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Abstract 

Inland water bodies, despite occupying a small fraction of the Earth’s Surface, play a significant role as carbon sinks or emitters of 

carbon dioxide and other greenhouse gases. Remote sensing has the potential to provide continuous carbon estimates; 

however, conventional operational missions are currently limited by the number of bands, which hinders the detailed detection of 

certain peaks in reflectance spectra. The hyperspectral EnMAP sensor provides images with 260 bands and a spatial resolution 

of 30 m. The objective of this study is to estimate the carbon content in continental water bodies of the eastern Iberian 

Peninsula (Spain), with varying trophic states, through four variables: total organic carbon (TOC), dissolved organic carbon 

(DOC), particulate organic carbon (POC), and colored dissolved organic matter (CDOM). Different indices and combinations of 

bands have been studied, based on in situ measurements of these variables coinciding with the acquisition of EnMAP images. The 

results show that TOC, can be estimated with a triband index using the 525, 535 and 551 nm bands (R2 = 0.96) and an 

exponential fitting curve; DOC with a normalized difference using the 599 and 525 nm bands (R2 = 0.93) with an exponential 

fitting curve; CDOM with simple ratio between bands 435 and 721 (R2 = 0.95) with a linear fitting curve. POC is calculated as the 

difference between TOC and DOC (R2 = 0.86).  

1. Introduction:

The role of inland waters in the global carbon (C) cycle was 

considered insignificant until just over a decade ago. However, 

these systems can act as C sinks, as phytoplankton, algae, and 

aquatic plants assimilate atmospheric carbon dioxide (CO2) 

during primary production. Under climate change scenarios 

characterized by rising temperatures and increasing 

eutrophication, these water bodies may shift from carbon sinks 

to carbon sources due to imbalances between respiration and 

primary production. Furthermore, they may become significant 

emitters of greenhouse gases such as methane (CH4) 

(Williamson et al., 2008, Vanderklift et al., 2019). Therefore, 

the quantification and characterization of carbon in its various 

fractions is essential to elucidate the role of inland waters in the 

global carbon cycle.  

C is present in aquatic systems as dissolved CO2, bicarbonate 

(HCO3
-), and carbonate (CO3

2-), in varying proportions. The 

particulate (POC) and dissolved (DOC) organic carbon 

represent the two components of the total organic carbon (TOC) 

pool in water (Bonelli et al., 2022). This organic matter can 

either undergo decomposition or persist, accumulating in 

sediments. DOC can affect aquatic ecosystems through its 

capacity to interact with heavy metals and hydrophobic 

pollutants, altering their bioavailability (Spencer et al., 2012). 

This can enhance the transport of contaminants to other areas or 

lead to their accumulation in enclosed ecosystems. In contrast, 

the decomposition of POC consumes oxygen; at high 

concentrations, it can lead to hypoxic or anoxic conditions 

(Zhou et al., 2023). The light-absorbing fraction of DOC is the 

colored dissolved organic matter (CDOM), which strongly 

absorbs light in the ultraviolet and blue region (Tehrani et al., 

2013). At high concentrations, CDOM warms the surface layer 

of water, accentuating stratification and hindering the vertical 

mixing of nutrients and oxygen. Furthermore, by reducing light 

penetration, it can limit photosynthesis in surface layers, 

favoring species adapted to low light conditions. 

Remote sensing has the potential to provide continuous high-

resolution optical observations that could be used to estimate 

the carbon pools in water. Nevertheless, recent studies have 

focused more on oceanic and coastal environments than on 

inland water, particularly those of small size. In addition, these 

studies have developed algorithms to estimate carbon content 

using multispectral sensors (Odermatt et al., 2012, Tehrani et 

al., 2013, Kutser et al., 2015, Cherukuru et al., 2016). However, 

hyperspectral satellite data offer more detailed information on 

the physical properties of water, such as reflectance, absorption, 

and emission (Krutz et al., 2019), which can be used to develop 

more accurate algorithms for assessing water quality (Hestir et 

al., 2015). 

