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Abstract 

 

The Monterrey Metropolitan Area (MMA), characterized by complex lithology, rugged topography, intense rainfall, and increasing 

anthropogenic pressures, faces increasing landslide hazards. This study applies a quantitative approach using the weight of evidence 

(WoE) method to assess landslide susceptibility across the MMA. A total of 292 historical landslide events were mapped using aerial 

imagery and archival data, with a 70/30 split for model training and validation. Twelve conditioning factors—including slope, lithology, 

elevation, hydrology, and land use—were analyzed to determine their influence on landslide occurrence. The resulting susceptibility 

map was classified into five risk categories using the Natural Breaks method. Model validation using the Receiver Operating 

Characteristic (ROC) curve yielded an Area Under the Curve (AUC) value of 0.77, indicating good predictive accuracy. These results 

demonstrate the effectiveness of the WoE method in landslide susceptibility mapping and provide a valuable tool for risk management 

and territorial planning in the region.  

 

1. Introduction 

Landslides are geodynamic phenomena that severely affect 

mountainous regions with urban occupation, generating both 

material and social impacts. Various factors, including 

uncontrolled urban expansion, land use changes, and an increase 

in the frequency of extreme weather events, have intensified the 

population's exposure to these processes (Alcántara-Ayala, 

2025).  

The Monterrey Metropolitan Area (MMA) in Mexico has been 

experiencing landslides due to its location in a valley surrounded 

by mountains. Rapid population growth has led to urban 

development on the hillsides, which increases vulnerability to 

these landslides. Additionally, extraordinary rainfall associated 

with hurricanes, such as Category 1 Hurricane Hanna in July 

2020 and Tropical Storm Alberto in June 2024, contributes to the 

problem. As climate change is expected to increase the frequency 

of such weather events, the risk to the area may rise further 

(Touma et al., 2019). 

Among the various methods used to assess susceptibility to mass 

movements, the statistical approach of weight of evidence (WoE) 

has established itself as a solid alternative when an inventory of 

landslides and environmental layers with adequate resolution is 

available. This method allows quantitative relationships to be 

established between the occurrence of landslides and terrain-

related factors, making it particularly useful in contexts where a 

reproducible, spatially based approach is required (Sujatha and 

Sudharsan, 2024).   

In this context, the present study aims to assess the susceptibility 

to landslides in the MMA using the WoE method, integrating 

topographic, geological, and land cover factors, to generate 

technical input that contributes to risk management in this 

metropolitan region. 

Previous studies have successfully implemented the WoE 

method for landslide susceptibility mapping in various geological 

contexts, often comparing its performance with other statistical 

and machine learning techniques such as logistic regression (LR), 

support vector machine (SVM) and random forest (Hussain et al., 

2021; Nwazelibe et al., 2023), where WoE has been shown to 

provide robust and interpretable results when a reliable landslide 

inventory is available, justifying its use as a reference approach 

in this research.  

 1.1 Study Area 

The study area covers approximately 1409 km² in northeastern 

Nuevo León, Mexico (Figure 1). The MMA comprises thirteen 

municipalities with an estimated population of 5.3 million 

inhabitants, making it the second-largest metropolitan area in the 

country after Mexico City (Instituto Nacional de Estadística y 

Geografía, INEGI, 2020). 
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Figure 1. Location of the study area showing elevation and 

mapped landslide inventory. Abbreviations of anticlines: LS: La 

Silla, LM: Los Muertos, LL: Loma Larga, LM: Las Mitras, TP: 

Topo Chico, dF: del Fraile.  

 

 

Morphologically, this area is located in a valley surrounded by 

mountains that form part of the Sierra Madre Oriental, which is 

characterized by a heterogeneity of sedimentary rocks, folded 

and thrust by tectonic effects (Padilla y Sánchez, 1982), favoring 

the generation of steep slopes and unstable areas, which the 

mountains have peaks over 2300 m .a.s.l. with valley floors of 

350 m.  

 

The region has a semi-arid climate (BSh according to the 

modified Köppen classification), in a transition between the sub-

humid tropics and the desert (Aguilar Barajas and Ramírez 

Orozco, 2021), with an average annual temperature of around 

23.6 °C (Comisión Nacional del Agua, CONAGUA, 2024a) and 

average annual precipitation of 650.2 mm (CONAGUA, 2024b), 

concentrated mainly in the summer months during the hurricane 

season. 

