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Abstract 

Accurate estimation of aboveground biomass (AGB) is crucial to understanding the carbon cycle in conservation areas. This study 

developed a predictive model for AGB density in La Joya - La Barreta Ecological Park, Querétaro, by integrating LiDAR data from 

the GEDI mission with passive sensor information (Sentinel-1 and Sentinel-2) and topographic variables. This park is a vital space 

for recreation, environmental education, and carbon credit generation. We used Global Ecosystem Dynamics Investigation (GEDI) 

AGB density data from April 2024, with values ranging from 2.5 to 368.2 Mg/ha. For modelling, we processed satellite imagery and 

a digital terrain model, generating a comprehensive set of 178 spectral indices and topographic variables. Through Recursive Feature 

Elimination (RFE), five optimal covariates were selected: the LS-Factor, Analytical Hillshading, and Channel Network Base Level 

(topographic variables), along with Sentinel-2's Triangle Water Index (TWI) and Enhanced Modified Bare Soil Index (EMBI) 

spectral indices. The Quantile Regression Forest (QRF) model predicted AGB density with an RMSE of 1.8 Mg/ha and an R2 of 

0.59, indicating a robust predictive capability for local applications. AGB density predictions ranged from 5.2 to 113.4 Mg/ha, with a 

mean of 32.9 Mg/ha. A total biomass of 8171.9 Mg was estimated for the park, containing 3652.8 Mg of organic carbon. These 

results provide a cost-effective basis for monitoring and verifying the park's conservation projects, highlighting the importance of 

topography and spectral indices in biomass distribution. 

1. Introduction

Forests store approximately 80% of the terrestrial biomass 

(Gardon et al., 2020). Accurately estimating of Above Ground 

Biomass (AGB) is crucial for sustainable forest management, 

carbon cycle monitoring, and quantify ecosystem health and 

services (Herold et al., 2019; Reichstein & Carvalhais, 2019) 

and to improve our understanding of terrestrial ecosystems 

(Stoffel et al., 2008). 

With the intensification of global warming, monitoring forest 

biomass and carbon reserves has become increasingly critical. 

This need has prompted initiatives such as REDD+ (Reducing 

Emissions from Deforestation and Forest Degradation). 

Established by the United Nations Framework Convention on 

Climate Change, REDD+ highlights the economic importance 

of forest carbon sequestration, making accurate and reliable 

assessments of carbon stock essential (Pati et al., 2022). 

Field-based AGB measurements rely on destructive sampling 

methods, which are used to develop of allometric equations for 

plot sampling. Despite their high accuracy, these methods are 

limited in spatial coverage (Lefsky et al., 2002). Remote sensing 

offers an efficient alternative for mapping AGB at broad scales. 

For example, building on such advancements, Reichstein & 

Carvalhais (2019) developed a reference database by integrating 

Synthetic Aperture Radar (SAR) and optical remote sensing 

data to estimate AGB in the Amazon rainforest. They assessed 

the performance of machine learning algorithms, specifically 

Random Forest (RF) and Extreme Gradient Boosting 

(XGBoost), both of which yielded strong results. 

The Global Ecosystem Dynamics Investigation (GEDI) LiDAR 

instrument, launched in late 2018 and mounted on the 

International Space Station (ISS), plays a key role in monitoring 

forest ecosystems by providing detailed information on canopy 

structure and biomass (Dubayah et al., 2020). The GEDI 

collects waveform LiDAR allows the characterization of the 

structure of forest canopies, delivering key metrics such as 

surface elevation, topography, canopy height, relative height 

metrics, plant area index (PAI), and gridded above-ground 

biomass (Potapov et al., 2021). Although GEDI data consists of 

sparsely distributed footprints, machine learning (ML) models 

are used to achieve continuous and comprehensive estimates of 

canopy height, integrating GEDI measurements with optical and 

SAR remote sensing data (Bhuyan et al., 2024; Jiang et al., 

2021). 

Recent advances have expanded AGB modeling by integrating 

GEDI with complementary sensors such as ICESat-2 and 

airborne LiDAR, which enhance canopy structure 

characterization (Guo et al., 2023; Jiang et al., 2021). Other 

studies have explored deep learning methods (e.g., 

convolutional neural networks) for mapping biomass at regional 

scales (Bhuyan et al., 2024). However, such approaches often 

require extensive computational resources or dense field 

calibration data. In contrast, our workflow prioritizes a cost-

effective and replicable methodology using open-access datasets 

(GEDI, Sentinel-1/2, and DEM), tailored for local-scale 

conservation and carbon monitoring applications. This 

framework contributes to bridging the gap between global-scale 

GEDI applications and local conservation management, 

particularly in semi-arid environments where data availability is 

limited. 