The Environmental Mapping and Analysis Program (EnMAP) 

scientific mission, in orbit since 2022, is a hyperspectral sensor 

with 260 bands covering the 420-2450 nm range, with a spatial 

resolution of 30 m. It has a global revisit capability of 21 days, 

although for specific targets, this period can be reduced to 3-4 

days, which may be of interest for scientific studies. Table 1 

summarizes the main characteristics of the EnMAP sensor. 

Parameter Value 

Spectral range VNIR 420 – 1000 nm 

SWIR 900 – 2450 nm 

Spectral channels 228 

Spectral resolution VNIR 5 nm 

SWIR 10 nm 

Signal to Noise Ratio >500:1 400 – 1000 nm

Spatial resolution 30 m 

Swath Width 30 km 

GSD 30 m 

Table 1. EnMAP parameters (modified from Kaufmann et al., 

2016). 
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Given the growing interest in hyperspectral missions, especially 

the future missions being planned by the Copernicus program of 

the European Space Agency, new perspectives in water quality 

studies are being opened. Therefore, the objective of this work 

is to develop algorithms for estimating TOC, DOC, POC and 

CDOM using EnMAP images, in order to assess the carbon 

content in continental water bodies.  

2. Methodology:

2.1 Study area 

In this study, field campaigns were conducted across 

several inland water masses in the Valencian Community 

(Spain), with a diverse range of physical characteristics 

and trophic states (figure 1). Three of the sites 

(Benagéber, Tous and Sitjar) are oligotrophic, 

characterized by clear, transparent waters. In contrast, the 

remaining sites (Bellús, Beniarrés and Albufera) are 

eutrophic. Eutrophic conditions in these waters are 

primarily attributed to their proximity to densely 

populated areas with significant industrial and/or 

agricultural activity. These anthropogenic inputs result in 

elevated nutrient loads, promoting excessive 

phytoplankton growth and consequently leading to high 

turbidity levels.  

Figure 1. Location of selected water masses in the eastern 

region of the Iberian Peninsula (Spain). The orange dots 

correspond to waters with eutrophic status, and the blue 

dots correspond to those with oligotrophic status. 

2.2 Field campaigns and laboratory analysis 

For calibration and validation of remote sensing 

algorithms, the most widely used approach involves the 

simultaneous measurement of in situ data during satellite 

overpasses. Between 2023 and 2024, eight field 

campaigns were conducted, obtaining 23 georeferenced 

water samples. The campaigns were planned to coincide 

with satellite imagery acquisition on cloud-free days 

within a suitable temporal window. Nevertheless, in some 

cases, the time interval between satellite overpass and 

sample collection was extended to ±3 days (Schröder et 

al., 2024), due to the use of archived imagery.  

On each campaign, samples were collected over different 

locations of the water masses (2 to 5 points), at a 

minimum distance of 100 m from the shoreline to avoid 

mixed pixels or adjacency effects. Using a Secchi disk, 

water transparency was measured and, taking as a 

reference the depth at which the disk was no longer 

visible (Secchi disk depth, SDD), water samples were 

taken. In turbid waters with lower SDD, a Ruttner bottle 

was used, while in clear waters with a higher SDD, a 

weighted PVC tube was used. The collected samples were 

then refrigerated and kept in darkness for transport to the 

laboratory.  

To determine the different carbon components, we begin 

by filtering an adequate volume of water through a 

Whatman GF/F type glass fiber filter that retains the total 

suspended solids. Next, we separately analyze the filtered 

water for DOC. We do this using a SHIMADZU TOC-V 

CSN carbon analyzer with an ASI-V autosampler, which 

directly measures its concentration in the water.  

To measure the TOC, we use unfiltered water, separating 

an appropriate amount into glass tubes and treating it with 

ultrasound for 15 minutes in a BRANSON 2800 

sonicator, to homogenize any particulate matter it 

contains. Once the sample is homogenized and placed in 

the analysis vials, we add a mini magnetic stirrer, which 

ensures sample homogeneity throughout the analysis 

process. We do this using the aforementioned 

SHIMADZU TOC-V CSN carbon analyzer. Once the 

analysis is complete, we collect the data at the TOC 

column.  