 

In terms of its hydrography, the MMA is crossed by major 

watercourses, including the Santa Catarina River, which runs 

from east to west through the central portion of the MMA, the La 

Silla River to the south, and the Pesquería River to the north.  

 

In brief, the physical and climatic conditions, rapid urban 

expansion, particularly on hillsides, have intensified pressure on 

the physical environment, altering the geomorphological balance 

and increasing vulnerability to landslides.  

 

2. Methodology 

A comprehensive overview of the methodology is presented in 

Figure 2.  

 

 
Figure 2. Methodological workflow for landslide susceptibility 

mapping in the study area.  

 

2.1 Landslide Inventory Map 

The use of a landslide inventory map is essential in this study, as 

the WoE method relies on the assumption that past events are 

indicative of future occurrences. Accordingly, this layer 

constitutes a fundamental input for landslide susceptibility 

assessment (Kontoes et al., 2021). 

The inventory was compiled from multiple sources, including 

official records from INEGI (https://gaia.inegi.org.mx/mdm6/), 

municipal reports, news articles, time-series photointerpretation 

using Google Earth®, and field observations. A total of 292 

landslides were identified within the study area and digitized as 

point features, which were subsequently converted into raster 

format using ArcGIS Pro environment (Figure 1).  

Figure 3 illustrates different types of landslides in the MMA, 

including their causes and vulnerability to occurrence, which is 

primarily due to lithology, karst processes, precipitation, and 

irregular settlements. 

 
Figure 3. Examples of location and causes of landslides in the 

study area with aerial photographs. (A) Rock falls in the central 

portion of the southwestern flank of Las Mitras anticline; (B, C) 

Landslides near the “Grutas de García” and karstification 

processes as local causes of landslides in the del Fraile anticline; 

(D) Debris flow tracks on the southwest-facing slopes of the 

Los Muertos anticline; (E, F) Vulnerability to landslides due to 

irregular settlements in the Los Muertos anticline and in the 

central portion of the La Silla anticline. 

The complete inventory was randomly divided into two subsets: 

70% of the data were used to train the susceptibility model, while 

the remaining 30% were reserved for model validation. 

2.2 Landslide Conditioning Factors 

In this study, twelve conditioning factors were selected to 

develop the landslide susceptibility model (LSM), encompassing 

topographic, geological, hydrological, vegetation-related, and 

anthropogenic variables. The selection was based on previous 

studies conducted in similar contexts (Montalvo-Arrieta et al., 

2010; Chapa-Guerrero et al., 2017; Ramírez-Serrato, 2019; 

Salinas-Jasso et al., 2020). These factors include elevation, slope, 

aspect, profile curvature, planar curvature, TWI (topographic 

wetness index), lithology, distance to lineaments, NDVI 
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(normalized difference vegetation index), landcover type, 

distance to streams, and distance to roads.  

 

All input layers were prepared and processed in ArcGIS Pro, 

generating raster outputs with a spatial resolution of 5 m and 

projected using the WGS 84 UTM Zone 14 coordinate system. 

This spatial resolution was selected according to the highest 

freely available accuracy, corresponding to the LiDAR-derived 

terrain DEM provided by INEGI 

(https://www.inegi.org.mx/app/mapa/espacioydatos/). 

 

Elevation has been widely used in landslide susceptibility 

analyses (e.g., Batar and Watanabe, 2021; Hussain et al., 2022) 

and was reclassified into five classes in this study, with values 

ranging from 323 to 2,349 m a.s.l. (Figure 4A).  

 

Slope is one of the main factors in landslide occurrence, 

particularly in areas with complex mountainous morphology, 

such as the MMA. In this study, slope values ranged from < 15° 

to 87° and were reclassified into five classes with a 10° interval 

(Figure 4B).  

 

Aspect represents the orientation of the slope concerning cardinal 

directions, which is exposed to environmental conditions that can 

influence the instability of rock masses (Qazi et al., 2023). It was 

reclassified into nine classes (Figure 4C). 

 

 

 

 
Figure 4. Cont.  

 

Curvature describes the geometric shape of the terrain surface. 

Profile curvature is measured along the direction of the slope. 

Indicates the acceleration (concave) or deceleration (convex) of 

surface flow. Planar curvature, measured perpendicular to slope 

direction, reflects the convergence or divergence of the flow 

(Achu et al., 2023). Both curvature types were reclassified into 

three categories: concave, flat, and convex (Figures 4D and E, 

respectively).  

