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Abstract

Accurate estimation of aboveground biomass (AGB) is crucial to understanding the carbon cycle in conservation areas. This study
developed a predictive model for AGB density in La Joya - La Barreta Ecological Park, Querétaro, by integrating LiDAR data from
the GEDI mission with passive sensor information (Sentinel-1 and Sentinel-2) and topographic variables. This park is a vital space
for recreation, environmental education, and carbon credit generation. We used Global Ecosystem Dynamics Investigation (GEDI)
AGB density data from April 2024, with values ranging from 2.5 to 368.2 Mg/ha. For modelling, we processed satellite imagery and
a digital terrain model, generating a comprehensive set of 178 spectral indices and topographic variables. Through Recursive Feature
Elimination (RFE), five optimal covariates were selected: the LS-Factor, Analytical Hillshading, and Channel Network Base Level
(topographic variables), along with Sentinel-2's Triangle Water Index (TWI) and Enhanced Modified Bare Soil Index (EMBI)
spectral indices. The Quantile Regression Forest (QRF) model predicted AGB density with an RMSE of 1.8 Mg/ha and an R? of
0.59, indicating a robust predictive capability for local applications. AGB density predictions ranged from 5.2 to 113.4 Mg/ha, with a
mean of 32.9 Mg/ha. A total biomass of 8171.9 Mg was estimated for the park, containing 3652.8 Mg of organic carbon. These
results provide a cost-effective basis for monitoring and verifying the park's conservation projects, highlighting the importance of

topography and spectral indices in biomass distribution.

1. Introduction

Forests store approximately 80% of the terrestrial biomass
(Gardon et al., 2020). Accurately estimating of Above Ground
Biomass (AGB) is crucial for sustainable forest management,
carbon cycle monitoring, and quantify ecosystem health and
services (Herold et al., 2019; Reichstein & Carvalhais, 2019)
and to improve our understanding of terrestrial ecosystems
(Stoffel et al., 2008).

With the intensification of global warming, monitoring forest
biomass and carbon reserves has become increasingly critical.
This need has prompted initiatives such as REDD+ (Reducing
Emissions from Deforestation and Forest Degradation).
Established by the United Nations Framework Convention on
Climate Change, REDD+ highlights the economic importance
of forest carbon sequestration, making accurate and reliable
assessments of carbon stock essential (Pati et al., 2022).

Field-based AGB measurements rely on destructive sampling
methods, which are used to develop of allometric equations for
plot sampling. Despite their high accuracy, these methods are
limited in spatial coverage (Lefsky et al., 2002). Remote sensing
offers an efficient alternative for mapping AGB at broad scales.
For example, building on such advancements, Reichstein &
Carvalhais (2019) developed a reference database by integrating
Synthetic Aperture Radar (SAR) and optical remote sensing
data to estimate AGB in the Amazon rainforest. They assessed
the performance of machine learning algorithms, specifically
Random Forest (RF) and Extreme Gradient Boosting
(XGBoost), both of which yielded strong results.

The Global Ecosystem Dynamics Investigation (GEDI) LiDAR
instrument, launched in late 2018 and mounted on the
International Space Station (ISS), plays a key role in monitoring
forest ecosystems by providing detailed information on canopy

structure and biomass (Dubayah et al., 2020). The GEDI
collects waveform LiDAR allows the characterization of the
structure of forest canopies, delivering key metrics such as
surface elevation, topography, canopy height, relative height
metrics, plant area index (PAI), and gridded above-ground
biomass (Potapov et al., 2021). Although GEDI data consists of
sparsely distributed footprints, machine learning (ML) models
are used to achieve continuous and comprehensive estimates of
canopy height, integrating GEDI measurements with optical and
SAR remote sensing data (Bhuyan et al., 2024; Jiang et al.,
2021).

Recent advances have expanded AGB modeling by integrating
GEDI with complementary sensors such as ICESat-2 and
airborne  LiDAR, which enhance canopy structure
characterization (Guo et al., 2023; Jiang et al., 2021). Other
studies have explored deep learning methods (e.g.,
convolutional neural networks) for mapping biomass at regional
scales (Bhuyan et al., 2024). However, such approaches often
require extensive computational resources or dense field
calibration data. In contrast, our workflow prioritizes a cost-
effective and replicable methodology using open-access datasets
(GEDI, Sentinel-1/2, and DEM), tailored for local-scale
conservation and carbon monitoring applications. This
framework contributes to bridging the gap between global-scale
GEDI applications and local conservation management,
particularly in semi-arid environments where data availability is
limited.

