
(C =0.420), respectively.

TWI values < 5 (C = 1.061) suggest that landslides are
concentrated in areas with lower surface flow accumulation,
possibly related to convex slopes or interfluves, where infiltration
is more effective and may favor increased pore pressures at
depth.

Concerning landcover type, areas of dense vegetation (C = 0.413)
and medium vegetation (C = 0.257) show moderate positive
associations. Although vegetation usually stabilizes the terrain,
in this case, it could reflect the spatial distribution of landslides
in areas of slopes covered by dense forest or scrub, where the
topography and lithology already predispose them to instability,

and where intense precipitation events can overcome the
stabilizing effect of the roots (Pacheco-Quevedo et al., 2023).

Finally, the Distances to streams (300-1000 m; C = 0.558) and
roads (500-2000 m; C = 0.585) reinforce the hydrological factors
and influence of anthropogenic factors as risk modulators.
Streams contribute to basal undermining and lateral erosion,
reducing the stability of adjacent slopes, while the roads can
generate slope cuts and runoff concentrations.

Area
Parameter Class (km?  Landslid W+ W- C
353-752 939.85 71 -0.724 0.838 -1.563
752 - 1151 346.65 109 1.001 -0.546 1.546
Elevation (m) 1151 - 1550 98.03 22 0.540 -0.049 0.589
1550 - 1949 28.04 2 -0.786 0.012 -0.798
1949 - 2349 0.68 0 NA NA NA
<15 905.91 38 -1.348 1.057 -2.405
15-25 140.32 21 0.043 -0.005 0.048
Slope (°) 25-35 161.16 56 1.150 -0.230 1380
35-45 141.66 63 1.558 -0.302  1.860
>45 62.96 26 1.429 -0.105 1.534
Flat 3.57 0 NA NA NA
North (< 22.5) 111.93 20 0.255 -0.024 0.279
Northeast (22.5 -
67.5) 26040 59 0044 0010  0.054
East (67.5-112.5) 228.38 25 20316 0.053 -0.369
Southeast (112.5 -
Aspect 157.5) 179.03 24 -0.085 0012 -0.097
South (157.5 - 202.5) 179.34 34 0.328 -0.054 0382
Southwest (202.5 -
247.5) 14368 g5 023 0028 0250
West (247.5 -292.5) 106.11 17 0.124 -0.011 0.134
Northwest (292.5 - 113.68
337.5) . 9 -0.673 0.045 -0.719
North (337.5-360)  85.88 11 -0.138 0.008 -0.146
Profile Concave 771.76 91 -0.232 0.236 -0.468
curvature Flat 202.66 18 -0.548 0.073  -0.621
Convex 442.08 95 0.485 -0.289  0.773
Concave 656.61 113 0.209 -0.211 0.420
Planar curvature Flat 315.33 15 -1.217 0209  -1.425
Convex 444.56 76 0.201 -0.103 0.304
<5 701.08 145 0.436 -0.625 1.061
TWI 5-8 590.56 51 0.579 0303 -0.881
>8 123.62 8 -0.891 0.060  -0.951
Quaternary deposits  689.21 19 -1.783 0.709  -2.492
Sandstone - shale 19.54 3 0.073 -0.001 0.074
Limestone 320.31 102 1.019 -0.494 1.513
Limestone - dolomite ~ 9.62 0 NA NA NA
Lithology Limestone - shale 76.77 35 1.603 -0.153 1.757
Shale - sandstone ~ 206.89 34 0.154 -0.028  0.182
Shale - limestone 34.82 4 -0.262 0.006  -0.268
Shale - marlstone 51.11 7 -0.061 0.002  -0.063
Gypsum - limestone  0.49 0 NA NA NA
<500 189.18 55 0.888 -0.197 1.085
Distance to 500 - 1000 155.42 26 0.175 -0.023  0.199
Jineaments (m) 1000 - 3000 494.38 51 -0.382 0.169  -0.551
3000 - 5000 343.52 26 -0.722 0.168  -0.890
> 5000 230.65 46 0.390 -0.090 0.480
-0.5-0.13 242.15 16 -0.868 0.125 -0.994
0.13-0.30 167.35 21 -0.161 0.020 -0.182
NDVI 0.30 - 0.47 240.17 51 0.469 -0.118 0.587
0.47 - 0.61 322.80 58 0.262 -0.088  0.349
0.61 - 0.83 440.70 58 -0.107 0.046  -0.152
Water 5.55 0 NA NA NA
Dense vegetation 583.83 102 0.228 -0.185 0.413
Landcover type Built-up level 271.80 18 -0.866 0.143 -1.009
Soil 23.69 0 NA NA NA
Medium vegetation  373.76 63 0.184 -0.073  0.257
Sparse vegetation  155.13 21 -0.074 0.009  -0.083
<300 916.08 120 -0.112 0.185 -0.297
Distance fo 300 - 1000 314.91 64 0.414 -0.144 0.558
streams (m) 1000 - 2000 130.07 20 0.075 -0.008 0.083
2000 - 3000 40.91 0 NA NA NA
> 3000 12.78 0 NA NA NA
<500 362.99 27 -0.741 0.183  -0.924
Di 500 - 2000 607.91 113 0.303 -0.281  0.585
stance (o 2000-4000  301.84 41 0070 0018 -0.089
roads (m)
4000 - 6000 106.22 16 0.051 -0.004 0.055
> 6000 34.21 7 0.423 -0.012 0.435

Table 1. Calculated the weight for classes of conditioning
factors per class based on landslide occurrences.