 

 

 
Figure 4. Landslide conditioning factors for the study area: (A) 

elevation; (B) slope; (C) aspect; (D) profile curvature; (E) 

planar curvature; (F) topographic wetness index; (G) lithology; 

(H) distance to lineaments; (I) normalized difference vegetation 

index; (J) landcover type; (K) distance to streams; and (L) 

distance to roads.  

 

TWI represents the potential for water accumulation on the 

surface and is a proxy for soil saturation and hydrological 

processes that influence slope instability (Karakas et al., 2023). 

In this study, three types of TWI (Figure 4F) were obtained using 

the following equation, calculated in ArcGIS Pro:  

 

    𝑇𝑊𝐼 =  𝐼𝑛 (
𝑎

𝑡𝑎𝑛𝛽
)     

 (1) 

 

where 𝑎 is the specific catchment area (m² per unit width 

orthogonal to the flow direction), and β is the slope gradient in 

radians. 
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Lithology is widely recognized as a key factor influencing 

landslide susceptibility (Dornik et al., 2022; Basharat et al., 

2023). The study area is characterized by a diverse collection of 

folded and thrusted sedimentary rocks, formed through the 

tectonic deformation associated with the Sierra Madre Oriental 

orogenic belt. For this research, a lithological map was created 

by vectorizing and rasterizing geological maps with a scale of 

1:50,000, provided by the Servicio Geológico Mexicano (SGM) 

and INEGI. The resulting raster layer was then reclassified into 

nine lithological units: Quaternary deposits, sandstone-shale, 

shale-marlstone, shale-limestone, limestone-shale, limestone, 

limestone-dolomite, shale-sandstone, and gypsum-limestone (see 

Figure 4G). 

 

Recording structural lineaments, this factor considers the 

presence of fractures and faults that may act as zones of weakness 

within the relief’s stratigraphy. To quantify this factor, the 

Euclidean Distance tool in ArcGIS Pro was applied to calculate 

the distance from each raster cell to the nearest mapped 

lineament. The resulting layer was reclassified into five distance 

classes (Figure 4H).  

 

NDVI represents vegetation dynamics and surface conditions and 

has been widely used as a conditioning factor in landslide 

susceptibility assessments (e.g., Zhou et al., 2021). Vegetation 

influences slope stability by enhancing soil cohesion through root 

systems and reducing surface runoff. NDVI values range from -

1 to +1, where positive values indicate the presence of vegetation, 

while negative values correspond to bare soil, urban areas, or 

water bodies. In this study, NDVI was calculated from a Sentinel-

2A multispectral image in Google Earth Engine with a spatial 

resolution of 10 m, using the following equation:  

 

𝑁𝐷𝑉𝐼 =
𝐼𝑅 −  𝑅

𝐼𝑅 +  𝑅
 

 (2) 

 

Where IR is the infrared and R is the red bands of the 

electromagnetic spectrum. In this study, NDVI varies from -0.5 

to 0.83, and it was reclassified into five classes (Figure 4I). 

 

Landcover type is influenced by both climate and human 

activities, which can contribute to the occurrence of landslides 

(Chen et al., 2019a; Pacheco-Quevedo et al., 2023). In this study, 

land cover type was determined using a Sentinel-2A 

multispectral image acquired on August 22, 2020, through 

Google Earth Engine. The classification process utilized the 

Random Forest machine learning algorithm, based on stratified 

random sampling and incorporating both NDVI and SAVI (soil 

adjusted vegetation index) indices. The SAVI index, in 

particular, has shown improved performance in differentiating 

vegetation (e.g., Illán-Fernández et al., 2024; Rodríguez 

González et al., 2024). A total of 378 sample points were 

selected, with 80% allocated for training and 20% for validation. 

The final classification categorized land cover into six classes: 

water, soil, built-up areas, dense vegetation, medium vegetation, 

and sparse vegetation (see Figure 4J). The model achieved an 

overall accuracy of 89.65% and a Kappa coefficient of 0.87, as 

indicated by the confusion matrix. The resulting classification 

map was then exported and integrated into ArcGIS Pro, where it 

was resampled from 10 to 5 m using the nearest neighbour 

method to ensure spatial compatibility with the other 

conditioning factors derived from the 5-m LiDAR-based terrain 

DEM.  