CDOM was determined by UV spectrophotometry using a 

10 nm optical path quartz cuvette. Then, it was calculated 

at 250 nm using a quinine sulfate standard curve, as 

described in Hoge et al. (1993).  

2.3 Image processing 

For this study, eight EnMAP L2A images were used. 

These images include sensor-specific atmospheric 

correction with good validation results, as stated in 

Alvado et al. (2024). Table 2 summarizes the information 

from the image acquisition and field campaigns. 

Reservoir Samples Date Time 

window 

Albufera 1 2023/04/20 3 

Benagéber 1 2024/04/22 Match 

Albufera 5 2024/07/19 Match 

Tous 3 2024/07/19 Match 

Bellús 3 2024/07/23 Match 

Beniarrés 2 2024/07/23 Match 

Albufera 5 2024/07/31 Match 

Sitjar 3 2024/07/31 Match 

Table 2. EnMAP acquisition and field campaigns. 

“Match” means that the field campaign was conducted on 

the same day as the satellite overpass. 

Atmospherically corrected images were processed using 

SNAP (Sentinel Application Platform) software. As part 

of this process, the spectra of a 3x3 pixel window, 

centered on each sampling point, were extracted to 

calculate the average reflectance values for each spectral 

band. As the values provided by EnMAP images are 

reflectance values (R), they were converted to Remote 

sensing reflectance (Rrs) by dividing by π.  

2.4 Algorithm retrieval 

Using the free software ARTMO (Automated Radiative 

Transfer Models Operator), all possible band 

combinations can be defined and evaluated in different 

ways, allowing mathematical combinations of Rrs 
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measured in different wavelength ranges, to be correlated 

with biophysical variables of interest. Simple ratio (SR: 

Rrs1/Rrs2), normalized difference (ND: (Rrs2 – 

Rrs1)/(Rrs2 + Rrs1)) and triband (Rrs1 x ((1/Rrs2) – 

(1/Rrs3))) formulations have been used. Several fitting 

functions (linear, exponential, potential and logarithmic) 

have been tested to obtain the best correlations. Using the 

cross-validation tool “leave-one-out”, the data is divided 

into n parts, with one part used for model validation and 

the rest for calibration. The process is repeated with each 

of the parts, and the statistical averages are calculated.  

Since ARTMO calculates various possibilities, the models 

with the highest coefficient of determination (R2) were 

selected. Finally, to evaluate the performance of the 

selected models, comparisons were made with the values 

obtained in situ using the statistics described in Table 3. 

Statistical metric Equation 

ɛi = xi - yi 

Bias 

RMSE 

NRMSE 

Table 3. Statistical metrics used to validate algorithms. xi 

and yi are the in situ data and the estimated data, 

respectively. 

Once the best algorithm was selected, to visualize the 

applicability of the model, we created thematic maps that 

allow us to observe the spatial distribution of the 

variables.  

3. Results & discussion

Hyperspectral satellites, with a narrower bandwidth, allow the 

detection of narrow peaks and troughs in the Rrs spectra. Figure 

2 shows the spectra of three water masses in the study, whose 

optical characteristics represent the trophic states mentioned 

above. These water masses present a different trophic state, but 

all have in common phytoplankton as the dominant OAC 

(optically active component), contributing to the Rrs. 

Figure 2.  EnMAP spectra of water masses with different 

trophic status. Each spectrum corresponds to the average of the 

points measured in each reservoir. 

Tous reservoir is ultraoligotrophic, with very clear waters and a 

maximum Rrs around 490 nm. From 550 nm onwards, the Rrs 

begins to decrease until it reaches 0 in the NIR region. 

However, some peaks are observed at 730 and 820, possibly due 

to an error in atmospheric correction. 