In this study, the results of the WoE model were used as inputs
to assess multicollinearity among the conditioning factors using
the variance inflation factor (VIF), which measures the degree to
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which a variable correlates linearly with other factors. A VIF
value greater than 10 is commonly considered indicative of
strong correlation (Bui et al., 2011). The analysis revealed that
NDVI, elevation, and dense vegetation had VIF values above 10,
indicating strong correlation with other factors. Despite this,
these conditioning factors were retained in the analysis to
preserve critical information on landslide occurrences, including
the 102 events recorded in the dense vegetation category.
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Figure 5. Landslide susceptibility model using the weight of
evidence method with distribution per class.

The relative importance of conditioning factors was calculated
based on the absolute WoE values for each category. As shown
in Figure 6, slope, lithology, and elevation contributed the most
to landslide occurrence, with relative contributions of 19.2%,
16.9%, and 11.9%, respectively. TWI also played a notable role,
contributing 7.7%, while the remaining factors had a lower
influence.
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Figure 6. Conditioning factors importance of landslide.

The area and percentage of each class are shown in Table 2, along
with the number of landslides. 8.56% of the mapped landslides
were located in areas classified as very low or low susceptibility.
This mismatch suggests potential limitations of the WoE model
in fully capturing the spatial complexity of landslide occurrence.
The discrepancy may arise from factors not included in the

conditioning dataset, the resolution of the input layers, or the
assumption of conditioning independence inherent to the method.
While such misclassifications are common in susceptibility
modeling, they highlight the need for incorporating additional
variables or more advanced methods to improve predictive
accuracy.

Area Percentage Number of
Susceptibility  (km?) (%) landslide
Very low 296.31 21.02 7
Low 329.17 23.35 18
Moderate 269.61 19.13 32
High 257.77 18.29 64
Very high 256.67 18.21 171

Table 2. Percentage of area occupied by susceptibility zones.

3.2 Validation of Landslide Susceptibility Map

The validation results indicate that the WoE model achieved an
AUC value of 0.77 in the success-rate curve (Figure 7), which
suggests an acceptable predictive capacity (range of 0.7-0.8) for
identifying areas prone to landslides according to Abul Hasanat
et al. (2010). This means that the present model can distinguish,
with reasonable accuracy, between stable and unstable slopes.

This performance is consistent with previous studies that applied
the WoE method in mountainous environments with similar
conditioning factors (e.g., Liu and Duan, 2018; Alsabhan et al.,
2022). Moreover, the obtained AUC value (0.77) falls within the
range typically reported for other statistical and machine learning
approaches such as LR, SVM, or RF models, indicating that the
WOoE approach achieves comparable predictive accuracy while
maintaining transparency in the weighting of conditioning factors
(Polykretis and Chalkias, 2018; Naceur et al., 2022). Specifically
for MMA, this represents the first validation of a WoE-based
susceptibility model; therefore, this result provides a baseline for
future studies in the region.
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Figure 7. Validation of landslide susceptibility model under the
ROC (AUC) by the weight of evidence method.

4. Conclusion

In this study, we assess landslide susceptibility in the Monterrey
Metropolitan Area. This study can help in defining the strategies
that can best reduce casualties and property losses. Four
statements can be concluded as follows:
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(1) Slope, lithology, and elevation are the dominant factors
influencing landslide susceptibility in the Monterrey
Metropolitan Area. Slopes between 25° and > 45°,
limestone-shale and limestone lithologies, and elevations
between 752-1151 m were strongly associated with
landslide occurrences due to their inherent geological and
topographic instability.

(2) Hydrological and structural variables also significantly
modulate landslide risk. Low TWI values, proximity to
faults (< 500 m), and intermediate distances to rivers (300—
1000 m) indicate that both water infiltration dynamics and
structural weaknesses contribute to slope failures.

(3) Anthropogenic factors such as proximity to roads and
landcover patterns play a notable role in triggering
landslides. Roads (500-2000 m from landslides) and areas
with dense or medium vegetation saw moderate
susceptibility, likely due to terrain modification and
precipitation-driven events in forested, sloped regions.

(4) The landslide susceptibility model demonstrated good
predictive performance, with an AUC value of 0.77,
validating the effectiveness of the WoE method for mapping
landslide-prone areas and supporting land-use planning and
risk mitigation strategies, as well as representing the first
validated susceptibility model in the MMA. However, the
AUC value also reflects that there is still room for
improvement, potentially by incorporating higher-
resolution conditioning factors, more detailed landslide
inventories, or integrating complementary statistical or
machine learning approaches.

The methodological framework and findings of this study may be
transferable to other mountainous and semi-arid regions affected
by rainfall-induced landslides, for regional susceptibility
assessment and land-use planning in similar geomorphological
settings.
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