This research explored the potential of integrating the GEDI
LiDAR mission with the passive sensor data (Sentinel-1 and
Sentinel-2) and topographic variables to estimate AGB density
in La Joya - La Barreta ecological park in Querétaro. Besides
being a recreational and environmental education space, the
park is a nature reserve prioritized by the municipal
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administration for generating carbon credits through carbon
sequestration in both soil and vegetation.

The main objective was to develop a robust AGB predictive
model using AGB density data derived from the GEDI program
and covariates obtained from satellite images and digital
elevation models. This aimed to establish a cost-effective
methodology for monitoring and verifying conservation projects
in La Joya - La Barreta ecological park in Querétaro.

2. Methodology

The methodological workflow consisted of four main steps: (1)
acquisition and preprocessing of GEDI above-ground biomass
density data; (2) generation of environmental covariates from
Sentinel-1, Sentinel-2, and topographic information; (3)
selection of the most relevant predictors using Recursive
Feature Elimination (RFE); and (4) spatial prediction of AGB
density using a Quantile Regression Forest (QRF) model, along
with uncertainty estimation. The following subsections describe
each step in detail.

2.1 Study Area

The park is located in the northwest portion of the municipality
of Querétaro, in the state of Querétaro, Mexico, in the Santa
Rosa de Jauregui municipal delegation, lying between 20° 49’
20" N to 20° 48’ 24" N latitude and 100° 32’ 17" W to 100° 30’
39" W longitude, spanning an area of 247.91 ha. The park
covered by submontane scrubland, pine-oak forest, grassland,
and scrubland (Figure 1).
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Figure 1. Location of La Joya—La Barreta Ecological Park,
Querétaro, Mexico, and visualization of the GEDI AGB density,
(Mg/ha) product for April 2024. Insets show the vegetation
height (RH100: Relative Height at which 100% of the
waveform energy is accumulated).

2.2 Above Ground Biomass

For this study, we used AGB density data derived from the
GEDI LiDAR mission product (Dubayah et al., 2020), recorded
during April 2024 in La Joya - La Barreta ecological park
(Figure 1). were used. AGB density values are expressed in
megagrams per hectare (Mg/ha), recorded values range from a
minimum of 2.5 Mg/ha, a maximum of 368.2 Mg/ha, a mean of
20.6 Mg/ha, and a standard deviation of 66.3 Mg/ha. This
product is derived from vegetation structure metrics obtained
through the analysis of return intensity and waveform. One of
the key variables for estimating AGB density is vegetation

canopy height, which is obtained from the RH100 waveform
response, representing the relative height above ground where
100% of the LIDAR waveform return energy has accumulated.
This height exhibits a high correlation (correlation coefficient of
0.95) with the estimated biomass (Figure 2).
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Figure 2. Canopy height (RH100) and AGB density values from
the GEDI mission in La Joya — La Barreta park.

The AGB density data obtained from the GEDI mission were
first pre-processed by removing outliers with values exceeding
the mean plus 1.5 times the standard deviation (151.64 Mg/ha).
In a second step, they were transformed using a logarithm to
reduce their asymmetry and improve the model's ability to
represent their variability.