This research explored the potential of integrating the GEDI 

LiDAR mission with the passive sensor data (Sentinel-1 and 

Sentinel-2) and topographic variables to estimate AGB density 

in La Joya - La Barreta ecological park in Querétaro. Besides 

being a recreational and environmental education space, the 

park is a nature reserve prioritized by the municipal 
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administration for generating carbon credits through carbon 

sequestration in both soil and vegetation. 

The main objective was to develop a robust AGB predictive 

model using AGB density data derived from the GEDI program 

and covariates obtained from satellite images and digital 

elevation models. This aimed to establish a cost-effective 

methodology for monitoring and verifying conservation projects 

in La Joya - La Barreta ecological park in Querétaro. 

2. Methodology

The methodological workflow consisted of four main steps: (1) 

acquisition and preprocessing of GEDI above-ground biomass 

density data; (2) generation of environmental covariates from 

Sentinel-1, Sentinel-2, and topographic information; (3) 

selection of the most relevant predictors using Recursive 

Feature Elimination (RFE); and (4) spatial prediction of AGB 

density using a Quantile Regression Forest (QRF) model, along 

with uncertainty estimation. The following subsections describe 

each step in detail. 

2.1 Study Area 

The park is located in the northwest portion of the municipality 

of Querétaro, in the state of Querétaro, Mexico, in the Santa 

Rosa de Jauregui municipal delegation, lying between 20° 49′ 

20′′ N to 20° 48′ 24′′ N latitude and 100° 32′ 17′′ W to 100° 30′ 

39′′ W longitude, spanning an area of 247.91 ha. The park 

covered by submontane scrubland, pine-oak forest, grassland, 

and scrubland (Figure 1). 

Figure 1. Location of La Joya–La Barreta Ecological Park, 

Querétaro, Mexico, and visualization of the GEDI AGB density, 

(Mg/ha) product for April 2024. Insets show the vegetation 

height (RH100: Relative Height at which 100% of the 

waveform energy is accumulated). 

2.2 Above Ground Biomass 

For this study, we used AGB density data derived from the 

GEDI LiDAR mission product (Dubayah et al., 2020), recorded 

during April 2024 in La Joya - La Barreta ecological park 

(Figure 1). were used. AGB density values are expressed in 

megagrams per hectare (Mg/ha), recorded values range from a 

minimum of 2.5 Mg/ha, a maximum of 368.2 Mg/ha, a mean of 

20.6 Mg/ha, and a standard deviation of 66.3 Mg/ha. This 

product is derived from vegetation structure metrics obtained 

through the analysis of return intensity and waveform. One of 

the key variables for estimating AGB density is vegetation 

canopy height, which is obtained from the RH100 waveform 

response, representing the relative height above ground where 

100% of the LIDAR waveform return energy has accumulated. 

This height exhibits a high correlation (correlation coefficient of 

0.95) with the estimated biomass (Figure 2). 

Figure 2. Canopy height (RH100) and AGB density values from 

the GEDI mission in La Joya – La Barreta park. 

The AGB density data obtained from the GEDI mission were 

first pre-processed by removing outliers with values exceeding 

the mean plus 1.5 times the standard deviation (151.64 Mg/ha). 

In a second step, they were transformed using a logarithm to 

reduce their asymmetry and improve the model's ability to 

represent their variability. 

2.3 Environmental Covariates 

The Digital Elevation Model (DEM) used corresponds to a 

bare-earth Digital Terrain Model (DTM) obtained through the 

SRTM-derived Copernicus DEM (GLO-30) dataset, accessed 

via the elevatr package (Hollister et al., 2023) with a spatial 

resolution of 8.92 m. Topographic covariates were generated 

from terrain analysis using the basic terrain analysis tools of 

SAGA GIS (Conrad et al., 2015). Additionally, Sentinel-1 and 

Sentinel-2 satellite imagery for the study area was acquired 

using the rsi package in R (Mahoney et al., 2025) for April 

2024. From the Sentinel-2 images, a total of 178 spectral indices 

were calculated, covering a wide range of vegetation, bare soil, 

and moisture indices available in the Awesome Spectral Indices 

repository (Montero et al., 2023). A subset of these variables is 

shown in Figure 3. 

