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Abstract

Time series analysis of remote sensing data is an efficient method for observing, monitoring, and characterizing land use/cover
change (LUCC). However, it is challenging to integrate local knowledge into these estimations to improve the explanation of land
use conflicts (LUCs) in terms of LUCC. LUC:s are the irrational utilization of land systems (LS) caused by individual stakeholders
pursuing their own interests and competing for land resources. The purpose of this study is to understand the relationship between
LUCs and LUCC. San Miguel el Grande (SMG), Oaxaca, Mexico, is a case study from 1993 to 2023. The method was two
principal phases: 1) Landsat time series analysis and point analysis with the CCDC algorithm (Continuous Change Detection and
Classification); and 2) process tracing to explain the causal relationship. The results indicate a classification accuracy of around
88% per year. The breakpoints in the harmonic regression can detect LUCC related to the LUCs reported by the news and local
people. These findings provide information about the impact of social drivers on forest lands. They help formulate public policies
that consider the local context in rural municipalities with valuable timber resources.

1. Introduction

Land use/cover change (LUCC) is the emergent result of a myriad
of interactions and feedbacks between various actors, technolo-
gies, institutions, cultural practices, and the associated demands
and motivations for land use, which collectively constitute land
systems (LS) (Meyfroidt, 2016). LS is a complex and open
system generated by the transformation, utilization, and adapt-
ation of the land surface and its upper and lower spaces of the
Earth, including the biophysical environment, land use, and so-
cial economy, all of which are mutually generated, restricted,
and indivisible (Li et al., 2020).

The objective of Land System Science (LSS) is to compre-
hensively understand the intricate interactions between human
and natural systems on various scales (Lambin and Meyfroidt,
2011). LSS integrates multiple disciplines, including geography,
ecology, sociology, economics, and remote sensing (Zhao et al.,
2024), with strong links to remote sensing and geographical
information sciences, as well as various modeling approaches
(Turner et al., 2021). So, understanding of LS strongly depends
on the availability of accurate land change data (Li et al., 2020).

LSS considers interconnected and multifaceted processes such
as population growth, urbanization, agricultural expansion, in-
dustrialization, infrastructure development, and natural resource
exploitation that lead to CCUS a form of human influence on
the environment (Zhao et al., 2024; Zhou et al., 2020). CCUS
can lead to Land use conflicts (LUCs), which are considered
drastic shock events. LUCs are defined as the irrational use
of LS caused by conflicting stakeholders who pursue their own
interests and compete for land resources, resulting in the frag-
mentation and complexity of LS and hindering the optimal util-
ization of the general benefits of LS (Qin et al., 2024).

In general, there are four conceptual approaches to study LUCs:
1) focus on social conflicts between actors, 2) spatial focus on
spatial conflict between land uses, 3) normative focus on the

discrepancy between actual and more environmentally sustain-
able land use, because in reality and norms are incompatible,
and 4) political focus on competing political or planning goals,
competing laws or competing norms regarding land uses (Fien-
itz, 2023). In this study, we consider the spatial approach.

The relationship between LUCs and LUCC has been studied
on different analysis scales: from a global study of the impact
of armed conflict on forest loss in international border areas
(Zheng et al., 2023) to local studies exploring this relation-
ship, such as the Pixquiac River subbasin, Veracruz, Mexico
(Chablé-Rodriguez et al., 2022). Remote sensing (RS) is the
primary methodological approach to spatially explaining this
relationship (Baumann and Kuemmerle, 2016), utilizing data
from the Landsat satellite, which has been freely available and
open since 1972 (Wulder et al., 2022; Zhu et al., 2019). This
enables the conduct of time series analyses (Aung, 2021; Gor-
sevski et al., 2012).

In Mexico, the average annual net forest loss was 221,000 hec-
tares between 1990 and 2000, 143,000 hectares per year during
the 2000-2010 period, and net deforestation averaged 125,000
hectares per year from 2010 to 2020 (CONAFOR, 2022). Ap-
proximately 39% of forests and 60% of tropical forests are loc-
ated within indigenous territories(CONAFOR, 2023). Of Mex-
ico’s 26 million rural inhabitants, 17.7 million live in forest
land, where 15,584 are communal groups that live on rural lands
that are most often held in common and managed with some
level of government control called ejidos (Thoms and Betters,
1998), and communities with more than 200 forest hectares are
located (Chapela and Merino, 2019).