 

Distances to streams and roads were calculated from the drainage 

and road networks provided in the topographic vector dataset 

from INEGI. These vector layers were converted to raster format, 

and Euclidean distances were calculated in ArcGIS. Both 

resulting rasters were subsequently reclassified into five distance 

classes to standardize the information (Figures 4K and 4L). 

 

2.3 WoE method 

 

In this study, the WoE method was applied to generate the 

landslide susceptibility model. This approach is based on the 

principles of Bayesian probability, as proposed by Bonham-

Carter et al. (1989). It enables the combination of multiple 

evidence layers to estimate the probability of a specific event 

occurring. Its core principle lies in evaluating the spatial 

association between each conditioning factor and the presence or 

absence of landslide events (Zhang et al., 2023).  

 

The method assigns a statistical weight to each class within a 

conditioning factor reflecting its relative influence on landslide 

occurrence. These weights are calculated based on the presence 

(𝑊+) and absence (W⁻) of landslide events within each class, as 

defined by:  

 

𝑊+ =  𝑙𝑜𝑔𝑒

𝑃{𝐵|𝐷}

𝑃{𝐵|𝐷}
 

 (3) 

 

𝑊− =  𝑙𝑜𝑔𝑒

𝑃{𝐵|𝐷}

𝑃{𝐵|𝐷}
 

(4) 

 

where P is the probability, B is the presence of a desired class of 

landslide conditioning factor, 𝐵 is the absence of a desired class 

of landslide conditioning factor, D is the presence of landslides, 

and 𝐷 is the absence of landslides. Each class of conditioning 

factor was calculated using Eqs. 3 and 4. The difference between 

the positive and negative weights is referred to as the weight 

contrast (C), calculated as C = 𝑊+ - 𝑊−. The magnitude of this 

contract reflects the overall spatial association between each class 

of a conditioning factor and the occurrence of landslides. A 

positive C value (C > 0) indicates a positive correlation, meaning 

that landslides are more likely to occur in that class. In contrast, 

a negative C value (C < 0) suggests a negative correlation, where 

landslides are less likely to occur.  

 

The Landslide Susceptibility Index (LSI) map was produced by 

summing the weights of all conditioning factors using the Map 

Algebra tool in ArcGIS Pro, following the equation:  

 

𝐿𝑆𝑀𝑊𝑓  =  (𝑊𝑓 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)  + (𝑊𝑓 𝑆𝑙𝑜𝑝𝑒)  +  (𝑊𝑓 𝐴𝑠𝑝𝑒𝑐𝑡)  + 

 (𝑊𝑓 𝑃𝑟𝑜𝑓𝑖𝑙𝑒 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒) +  (𝑊𝑓 𝑃𝑙𝑎𝑛𝑎𝑟 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒) +  (𝑊𝑓 𝑇𝑊𝐼)   

 +(𝑊𝑓 𝐿𝑖𝑡ℎ𝑜𝑙𝑜𝑔𝑦)  +  (𝑊𝐷.𝑡𝑜 𝑙𝑖𝑛𝑒𝑎𝑚𝑒𝑛𝑡𝑠)  +  (𝑊𝑓 𝑁𝐷𝑉𝐼)  +  

(𝑊𝑓 𝐿𝑎𝑛𝑑𝑐𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒)  +  (𝑊𝑓 𝐷.𝑡𝑜 𝑠𝑡𝑟𝑒𝑎𝑚𝑠)  + (𝑊𝑓 𝐷.𝑡𝑜 𝑟𝑜𝑎𝑑𝑠) 

(5) 

 

2.4 Validation method 

 

The performance of the landslide susceptibility map was assessed 

using the Relative Operating Characteristic (ROC) method and 

by calculating the percentage of observed landslides falling 

within each susceptibility class. The area under the ROC curve 

(AUC) reflects the quality of the probabilistic model and its 

capacity to discriminate between the occurrence and non-

occurrence of landslides. An AUC value approaching 1 denotes 

high predictive accuracy, whereas a value near 0.5 indicates poor 

performance (Bui et al., 2014). In this study, the success-rate 

curves were generated using Python 3.12. 
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3. Results and Discussion 

3.1 Landslide Susceptibility Model 

 

The WoE values for all conditioning factors are presented in 

Table 1. The resulting landslide susceptibility index ranges from 

–14.29 to 10.76 and was reclassified using the Jenks natural 

breaks method (Jenks and Caspall, 1971) into five susceptibility 

classes: Very Low, Low, Moderate, High, and Very High (Figure 

5). This method is among the most widely applied in landslide 

susceptibility modeling (Qazi et al., 2023), as it is particularly 

suitable for datasets that are not normally distributed. It 

minimizes within-class variance and maximizes between class 

differences, providing a data-driven categorization that better 

reflects the intrinsic distribution of susceptibility values (Chen et 

al., 2019b; Abdo et al., 2024).  