DEM Sentinel 2 (RGB) 

Sentinel 1 (VH) NDVI 

Figure 3. Visualization of a subset of covariates, including the 

Digital Elevation Model (DEM), a true-color visualization of 

the Sentinel-2 image, Sentinel-1 cross-polarization radar 

response (VH), and the Normalized Difference Vegetation 

Index (NDVI). 

(Mg/ha) 
(m) 
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In total, 206 environmental covariates were generated to ensure 

comprehensive coverage of potential predictors influencing 

above-ground biomass. This large set was designed to capture 

diverse biophysical processes related to vegetation structure, 

moisture, and topography. The inclusion of numerous indices 

follows the exploratory approach commonly used in biomass 

modeling studies (e.g., Guo et al., 2023; Potapov et al., 2021) 

where an extensive pool of spectral and topographic variables 

allows data-driven feature selection. Although only five 

covariates were retained by the RFE process, starting with a 

broader set ensured that potentially important predictors were 

not excluded a priori, as their relevance can vary depending on 

vegetation type, scale, and sensor characteristics. 

2.4 Modeling 

Recursive Feature Elimination (RFE) (Kuhn, 2008) was used to 

select the covariates that contributed most significantly to the 

prediction of the biomass. This method allowed the 

identification of an optimal subset of covariates that best 

explain biomass variability while minimizing the Root Mean 

Square Error (RMSE).  

To model the relationship between the selected covariates and 

the AGB density, the Quantile Regression Forest (QRF) 

algorithm (Meinshausen, 2006) was implemented. This 

approach provided both the value prediction and the standard 

deviation as a measure of prediction uncertainty. The workflow 

is schematized in Figure 4. 

Figure 4. Workflow diagram for obtaining the variable of 

interest, environmental covariates, and modeling. 

The feature selection process using RFE evaluated 206 

covariates and identified the optimal set of five covariates to 

minimize RMSE in AGB density prediction (Figure 5). This 

subset includes three topographic variables: the LS-Factor 

(Slope Length), Analytical Hillshading, and Channel Network 

Base Level; and two spectral indices derived from Sentinel-2: 

TWI (Niu et al., 2022) which captures moisture variation based 

on infrared spectral response, and EMBI (Zhao & Zhu, 2022), 

an enhanced vegetation greenness index with a shortwave 

infrared correction to reduce its sensitivity to soil background 

distortions (Figure 6). 

Figure 5. Variable selection plot with the RFE method using 

minimum RMSE. 

EMBI TWI 

Analytical Hill shading Channel network base level 

LS- Factor 

Figure 6. Visualization of the covariates selected by the RFE 

method. 

Finally, using the trained QRF model and the rasters of the 

selected covariates, the spatial predictions of the most probable 

AGB density value and their associated standard deviation were 

performed. The standard deviation was used to calculate the 

standard relative error, which served as a measure of the 

uncertainty of the predictions using the following equation: 

𝑅𝑆𝐸 =
𝑠𝑑

𝑚𝑝𝑣
∗ 100 

    (1) 

where RSE = relative standard error 

sd = standard deviation at each pixel 

mpv = most probable value at each pixel 

The Quantile Regression Forest (QRF) algorithm (Meinshausen, 

2006) was selected because it extends the Random Forest 

approach by estimating conditional distributions rather than 

only mean predictions, thus allowing direct quantile-based 

uncertainty assessment. Compared to other ensemble methods 

such as XGBoost or Support Vector Machines, QRF provides 

more stable predictions in small-to-moderate sample sizes and is 

less sensitive to hyperparameter tuning, which is advantageous 
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for spatial modeling. Although we report mean predictions and 

standard deviations for clarity, the model inherently captures 

full quantile distributions, which could be further explored in 

future analyses to refine uncertainty interpretation. 

2.5 Model Performance Evaluation 

The QRF model, based on decision trees, performs 

bootstrapping (Bagging) of the data to create new training sets 

for each tree. Using this feature, data not used for training a tree 

are used to predict its value as an individual external validation 

called Out-of-bag. With this method, model performance 

metrics such as the Root Mean Square Error (RMSE) and 

coefficient of determination (R2) are obtained and reported as 

model performance metrics. 