Until April 2020, more than 500 agrarian conflicts had affected
352 agricultural centres. Oaxaca is the state with 32.2% of in-
digenous farm centers. Approximately 283 agrarian conflicts
(56%) occurred in the Mixtec region (Registro Agrario Nacional,
2021), where scientific studies have documented community
forest enterprises(Hernandez-Aguilar et al., 2017) and forest
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transitions (Lorenzen et al., 2020). Recently, San Miguel el
Grande (SMG) has been a conflict zone, with reported cas-
ualties resulting from territorial conflicts (Matias, 2024), and
high-value maderable resources in an ecotouristic area known
as Santuario de las Aves (Meganoticias, 2023).

Nonetheless, few studies have addressed the relation between
LUC and LUCC. Thus, to address this gap in the literature, the
objective of this study is to understand the causal relationship
between LUCs and LUCC, using Landsat time series in SMG,
Oaxaca, Mexico, from 1993 to 2023.

2. Materials and methods

2.1 Study area

SMG is a municipality with an area of 103.607 km?2 located in
17°02'45"” N, 97°37'10” W at an elevation of 2,479 m above
sea level in Oaxaca, Mexico. Until 2020, there were 4,313 Nuu
Savi Mixtec indigenous people, and seven out of ten were poor
(CONEVAL, 2020). LUCs are considered the leading cause of
fires and illegal logging, which have degraded the forest at a rate
of 20 to 50 hectares per year (H. Ayuntamiento Constitucional
de San Miguel El Grande, Tlaxiaco, Oaxaca, 2023).

Figure 1 shows location of SMG in the global, national (A),
Oaxaca (B), and study area (C).
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Figure 1. The study area map
2.2 Methodological approach

The methodological approach considers two principal phases:
remote sensing analysis with the CCDC algorithm and under-
standing LUCs with harmonic regression and process tracing.
Figure 2 presents the study methodology.

2.3 Data and sources

In this study, we used Landsat data 5,7,8 and 9 level 2, collec-
tion 2, Tier 1 acquired from 1993-01-01 a 2024-12-31 to train
polygons of vegetation, cropland and bare land classes with
local students participation, USFS Landscape Change Monit-
oring System v2024.10 (USDA Forest Service, 2025) and JRC
Global Surface Water Mapping Layers, v1.4 (Pekel et al., 2016)
to mask water bodies.
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Figure 2. Methodological approach
2.4 Classes

According to the local biophysical characteristics of SMG, par-
ticipating mapping, and previous literature, three classes to start
the Continuous Change Detection and Classification (CCDC)
algorithm were defined as follows:

1. Tree cover, the principal natural cover; this category in-
volves types of natural and planted forests like pine and
oak. The CCDC algorithm can monitor forest dynamics,
disturbances, and long trends (Zhang et al., 2022; Nguyen
et al., 2025; Jiang et al., 2025)

2. Cropland, the principal economic activity is shifting cul-
tivation of native maize. The CCDC algorithm is a prac-
tical approach for monitoring shifting cultivation (Chen et
al., 2023a,b).

3. Bare land includes mainly human assessments, back
roads, and mining areas. The CCDC approach can monitor
new construction activities (Tang et al., 2024)

2.5 CCDC algorithm

CCDC is a change detection algorithm that utilizes both a
change detection mechanism and a supervised classification one
to assign a particular LULC to each stable segment. CCDC
uses a harmonic model with variable coefficients to fit and pre-
dict each band or spectral index of Landsat time series at a
pixel level for a given date (Zhu and Woodcock, 2014). First,
based on these models, stable segments and breaks are detec-
ted, and then a LULC is assigned to each segment. The CCDC
algorithm comprises several components, including image pre-
processing, continuous change detection, and continuous land
cover classification (Zhu and Woodcock, 2014).

Equation (1) shows the CCDC harmonic regression model.
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a = Julian date.
1 = The ith Landsat band or vegetation index.
T = Number of days per year (i.e., 365).
ao,; = Coefficient for the overall value of the
ith Landsat band or vegetation index.
S; = Coefficient for inter-annual change.
a1,i, b1,i, ... = Coefficients for intra-annual change.
D(%,t)fmea = Predicted value for the 4th band at
Julian date x.

where

The bands considered for spectral classification were Blue,
Green, Red, NIR, SWIR1, and SWIR2. The CCDC coefficients
were RMSE, intercept, Slope, and Phase. Finally, auxiliary
bands were elevation, aspect, DEM, rainfall, and temperature.

2.6 Accuracy assessment

The accuracy assessment of satellite image classifications from
2020 to 2023 was conducted using the method proposed by
Olofsson et al. (2014) and estimated with the OpenForis Tool
in R software (FAO , 2017).