2.3 Environmental Covariates

The Digital Elevation Model (DEM) used corresponds to a
bare-earth Digital Terrain Model (DTM) obtained through the
SRTM-derived Copernicus DEM (GLO-30) dataset, accessed
via the elevatr package (Hollister et al., 2023) with a spatial
resolution of 8.92 m. Topographic covariates were generated
from terrain analysis using the basic terrain analysis tools of
SAGA GIS (Conrad et al., 2015). Additionally, Sentinel-1 and
Sentinel-2 satellite imagery for the study area was acquired
using the rsi package in R (Mahoney et al., 2025) for April
2024. From the Sentinel-2 images, a total of 178 spectral indices
were calculated, covering a wide range of vegetation, bare soil,
and moisture indices available in the Awesome Spectral Indices
repository (Montero et al., 2023). A subset of these variables is
shown in Figure 3.
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Figure 3. Visualization of a subset of covariates, including the
Digital Elevation Model (DEM), a true-color visualization of
the Sentinel-2 image, Sentinel-1 cross-polarization radar
response (VH), and the Normalized Difference Vegetation
Index (NDVI).
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In total, 206 environmental covariates were generated to ensure
comprehensive coverage of potential predictors influencing
above-ground biomass. This large set was designed to capture
diverse biophysical processes related to vegetation structure,
moisture, and topography. The inclusion of numerous indices
follows the exploratory approach commonly used in biomass
modeling studies (e.g., Guo et al., 2023; Potapov et al., 2021)
where an extensive pool of spectral and topographic variables
allows data-driven feature selection. Although only five
covariates were retained by the RFE process, starting with a
broader set ensured that potentially important predictors were
not excluded a priori, as their relevance can vary depending on
vegetation type, scale, and sensor characteristics.

2.4 Modeling

Recursive Feature Elimination (RFE) (Kuhn, 2008) was used to
select the covariates that contributed most significantly to the
prediction of the biomass. This method allowed the
identification of an optimal subset of covariates that best
explain biomass variability while minimizing the Root Mean
Square Error (RMSE).

To model the relationship between the selected covariates and
the AGB density, the Quantile Regression Forest (QRF)
algorithm (Meinshausen, 2006) was implemented. This
approach provided both the value prediction and the standard
deviation as a measure of prediction uncertainty. The workflow
is schematized in Figure 4.
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Figure 4. Workflow diagram for obtaining the variable of
interest, environmental covariates, and modeling.

The feature selection process using RFE evaluated 206
covariates and identified the optimal set of five covariates to
minimize RMSE in AGB density prediction (Figure 5). This
subset includes three topographic variables: the LS-Factor
(Slope Length), Analytical Hillshading, and Channel Network
Base Level; and two spectral indices derived from Sentinel-2:
TWI (Niu et al., 2022) which captures moisture variation based
on infrared spectral response, and EMBI (Zhao & Zhu, 2022),
an enhanced vegetation greenness index with a shortwave

infrared correction to reduce its sensitivity to soil background
distortions (Figure 6).
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Figure 5. Variable selection plot with the RFE method using

minimum RMSE.
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Figure 6. Visualization of the covariates selected by the RFE
method.

Finally, using the trained QRF model and the rasters of the
selected covariates, the spatial predictions of the most probable
AGB density value and their associated standard deviation were
performed. The standard deviation was used to calculate the
standard relative error, which served as a measure of the
uncertainty of the predictions using the following equation:

sd
RSE = * 100
mpv )
RSE = relative standard error
sd = standard deviation at each pixel
mpv = most probable value at each pixel

where

The Quantile Regression Forest (QRF) algorithm (Meinshausen,
2006) was selected because it extends the Random Forest
approach by estimating conditional distributions rather than
only mean predictions, thus allowing direct quantile-based
uncertainty assessment. Compared to other ensemble methods
such as XGBoost or Support Vector Machines, QRF provides
more stable predictions in small-to-moderate sample sizes and is
less sensitive to hyperparameter tuning, which is advantageous
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for spatial modeling. Although we report mean predictions and
standard deviations for clarity, the model inherently captures
full quantile distributions, which could be further explored in
future analyses to refine uncertainty interpretation.

2.5 Model Performance Evaluation

The QRF model, based on decision trees, performs
bootstrapping (Bagging) of the data to create new training sets
for each tree. Using this feature, data not used for training a tree
are used to predict its value as an individual external validation
called Out-of-bag. With this method, model performance
metrics such as the Root Mean Square Error (RMSE) and
coefficient of determination (R?) are obtained and reported as
model performance metrics.