This methodological workflow provides a replicable and 

transparent framework for integrating GEDI LiDAR data with 

multisensor covariates in biomass modeling, aligning with best 

practices in recent remote sensing applications 

3. Results

The estimation of AGB through the integration of GEDI data, 

satellite imagery, and topographic variables in La Joya - La 

Barreta ecological park allowed the generation of high-spatial 

resolution AGB density maps. The results show the spatial 

distribution of the AGB density variable in its original and 

transformed form (Figure 7), which helped to identify the 

variability patterns associated with the topographic and 

structural characteristics of the ecosystem. The validation of the 

predictive model, based on cross-resampling techniques and 

training/test data partitioning, demonstrated a satisfactory fit, 

with relatively low error metrics and adequate predictive 

capacity. 

Figure 7. Frequency distribution, quartiles, and mean biomass 

density values (AGB density) and their logarithmic 

transformation (log_ AGB density). 

The maps generated include both the most probable AGB 

density value and its relative standard error, providing a 

comprehensive representation of the park's above-ground 

biomass (Figure 8). This information is essential for evaluating 

the area's carbon sequestration potential, supporting the 

implementation of conservation projects, and establishing a 

baseline for future monitoring campaigns. 

The predicted AGB density values range from 5.2 to 113.4 

Mg/ha, with a mean of 32.9 Mg/ha and a standard deviation of 

24.8 Mg/ha. The uncertainty of these predictions ranges from 

1.3 to 3.3 Mg/ha, with a mean of 2.1 Mg/ha and a standard 

deviation of 0.36 Mg/ha. The modeled values showed a total 

accumulated AGB in the park of 8171.9 Mg, which is estimated 

to contain 3652.8 Mg of organic carbon. 

The Out-of-Bag model performance evaluation demonstrated a 

strong capacity to estimate AGB density, yielding a RMSE of 

1.8 Mg/ha and a coefficient of determination (R2) of 0.59. The 

R2 value indicates that 59% of the observed variance in above-

ground biomass can be explained by the selected covariates. 

4. Discussion

The importance of the LS-Factor (Slope Length), Analytical 

Hillshading, and the Channel Network Base Level as key 

covariates highlights how topography strongly influences 

critical ecological processes for vegetation growth in the La 

Joya - La Barreta Ecological Park. The LS-Factor affects not 

just water availability and soil stability, but also erosion and 

where sediment gets deposited. These processes have a direct 

impact on soil depth and nutrient levels, which are essential for 

plant growth. Analytical Hillshading isn’t just about showing 

sunlight exposure—it also affects soil temperature and 

evapotranspiration, creating microclimates that can either help 

or limit the growth of certain plants, and thus influence how 

much biomass builds up. The Channel Network Base Level 

gives a sense of how close an area is to drainage systems and 

how much water tends to collect there. This is closely tied to 

soil moisture and groundwater, which are key for biomass 

growth, especially in semi-arid regions like Querétaro. 

Adding to this topographic perspective, the use of spectral 

indices like TWI (Topographic Wetness Index) and EMBI 

(Enhanced Modified Biomass Index) demonstrate the value of 

optical data for capturing variations in biomass structure and 

health. TWI is good at identifying areas with higher soil 

moisture, which often support more biomass because there’s 

more water available. EMBI, which is designed to boost the 

signal from vegetation and reduce background noise from the 

soil using shortwave infrared correction, gives a clearer and 

more reliable picture of plant health. It works well as an 

indicator of how much photosynthetically active biomass is 

present. 

The RMSE of 1.8 achieved in this study indicates a good 

predictive capacity of the model for regional-scale applications. 

When compared to large-scale biomass prediction efforts, such 

as that by Shendryk (2022) who using GEDI data, incorporating 

elevation models, land cover classification, and Sentinel 1/2 

images as covariates, reported R2 values ranging from 0,66–

0,74 and RMSE values of 55–81 Mg/ha a crucial distinction 

emerges. Shendryk’s results were based on much coarser spatial 

resolutions (100 m and 200 m, respectively). In comparison, our 

model uses a much finer resolution of 10 m, which offers a big 

advantage for managing the park at a more local scale. Even 

though our R² is slightly lower at 0.59, our much lower RMSE 

of 1.8 Mg/ha shows that our estimates of biomass are more 

accurate at this finer scale—an important benefit when it comes 

to monitoring conservation efforts within the park.
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Figure 8. Maps of the most probable AGB density prediction and its relative standard error. 

Similarly, while Saarela et al. (2018) reported relative standard 

errors between 8.0% and 25.4% using Landsat and LiDAR data, 

our study showed a wider range—from 1.4% to 36.6%. Still, 

most of our values were under 20%, showing that our model 

delivers similar or even better precision, especially considering 

the natural variability found in park ecosystems. 