 

The analysis of evidence weights determines that slope is the 

factor with the greatest influence on the occurrence of landslides, 

with particularly high contrast values in the classes 35–45° (C = 

1.860), > 45° (C = 1.534), and 25–35° (C = 1.380). These results 

coincide with those reported by Aslam et al. (2022) and Al-kordi 

et al. (2025), who point out that landslides tend to concentrate in 

intermediate to high slope intervals, where the gravitational 

potential energy is sufficient to overcome the shear strength of 

the materials.  

 

In terms of lithology, limestone–shale (C = 1.757) and limestone 

(C = 1.513) units show the strongest positive association with the 

occurrence of landslides. This behavior can be attributed to the 

presence of inclined stratification planes, intercalations of 

materials with different resistances, and dissolution processes in 

limestone, which generate areas of weakness. Moreover, the 

alternation of limestone and shale also favors water infiltration 

and accumulation, reducing the cohesion of the material (Do et 

al., 2022).  

 

Distance to lineaments (< 500 m; C = 1.085) shows the influence 

of fractures and faults as areas of preferential weakness for the 

development of mass movements, a pattern documented in 

various geological contexts. 

 

The altitudinal analysis indicates that the interval of 752–1151 m 

(C = 1.546) is the most susceptible, which could be explained by 

its coincidence with mid-slope and foothill areas, where steep 

slopes, the presence of roads, and greater human occupation 

converge, factors that increase pressure on the stability of the 

terrain.  

 

In terms of aspect, the south class (C = 0.382) affects the 

activation of landslides. Regarding profile curvature and planar 

curvature, the highest values are convex (C = 0.773) and concave 

(C = 0.420), respectively. 

 

TWI values < 5 (C = 1.061) suggest that landslides are 

concentrated in areas with lower surface flow accumulation, 

possibly related to convex slopes or interfluves, where infiltration 

is more effective and may favor increased pore pressures at 

depth.  

 

Concerning landcover type, areas of dense vegetation (C = 0.413) 

and medium vegetation (C = 0.257) show moderate positive 

associations. Although vegetation usually stabilizes the terrain, 

in this case, it could reflect the spatial distribution of landslides 

in areas of slopes covered by dense forest or scrub, where the 

topography and lithology already predispose them to instability, 

and where intense precipitation events can overcome the 

stabilizing effect of the roots (Pacheco-Quevedo et al., 2023). 

 

Finally, the Distances to streams (300–1000 m; C = 0.558) and 

roads (500–2000 m; C = 0.585) reinforce the hydrological factors 

and influence of anthropogenic factors as risk modulators. 

Streams contribute to basal undermining and lateral erosion, 

reducing the stability of adjacent slopes, while the roads can 

generate slope cuts and runoff concentrations.  

Parameter Class 

Area 

(km2) Landslides W+ W- C 

Elevation (m) 

353 - 752 939.85 71 -0.724 0.838 -1.563 

752 - 1151 346.65 109 1.001 -0.546 1.546 

1151 - 1550 98.03 22 0.540 -0.049 0.589 

1550 - 1949 28.04 2 -0.786 0.012 -0.798 

1949 - 2349 0.68 0 NA NA NA 

Slope (°) 