This methodological workflow provides a replicable and
transparent framework for integrating GEDI LiDAR data with
multisensor covariates in biomass modeling, aligning with best
practices in recent remote sensing applications

3. Results

The estimation of AGB through the integration of GEDI data,
satellite imagery, and topographic variables in La Joya - La
Barreta ecological park allowed the generation of high-spatial
resolution AGB density maps. The results show the spatial
distribution of the AGB density variable in its original and
transformed form (Figure 7), which helped to identify the
variability patterns associated with the topographic and
structural characteristics of the ecosystem. The validation of the
predictive model, based on cross-resampling techniques and
training/test data partitioning, demonstrated a satisfactory fit,
with relatively low error metrics and adequate predictive
capacity.
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Figure 7. Frequency distribution, quartiles, and mean biomass
density values (AGB density) and their logarithmic
transformation (log_ AGB density).

The maps generated include both the most probable AGB
density value and its relative standard error, providing a
comprehensive representation of the park's above-ground
biomass (Figure 8). This information is essential for evaluating
the area's carbon sequestration potential, supporting the

implementation of conservation projects, and establishing a
baseline for future monitoring campaigns.

The predicted AGB density values range from 5.2 to 113.4
Mg/ha, with a mean of 32.9 Mg/ha and a standard deviation of
24.8 Mg/ha. The uncertainty of these predictions ranges from
1.3 to 3.3 Mg/ha, with a mean of 2.1 Mg/ha and a standard
deviation of 0.36 Mg/ha. The modeled values showed a total
accumulated AGB in the park of 8171.9 Mg, which is estimated
to contain 3652.8 Mg of organic carbon.

The Out-of-Bag model performance evaluation demonstrated a
strong capacity to estimate AGB density, yielding a RMSE of
1.8 Mg/ha and a coefficient of determination (R?) of 0.59. The
R? value indicates that 59% of the observed variance in above-
ground biomass can be explained by the selected covariates.

4. Discussion

The importance of the LS-Factor (Slope Length), Analytical
Hillshading, and the Channel Network Base Level as key
covariates highlights how topography strongly influences
critical ecological processes for vegetation growth in the La
Joya - La Barreta Ecological Park. The LS-Factor affects not
just water availability and soil stability, but also erosion and
where sediment gets deposited. These processes have a direct
impact on soil depth and nutrient levels, which are essential for
plant growth. Analytical Hillshading isn’t just about showing
sunlight exposure—it also affects soil temperature and
evapotranspiration, creating microclimates that can either help
or limit the growth of certain plants, and thus influence how
much biomass builds up. The Channel Network Base Level
gives a sense of how close an area is to drainage systems and
how much water tends to collect there. This is closely tied to
soil moisture and groundwater, which are key for biomass
growth, especially in semi-arid regions like Querétaro.

Adding to this topographic perspective, the use of spectral
indices like TWI (Topographic Wetness Index) and EMBI
(Enhanced Modified Biomass Index) demonstrate the value of
optical data for capturing variations in biomass structure and
health. TWI is good at identifying areas with higher soil
moisture, which often support more biomass because there’s
more water available. EMBI, which is designed to boost the
signal from vegetation and reduce background noise from the
soil using shortwave infrared correction, gives a clearer and
more reliable picture of plant health. It works well as an
indicator of how much photosynthetically active biomass is
present.

The RMSE of 1.8 achieved in this study indicates a good
predictive capacity of the model for regional-scale applications.
When compared to large-scale biomass prediction efforts, such
as that by Shendryk (2022) who using GEDI data, incorporating
elevation models, land cover classification, and Sentinel 1/2
images as covariates, reported R? values ranging from 0,66—
0,74 and RMSE values of 55-81 Mg/ha a crucial distinction
emerges. Shendryk’s results were based on much coarser spatial
resolutions (100 m and 200 m, respectively). In comparison, our
model uses a much finer resolution of 10 m, which offers a big
advantage for managing the park at a more local scale. Even
though our R? is slightly lower at 0.59, our much lower RMSE
of 1.8 Mg/ha shows that our estimates of biomass are more
accurate at this finer scale—an important benefit when it comes
to monitoring conservation efforts within the park.
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Figure 8. Maps of the most probable AGB density prediction and its relative standard error.

Similarly, while Saarela et al. (2018) reported relative standard
errors between 8.0% and 25.4% using Landsat and LiDAR data,
our study showed a wider range—from 1.4% to 36.6%. Still,
most of our values were under 20%, showing that our model
delivers similar or even better precision, especially considering
the natural variability found in park ecosystems.