Areas exhibiting a relative standard error above 30% (Figure 8) 

are mainly located in steep terrain and transition zones between 

vegetation types. These regions often show high spectral and 

structural heterogeneity, where small changes in illumination, 

shadow, or canopy cover strongly affect the reflectance and 

radar response. In addition, GEDI footprints in these zones are 

relatively sparse, which limits the representativeness of training 

data and contributes to greater local uncertainty. Similar 

patterns of elevated error in complex topography have been 

reported in other GEDI-based AGB studies (e.g., Bhuyan et al., 

2024; Shendryk, 2022). 

The R2 value of 0.59 indicates that while the model captures a 

significant part of the AGB variability, a considerable 

percentage remains unexplained. Bhuyan et al. (2024) obtained 

similar results when modelling canopy height using GEDI data, 

implementing RF, Extreme Gradient Boosting, Support Vector 

Machine, and kNN algorithms, with R² of 0.553, 0.557, 0.559, 

and 0.515, respectively. 

This lack of explainability could be due to the inherent 

complexity of biomass distribution, the spatial resolution of the 

covariates, or the presence of other environmental variables not 

included in the model but also by uncaptured biological factors 

such as stand age, tree density, species composition, or the 

presence of diseases and invasive species. It has been found that 

AGB estimation can be improved by including field 

measurements of allometric variables and the use of GEDI's 

RH95 index along with information derived from Sentinel-1 

and -2 bands, obtaining R2 values from 0.66 to 0.91 (Guo et al., 

2023), However, the inclusion of the RH95 index would prevent 

wall-to-wall prediction. 

While our remote sensing-based model demonstrates strong 

predictive capabilities, it is important to acknowledge that on-

going ground-truth biomass measurements are being conducted 

by the municipality within La Joya - La Barreta Ecological 

Park. These independent field data, once publicly available, will 

provide a crucial opportunity for further validation and potential 

refinement of our model's accuracy. Direct comparisons 

between our remote sensing estimates and these in-situ 

measurements will be a key next step to bolster the robustness 

and practical applicability of our biomass assessment for carbon 

accounting and conservation projects. 

Although independent field validation is not yet available. The 

predicted mean AGB values (32.9 Mg/ha) are consistent with 

field-based estimates reported for dry forest and scrubland 

ecosystems in central Mexico, which typically range between 

25 and 45 Mg/ha (Pati et al., 2022). This agreement supports the 

plausibility of the current predictions despite the lack of direct 

field calibration. 

Despite satisfactory model performance (R² = 0.59), the absence 

of biophysical variables such as stand age, tree density, or 

species composition likely contributed to the unexplained 

variance. Additionally, climatic factors (e.g., mean annual 

precipitation or temperature) are known to influence biomass 

accumulation but were beyond the scope of this study. 

Upcoming research should integrate such variables to better 

capture ecological drivers and reduce residual uncertainty. 

Future research could explore the inclusion of additional 

environmental variables, such as annual precipitation or mean 

temperature, which are often crucial drivers of biomass 

production, especially in semi-arid regions. Investigating more 

advanced modeling methods, including Deep Learning 

approaches that can capture more complex non-linear 

relationships, or geo-statistical models that explicitly account 

for the spatial autocorrelation of biomass, could also lead to 

improved accuracy. Moreover, integrating data from other 

sources like drone-based photogrammetry or low-altitude 
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LiDAR could provide even more detailed structural 

information. 

These findings have significant practical implications for the 

management of La Joya - La Barreta Ecological Park. The high-

resolution AGB density maps generated can effectively inform 

specific management decisions, such as identifying areas with 

high biomass for priority protection or areas with lower biomass 

that present strong potential for reforestation or restoration 

efforts. The methodology employed is highly cost-effective and 

scalable, making it a viable approach for ongoing monitoring of 

the park's carbon sequestration capacity. This robust baseline 

information is crucial for integrating the park's conservation 

efforts into REDD+ initiatives, providing a verifiable 

foundation for tracking and reporting carbon stock changes and 

thus securing future carbon credits. Beyond its local 

implications, this approach demonstrates the feasibility of using 

open-access GEDI and Sentinel data for cost-effective biomass 

monitoring in other semi-arid regions of Mexico and Latin 

America, contributing to scalable frameworks for REDD+ and 

ecosystem restoration initiatives. 