< 15 905.91 38 -1.348 1.057 -2.405 

15 - 25 140.32 21 0.043 -0.005 0.048 

25 - 35 161.16 56 1.150 -0.230 1.380 

35 - 45  141.66 63 1.558 -0.302 1.860 

> 45 62.96 26 1.429 -0.105 1.534 

Aspect 

Flat 3.57 0 NA NA NA 

North (< 22.5) 111.93 20 0.255 -0.024 0.279 

Northeast (22.5 - 

67.5) 
260.40 

39 0.044 -0.010 0.054 

East (67.5 - 112.5) 228.38 25 -0.316 0.053 -0.369 

Southeast (112.5 - 

157.5) 
179.03 

24 -0.085 0.012 -0.097 

South (157.5 - 202.5) 179.34 34 0.328 -0.054 0.382 

Southwest (202.5 - 

247.5) 
143.68 

25 0.223 -0.028 0.250 

West (247.5 - 292.5) 106.11 17 0.124 -0.011 0.134 

Northwest (292.5 - 

337.5) 
113.68 

9 -0.673 0.045 -0.719 

North (337.5 - 360) 85.88 11 -0.138 0.008 -0.146 

Profile 

curvature 

Concave 771.76 91 -0.232 0.236 -0.468 

Flat 202.66 18 -0.548 0.073 -0.621 

Convex   442.08 95 0.485 -0.289 0.773 

Planar curvature 

Concave 656.61 113 0.209 -0.211 0.420 

Flat 315.33 15 -1.217 0.209 -1.425 

Convex   444.56 76 0.201 -0.103 0.304 

TWI 
< 5  701.08 145 0.436 -0.625 1.061 

5 - 8 590.56 51 -0.579 0.303 -0.881 

> 8 123.62 8 -0.891 0.060 -0.951 

Lithology 

Quaternary deposits 689.21 19 -1.783 0.709 -2.492 

Sandstone - shale 19.54 3 0.073 -0.001 0.074 

Limestone 320.31 102 1.019 -0.494 1.513 

Limestone - dolomite 9.62 0 NA NA NA 

Limestone - shale 76.77 35 1.603 -0.153 1.757 

Shale - sandstone 206.89 34 0.154 -0.028 0.182 

Shale - limestone 34.82 4 -0.262 0.006 -0.268 

Shale - marlstone 51.11 7 -0.061 0.002 -0.063 

Gypsum - limestone 0.49 0 NA NA NA 

Distance to 

lineaments (m) 

< 500 189.18 55 0.888 -0.197 1.085 

500 - 1000 155.42 26 0.175 -0.023 0.199 

1000 - 3000 494.38 51 -0.382 0.169 -0.551 

3000 - 5000 343.52 26 -0.722 0.168 -0.890 

> 5000 230.65 46 0.390 -0.090 0.480 

NDVI 

-0.5 - 0.13 242.15 16 -0.868 0.125 -0.994 

0.13 - 0.30 167.35 21 -0.161 0.020 -0.182 

0.30 - 0.47 240.17 51 0.469 -0.118 0.587 

0.47 - 0.61 322.80 58 0.262 -0.088 0.349 

0.61 - 0.83 440.70 58 -0.107 0.046 -0.152 

Landcover type 

Water 5.55 0 NA NA NA 

Dense vegetation 583.83 102 0.228 -0.185 0.413 

Built-up level 271.80 18 -0.866 0.143 -1.009 

Soil 23.69 0 NA NA NA 

Medium vegetation 373.76 63 0.184 -0.073 0.257 

Sparse vegetation 155.13 21 -0.074 0.009 -0.083 

Distance to 

streams (m) 

< 300 916.08 120 -0.112 0.185 -0.297 

300 - 1000 314.91 64 0.414 -0.144 0.558 

1000 - 2000 130.07 20 0.075 -0.008 0.083 

2000 - 3000 40.91 0 NA NA NA 

> 3000 12.78 0 NA NA NA 

Distance to 

roads (m) 

< 500 362.99 27 -0.741 0.183 -0.924 

500 - 2000 607.91 113 0.303 -0.281 0.585 

2000 - 4000 301.84 41 -0.070 0.018 -0.089 

4000 - 6000 106.22 16 0.051 -0.004 0.055 

> 6000 34.21 7 0.423 -0.012 0.435 

 

Table 1. Calculated the weight for classes of conditioning 

factors per class based on landslide occurrences.  

 

In this study, the results of the WoE model were used as inputs 

to assess multicollinearity among the conditioning factors using 

the variance inflation factor (VIF), which measures the degree to 
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which a variable correlates linearly with other factors. A VIF 

value greater than 10 is commonly considered indicative of 

strong correlation (Bui et al., 2011). The analysis revealed that 

NDVI, elevation, and dense vegetation had VIF values above 10, 

indicating strong correlation with other factors. Despite this, 

these conditioning factors were retained in the analysis to 

preserve critical information on landslide occurrences, including 

the 102 events recorded in the dense vegetation category. 

 

 
Figure 5. Landslide susceptibility model using the weight of 

evidence method with distribution per class.   