Areas exhibiting a relative standard error above 30% (Figure 8)
are mainly located in steep terrain and transition zones between
vegetation types. These regions often show high spectral and
structural heterogeneity, where small changes in illumination,
shadow, or canopy cover strongly affect the reflectance and
radar response. In addition, GEDI footprints in these zones are
relatively sparse, which limits the representativeness of training
data and contributes to greater local uncertainty. Similar
patterns of elevated error in complex topography have been
reported in other GEDI-based AGB studies (e.g., Bhuyan et al.,
2024; Shendryk, 2022).

The R? value of 0.59 indicates that while the model captures a
significant part of the AGB wvariability, a considerable
percentage remains unexplained. Bhuyan et al. (2024) obtained
similar results when modelling canopy height using GEDI data,
implementing RF, Extreme Gradient Boosting, Support Vector
Machine, and kNN algorithms, with R? of 0.553, 0.557, 0.559,
and 0.515, respectively.

This lack of explainability could be due to the inherent
complexity of biomass distribution, the spatial resolution of the
covariates, or the presence of other environmental variables not
included in the model but also by uncaptured biological factors
such as stand age, tree density, species composition, or the
presence of diseases and invasive species. It has been found that
AGB estimation can be improved by including field
measurements of allometric variables and the use of GEDI's
RH95 index along with information derived from Sentinel-1
and -2 bands, obtaining R? values from 0.66 to 0.91 (Guo et al.,
2023), However, the inclusion of the RH95 index would prevent
wall-to-wall prediction.

While our remote sensing-based model demonstrates strong
predictive capabilities, it is important to acknowledge that on-
going ground-truth biomass measurements are being conducted
by the municipality within La Joya - La Barreta Ecological
Park. These independent field data, once publicly available, will
provide a crucial opportunity for further validation and potential
refinement of our model's accuracy. Direct comparisons
between our remote sensing estimates and these in-situ
measurements will be a key next step to bolster the robustness
and practical applicability of our biomass assessment for carbon
accounting and conservation projects.

Although independent field validation is not yet available. The
predicted mean AGB values (32.9 Mg/ha) are consistent with
field-based estimates reported for dry forest and scrubland
ecosystems in central Mexico, which typically range between
25 and 45 Mg/ha (Pati et al., 2022). This agreement supports the
plausibility of the current predictions despite the lack of direct
field calibration.

Despite satisfactory model performance (R? = 0.59), the absence
of biophysical variables such as stand age, tree density, or
species composition likely contributed to the unexplained
variance. Additionally, climatic factors (e.g., mean annual
precipitation or temperature) are known to influence biomass
accumulation but were beyond the scope of this study.
Upcoming research should integrate such variables to better
capture ecological drivers and reduce residual uncertainty.

Future research could explore the inclusion of additional
environmental variables, such as annual precipitation or mean
temperature, which are often crucial drivers of biomass
production, especially in semi-arid regions. Investigating more
advanced modeling methods, including Deep Learning
approaches that can capture more complex non-linear
relationships, or geo-statistical models that explicitly account
for the spatial autocorrelation of biomass, could also lead to
improved accuracy. Moreover, integrating data from other
sources like drone-based photogrammetry or low-altitude
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LiDAR could provide detailed

information.

even more structural

These findings have significant practical implications for the
management of La Joya - La Barreta Ecological Park. The high-
resolution AGB density maps generated can effectively inform
specific management decisions, such as identifying areas with
high biomass for priority protection or areas with lower biomass
that present strong potential for reforestation or restoration
efforts. The methodology employed is highly cost-effective and
scalable, making it a viable approach for ongoing monitoring of
the park's carbon sequestration capacity. This robust baseline
information is crucial for integrating the park's conservation
efforts into REDD+ initiatives, providing a verifiable
foundation for tracking and reporting carbon stock changes and
thus securing future carbon credits. Beyond its local
implications, this approach demonstrates the feasibility of using
open-access GEDI and Sentinel data for cost-effective biomass
monitoring in other semi-arid regions of Mexico and Latin
America, contributing to scalable frameworks for REDD+ and
ecosystem restoration initiatives.