5. Conclusions

This study demonstrates the feasibility of integrating GEDI 

mission LiDAR data with topographic and spectral covariates 

derived from Sentinel-2 for above-ground biomass estimation in 

La Barreta Ecological Park. Topographic covariates (LS-Factor, 

Analytical Hillshading and Channel network base level) and the 

spectral indices TWI and EMBI emerged as the most influential 

predictors. Although the model shows acceptable performance, 

these findings provide a valuable basis for future studies, 

suggesting the need to explore other data sources, such as 

drones (photogrammetry or low-altitude LiDAR), or more 

advanced modeling methods to improve the accuracy of 

biomass estimation. These results highlight the operational 

value of GEDI-based biomass modeling for conservation 

management and carbon accounting, supporting science-based 

decision-making for protected areas. 

6. Data availability
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https://doi.org/10.5281/zenodo.15802798. This material 

contains the R script and sources such as shapefiles, raster files, 

and databases to replicate the results obtained in the study. The 

data is open access according to the Creative Commons 

Attribution Share Alike 4.0 International Licence. 
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Appendix 

The explanatory covariates used in this study are listed below: 

Source Indices 

Sentinel-1 VH , VV 

Sentinel-2 A, B, G, R, RE1, RE2, RE3, N, N2, WV, S1, 

S2 

Spectral 

Indices 

AFRI1600, AFRI2100, ANDWI, ARI, ARI2, 

AVI, AWEInsh, AWEIsh, BAI, BAIM, BAIS2, 

BCC, BI, BITM, BIXS, BLFEI, BNDVI, 

BRBA, BaI, CIG, CIRE, CRI550, CRI700, 

CSI, CVI, DBSI, DSI, DSWI1, DSWI2, 

DSWI3, DSWI4, DSWI5, DVI, EMBI, 

ENDVI, EVIv, ExG, ExGR, ExR, FCVI, 

GARI, GBNDVI, GCC, GEMI, GLI, GM1, 

GM2, GNDVI, GOSAVI, GRNDVI, GRVI, 

GVMI, IKAW, IPVI, IRECI, LSWI, MBI, 

MCARI, MCARI1, MCARI2, MCARI705, 

MCARIOSAVI, MCARIOSAVI705, MGRVI, 

MIRBI, MLSWI26, MLSWI27, MNDVI, 

MNDWI, MRBVI, MSAVI, MSI, MSR, 

MSR705, MTCI, MTVI1, MTVI2, MuWIR, 

NBAI, NBR, NBR2, NBRSWIR, NBRplus, 

NBSIMS, ND705, NDBI, NDCI, NDDI, 

NDGlaI, NDII, NDMI, NDPonI, NDREI, 

NDSI, NDSII, NDSWIR, NDSaII, NDSoI, 

NDTI, NDVI, NDVI705, NDVIMNDWI, 

NDWI, NDYI, NGRDI, NHFD, NIRv, NLI, 

NMDI, NRFIg, NRFIr, NSDS, NSDSI1, 

NSDSI2, NSDSI3, NWI, NormG, NormNIR, 

NormR, OSAVI, OSI, PI, PISI, PSRI, RCC, 

RDVI, REDSI, RENDVI, RGBVI, RGRI, RI, 

RI4XS, RNDVI, RVI, S2REP, S2WI, S3, SI, 

SIPI, SLAVI, SR, SR2, SR3, SR555, SR705, 

SWI, SWM, SeLI, TCARI, TCARIOSAVI, 

TCARIOSAVI705, TCI, TDVI, TGI, TRRVI, 

TTVI, TVI, TWI, TriVI, UI, VARI, VARI700, 

VI700, VIBI, VIG, VgNIRBI, VrNIRBI, WI1, 

WI2, WI2015, WRI, bNIRv, mND705, 

mSR705, sNIRvLSWI, sNIRvNDVILSWIP, 

sNIRvNDVILSWIS, sNIRvSWIR 

Indices available at 

https://github.com/awesome-spectral-

indices/awesome-spectral-indices  

Terrain 

analysis 

elevation, Analytical Hillshading, Aspect, 

Channel Network Base Level, Channel 

Network Distance, Closed Depressions, 

Convergence Index, Geomorphons, LS-Factor, 

Plan Curvature, Profile Curvature, Relative 

Slope Position, Slope, Topographic Wetness 

Index, Total Catchment Area, Valley Depth.  

Terrain analysis documentation available in: 

https://saga-

gis.sourceforge.io/saga_tool_doc/9.8.1/ta_com

pound_0.html  
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