 

The relative importance of conditioning factors was calculated 

based on the absolute WoE values for each category. As shown 

in Figure 6, slope, lithology, and elevation contributed the most 

to landslide occurrence, with relative contributions of 19.2%, 

16.9%, and 11.9%, respectively. TWI also played a notable role, 

contributing 7.7%, while the remaining factors had a lower 

influence.  

 

 
Figure 6. Conditioning factors importance of landslide.   

 

The area and percentage of each class are shown in Table 2, along 

with the number of landslides. 8.56% of the mapped landslides 

were located in areas classified as very low or low susceptibility. 

This mismatch suggests potential limitations of the WoE model 

in fully capturing the spatial complexity of landslide occurrence. 

The discrepancy may arise from factors not included in the 

conditioning dataset, the resolution of the input layers, or the 

assumption of conditioning independence inherent to the method. 

While such misclassifications are common in susceptibility 

modeling, they highlight the need for incorporating additional 

variables or more advanced methods to improve predictive 

accuracy. 

 

Susceptibility 

Area 

(km2) 

Percentage 

(%) 

Number of 

landslide 

Very low 296.31 21.02 7 

Low 329.17 23.35 18 

Moderate 269.61 19.13 32 

High 257.77 18.29 64 

Very high 256.67 18.21 171 

 

Table 2. Percentage of area occupied by susceptibility zones.  

 

 

3.2 Validation of Landslide Susceptibility Map 

 

The validation results indicate that the WoE model achieved an 

AUC value of 0.77 in the success-rate curve (Figure 7), which 

suggests an acceptable predictive capacity (range of 0.7-0.8) for 

identifying areas prone to landslides according to Abul Hasanat 

et al. (2010). This means that the present model can distinguish, 

with reasonable accuracy, between stable and unstable slopes.  

 

This performance is consistent with previous studies that applied 

the WoE method in mountainous environments with similar 

conditioning factors (e.g., Liu and Duan, 2018; Alsabhan et al., 

2022). Moreover, the obtained AUC value (0.77) falls within the 

range typically reported for other statistical and machine learning 

approaches such as LR, SVM, or RF models, indicating that the 

WoE approach achieves comparable predictive accuracy while 

maintaining transparency in the weighting of conditioning factors 

(Polykretis and Chalkias, 2018; Naceur et al., 2022). Specifically 

for MMA, this represents the first validation of a WoE-based 

susceptibility model; therefore, this result provides a baseline for 

future studies in the region.  

 

 

 
Figure 7. Validation of landslide susceptibility model under the 

ROC (AUC) by the weight of evidence method.  

 

4. Conclusion 

In this study, we assess landslide susceptibility in the Monterrey 

Metropolitan Area. This study can help in defining the strategies 

that can best reduce casualties and property losses. Four 

statements can be concluded as follows: 
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(1) Slope, lithology, and elevation are the dominant factors 

influencing landslide susceptibility in the Monterrey 

Metropolitan Area. Slopes between 25° and > 45°, 

limestone-shale and limestone lithologies, and elevations 

between 752–1151 m were strongly associated with 

landslide occurrences due to their inherent geological and 

topographic instability. 

 

(2) Hydrological and structural variables also significantly 

modulate landslide risk. Low TWI values, proximity to 

faults (< 500 m), and intermediate distances to rivers (300–

1000 m) indicate that both water infiltration dynamics and 

structural weaknesses contribute to slope failures. 

 

(3) Anthropogenic factors such as proximity to roads and 

landcover patterns play a notable role in triggering 

landslides. Roads (500–2000 m from landslides) and areas 

with dense or medium vegetation saw moderate 

susceptibility, likely due to terrain modification and 

precipitation-driven events in forested, sloped regions. 

 

(4) The landslide susceptibility model demonstrated good 

predictive performance, with an AUC value of 0.77, 

validating the effectiveness of the WoE method for mapping 

landslide-prone areas and supporting land-use planning and 

risk mitigation strategies, as well as representing the first 

validated susceptibility model in the MMA. However, the 

AUC value also reflects that there is still room for 

improvement, potentially by incorporating higher-

resolution conditioning factors, more detailed landslide 

inventories, or integrating complementary statistical or 

machine learning approaches. 

 

The methodological framework and findings of this study may be 

transferable to other mountainous and semi-arid regions affected 

by rainfall-induced landslides, for regional susceptibility 

assessment and land-use planning in similar geomorphological 

settings. 
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