5. Conclusions

This study demonstrates the feasibility of integrating GEDI
mission LiDAR data with topographic and spectral covariates
derived from Sentinel-2 for above-ground biomass estimation in
La Barreta Ecological Park. Topographic covariates (LS-Factor,
Analytical Hillshading and Channel network base level) and the
spectral indices TWI and EMBI emerged as the most influential
predictors. Although the model shows acceptable performance,
these findings provide a valuable basis for future studies,
suggesting the need to explore other data sources, such as
drones (photogrammetry or low-altitude LiDAR), or more
advanced modeling methods to improve the accuracy of
biomass estimation. These results highlight the operational
value of GEDI-based biomass modeling for conservation
management and carbon accounting, supporting science-based
decision-making for protected areas.

6. Data availability
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https://doi.org/10.5281/zenodo.15802798. This material
contains the R script and sources such as shapefiles, raster files,
and databases to replicate the results obtained in the study. The
data is open access according to the Creative Commons
Attribution Share Alike 4.0 International Licence.
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Appendix

The explanatory covariates used in this study are listed below:

Spectral
Indices

AFRI1600, AFRI2100, ANDWI, ARI, ARI2,
AVI, AWEInsh, AWEIsh, BAI, BAIM, BAIS2,
BCC, BI, BITM, BIXS, BLFEI, BNDVI,
BRBA, Bal, CIG, CIRE, CRI550, CRI700,
CSI, CVI, DBSI, DSI, DSWII, DSWI2,
DSWI3, DSWI4, DSWI5, DVI, EMBI,
ENDVI, EVIv, ExG, ExGR, ExR, FCVI,
GARI, GBNDVI, GCC, GEMI, GLI, GMI,
GM2, GNDVI, GOSAVI, GRNDVI, GRVI,
GVMI, IKAW, IPVI, IRECI, LSWI, MBI,
MCARI, MCARI1, MCARI2, MCARI705,
MCARIOSAVI, MCARIOSAVI705, MGRVI,
MIRBI, MLSWI26, MLSWI27, MNDVI,
MNDWI, MRBVI, MSAVI, MSI, MSR,
MSR705, MTCI, MTVIl, MTVI2, MuWIR,
NBAI, NBR, NBR2, NBRSWIR, NBRplus,
NBSIMS, ND705, NDBI, NDCI, NDDI,
NDGlal, NDII, NDMI, NDPonl, NDREI,
NDSI, NDSII, NDSWIR, NDSall, NDSol,
NDTI, NDVI, NDVI705, NDVIMNDWI,
NDWI, NDYI, NGRDI, NHFD, NIRv, NLI,
NMDI, NRFIg, NRFIr, NSDS, NSDSII,
NSDSI2, NSDSI3, NWI, NormG, NormNIR,
NormR, OSAVI, OSI, PI, PISI, PSRI, RCC,
RDVI, REDSI, RENDVI, RGBVI, RGRI, RI,
RI4XS, RNDVI, RVI, S2REP, S2WI, S3, SI,
SIPI, SLAVI, SR, SR2, SR3, SR555, SR705,
SWI, SWM, SeLl, TCARI, TCARIOSAVI,
TCARIOSAVI705, TCI, TDVI, TGI, TRRVI,
TTVI, TVI, TWI, TriVI, UL, VARI, VARI700,
V1700, VIBI, VIG, VgNIRBI, ViNIRBI, WII,
WI2, WI2015, WRI, bNIRv, mND705,
mSR705, sNIRVLSWI, sNIRvNDVILSWIP,
sNIRVNDVILSWIS, sNIRVSWIR

Indices available at
https://github.com/awesome-spectral-
indices/awesome-spectral-indices

Source Indices

Sentinel-1 VH,VV

Sentinel-2 A, B, G, R, REI, RE2, RE3, N, N2, WV, S1,
S2

Terrain
analysis

elevation, Analytical Hillshading, Aspect,
Channel Network Base Level, Channel
Network Distance, Closed Depressions,
Convergence Index, Geomorphons, LS-Factor,
Plan Curvature, Profile Curvature, Relative
Slope Position, Slope, Topographic Wetness
Index, Total Catchment Area, Valley Depth.
Terrain analysis documentation available in:
https://saga-

gis.sourceforge.io/saga tool doc/9.8.1/ta_com
pound 0.html
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