The Benagéber reservoir, on the other hand, is oligotrophic with 

clear waters and a maximum of Rrs around 550 nm, as it is 

dominated by phytoplankton. Finally, the Albufera lagoon is 

hypereutrophic. In this spectrum, the maxima are around 580 

nm and 715 nm (particle scattering, mainly phytoplankton), and 

the minima around 620 nm (Phycocyanin) and 680 

(Chlorophyll-a). 

TOC values measured in the laboratory ranged from 1 to 25.5 

mg/L. The model that exhibited the strongest correlation with 

the in situ data was the triband model, based on reflectance at 

525, 535, and 551 nm (figure 3, eq. 1): 

TOC (mg/L) =  (1) 

Figure 3. Adjustments between the TB index obtained with 

EnMAP Rrs (x-axis) and TOC measured in situ (y-axis). 

The model developed for estimating TOC has an acceptable 

error of 9% and underestimates the values obtained according to 

the bias results (figure 4). Since TOC is usually composed 

largely of substances that absorb light in the blue regions, the 

green region becomes more dominant in the spectral signature. 

In their study, Quevedo-Castro et al. (2024) used Landsat-8 data 

to estimate TOC in the Sanalona reservoir (Mexico), where 

values range from 3.5 to 7 mg/L. Using the blue (B2) and green 

(B3) bands, they developed a model with an R2 = 0.57. 

Figure 4. Scatterplot of TOC estimated with the model (y-axis) 

and TOC measured in situ (x-axis).  

For DOC, the values analyzed in the laboratory are between 0.8 

and 18.5 mg/L. Normalized difference using reflectance of 599 

and 525 nm showed the best correlation with the in situ data 

(figure 5).  
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DOC (mg/L) =  (2) 

Figure 5. Adjustments between the NDI index obtained with 

EnMAP Rrs (x-axis) and DOC measured in situ (y-axis). 

The model (figure 6) has a relative error of 10% and 

underestimates the measured values. It uses bands in the green 

and red region, as these bands are less affected by absorption. In 

a study conducted in Estonian lakes, where DOC concentrations 

range from 6.04 to 20.9 mg/L, Toming et al. (2016) developed a 

model using Sentinel-2 (S2) bands (L2A level). The bands 

selected for this model were B3 (green) and B4 (red), obtaining 

an R2 = 0.42. Meanwhile, Shao et al. (2016), using field 

radiometry (ASD Field Spec FR spectroradiometer), obtained a 

model using reflectance at 643 nm and 591 nm with an R2= 

0.87. 

Figure 6. Scatterplot of DOC estimated with the model (y-axis) 

and DOC measured in situ (x-axis).  

CDOM values measured in the laboratory are between 0.7 and 

7.9 mg/L. The model that shows the best correlation with the in 

situ data is the simple ratio using reflectance at 435 and 721 nm 

(figure 7, eq 3): 

CDOM (mg/L) =  (3) 

Figure 7. Adjustments between the SR index obtained with 

EnMAP Rrs (x-axis) and CDOM measured in situ (y-axis). 

The model uses a blue band, where there is greater absorption 

by CDOM, and a red-edge band where CDOM absorption is 

negligible. The negative correlation shown in Figure 7 indicates 

that the higher the red-edge reflectance, the higher the CDOM 

concentration. This is due to the high correlation of CDOM and 

phytoplankton biomass in the dataset, with the phytoplankton 

dominating the Rrs signal. In similar water types 

(phytoplankton-dominated), the CDOM model could be 

applicable, but in CDOM-dominated waters (with low Chl-a), it 

could underestimate the actual CDOM concentration.  

The model (figure 8) obtains estimation errors of 8% and the 

bias indicates that it slightly underestimates the results. Wong et 

al. (2020), using S2 data obtained good correlation (R2 = 0.86) 

with B2 (blue) and B4 (red) in coastal waters of Singapore. 

Zhang et al. (2021) used the same bands in a study of a reservoir 

in China. In their case, the model used obtained a correlation of 

R2 = 0.71. 

Figure 8. Scatterplot of CDOM estimated with the model (y-

axis) and CDOM measured in situ (x-axis). 

The POC in situ has been calculated as the difference between 

TOC in situ and DOC in situ with values ranging from 0.2 to 11 

mg/L. The estimation of POC has been calculated as the 

difference between equation 1 and 2, and validation has been 

done fitting the data using the least squares method with a linear 

function (figure 9). 

POC (mg/L) = 0.8287 x (TOC-DOC) + 0.1152 (4)
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Figure 9. POC measured as the difference between TOC and 

DOC. 

As an example, Figures 10-17 show the thematic maps obtained 

for each variable by applying Equations 1-4 to EnMAP images. 

The results obtained show how the application of the equations 

results in coherent thematic maps.  

The selected date (2024/07/31) corresponds to a field campaign 

where two reservoirs with different trophic status were sampled, 

allowing us to see the difference in magnitude of the variables 

studied. Higher values were found in Albufera and lower values 

in Sitjar. To adapt to the study area, a water mask was created, 

allowing us to apply the algorithms only to water masses.  

In the lagoon, the TOC and DOC variables appear 

homogeneous. The POC concentrations are highest along the 

shore, where the ditches are located, where water inflows likely 

contain particles. While the DOC presents higher values in the 

central part of the lagoon, related to greater presence of 

phytoplankton.  

Figure 10. Estimation map of TOC (mg/L) in Albufera lagoon. 

Figure 11. Estimation map of DOC (mg/L) in Albufera lagoon. 

Figure 12. Estimation map of POC (mg/L) in Albufera lagoon 

from eq. 1 – eq. 2. 
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Figure 13. Estimation map of CDOM (mg/L) in Albufera 

lagoon. 

In the case of the Sitjar reservoir, except for the POC, which 

appears to present more homogeneous values, the remaining 

variables reflect a tailwater-dam asymmetry. Thus, there is a 

decrease in values toward the dam, demonstrating the 

purification effect of the reservoirs.  

Figure 14. Estimation map of TOC (mg/L) in Sitjar reservoir. 

Figure 15. Estimation map of DOC (mg/L) in Sitjar reservoir. 

Figure 16. Estimation map of POC (mg/L) in Sitjar reservoir 

from eq. 1 – eq. 2. 
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Figure 17. Estimation map of CDOM (mg/L) in Sitjar reservoir. 

4. Conclusions

Our results have shown the potential of hyperspectral 

remote sensing to estimate carbon pools, differentiating the 

TOC and its components (DOC, POC, and CDOM), being 

able to map them to provide their spatial and temporal 

variations.  

TOC can be estimated with an exponential relationship, 

using a triband model based on reflectance at 525, 535, and 

551 nm, with R2 of 96. DOC can be estimated with an 

exponential relationship using a normalized difference 

based on reflectance 599 and 525, with R2 of 93. Based on 

the difference between the TOC and DOC estimation, POC 

can be estimated with R2 of 89. Finally, CDOM can be 

estimated with a linear relationship with the ratio between 

435 and 721 bands, with R2 of 95. These band combinations 

allow us to capture the optical variations associated with 

different types of organic carbon, showing that the blue and 

green bands are particularly sensitive to the absorption 

properties of CDOM and TOC, while the red and red-edge 

bands are less affected by absorption.  

From a methodological point of view, this study 

demonstrates the effectiveness of models based on 

combinations of bands selected according to physical 

criteria, which facilitates their interpretation and 

extrapolation to other sensors with similar characteristics. 

Calibration and validation using in situ data reinforce the 

usefulness of this methodology as a complementary tool to 

traditional monitoring. Given that the selected water bodies 

have different trophic states and optical conditions, the 

spectral relationships obtained can be applied, with the 

necessary adaptations, to other lakes and reservoirs with 

similar characteristics, both in the Mediterranean basin and 

in regions with similar climates and trophic status.  

The models developed provide a solid basis for remote 

monitoring of the carbon cycle in continental aquatic 

systems, a crucial aspect in the context of climate change 

and eutrophication.  
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