The sample size was estimated using a stratified random
sampling approach, as outlined in Equation (2).

(2 WisSi) - <ZWzSz) )
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N = number of units in the ROI

S (é) : is the standard error of the estimated

where

overall accuracy that we would like to achieve.
W; = the mapped proportion of area of class 4
S; = the standard deviation of stratum ¢
Si =/ Ui(1-U;)

2.7 Identification of LUCs’ points

Five local Geographic Information Systems students from the
University of Chalcatongo identified LUCs points in a work-
shop in March 2025. First, we discussed agrarian conflicts in
SMG and their environmental and social impacts, as well as
news and posts on social networks like Facebook. Then, in
Google Earth Pro, we discussed the location of LUCs’ points.
Finally, we generated a KML file with 8 POIs that are useful to
explain the causal relationship between LUCs and LUCs. Fig-
ure 3 shows georeferenced LUCs’ points.

Figure 3. LUCs in SMG.

2.7.1 Breakpoints as a LUCs’ points A breakpoint occurs
when the model-fitting prediction differs significantly (more
than three times the root mean squared error, RMSE) from the
actual observation, anomalous slopes arise, or the first or last
observation differs by three standard deviations from the model
prediction (Zhang et al., 2022). Then, when a breakpoint oc-
curs, a LUCC is potentially detected.

Breakpoint coefficients were:

tStart =the start time of one segment

tEnd =the end time of one segment,

tBreak = the breakpoint detection time,

Magnitude of the change from one segment to the next
segment.

bl

2.7.2 Explaining with SWIR band We selected the short-
wave infrared 2 (SWIR2) band to identify LUCs. The SWIR2
band spanned approximately 2080 to 2350 nm for Landsat 4
and 5 Thematic Mapper (TM) and Landsat 7 Enhanced Them-
atic Mapper+ (ETM+). A single SWIR2 band is still used for
Landsat 8 and 9 Operational Land Imagers (OLI and OLI2, re-
spectively), but its spectral response has been narrowed (ap-
proximately 2110 to 2290 nm) (U.S. Geological Survey, 2022;
Lamb et al., 2022). The SWIR band enables continuous monit-
oring and updating of land cover features through spatial maps,
particularly in regions where change and development are rapid
(Kumar et al., 2022).

We used Google Earth Engine (GEE) to run the CCDC al-
gorithm. GEE is a cloud-based platform for planetary-scale
geospatial analysis that leverages Google’s massive computa-
tional capabilities to address various high-impact societal is-
sues, including deforestation, drought, disaster, disease, food
security, water management, climate monitoring, and environ-
mental protection (Gorelick et al., 2017).

2.8 Process tracing to understand the complex causal re-
lationship between LUCs and LUCC

Process tracing aims to identify causal mechanisms that connect
the causes of events or phenomena to their outcomes, drawing
evidence from a wide array of sources associated with a single
case or a small number of cases (Pickering, 2022). Overviews
of process tracing generally emphasize the need to draw on mul-
tiple sources of data about decision-making and other political
processes, including official documents, media reports, stake-
holder interviews, event observation, and ethnography (Bennett
and Checkel, 2014), and have been applied to understanding
conflicts over marine environments (Boonstra et al., 2023). In
this study, we combine new media reports and local knowledge.
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3. Results and discussion
3.1 Validation of land cover classification

The results of the confusion matrix are in table 1. Approx-
imately 1,043 sampling points were calculated using the Open
Foris Tool (FAO , 2017) and subsequently validated through the
use of Google Earth images and local community input.

Year | Accuracy asessment
2020 0.89
2021 0.91
2022 0.90
2023 0.88

Table 1. Results of accuracy asessment.
3.2 Mapping Annual Land use cover

Figure 4 shows the annual land cover every six
years. All maps from 1993 to 2023 are avail-
able  here  https://code.earthengine.google.com/
a0c0313b8abb7bfal16304a0efaal5c73

During the study period, we identified an increase in tree cover
class and a reduction in cropland and bare land. Similar trends
have been identified in Mixteca Alta Geopark, known as forest
transitions (Lorenzen et al., 2020; Lorenzen, 2022; Hernandez-
Aguilar et al., 2021).

3.3 Understanding LUCs as a breakpoint in CCDC har-
monic regression

The scientific literature in Mixteca Alta region focuses on
determinants of forest transition, such as migration, popula-
tion decline, agricultural land abandonment, and social cap-
ital (Lorenzen et al., 2020; Hernandez-Aguilar et al., 2021), but
LUC:s are not documented. We tested the eighth LUC points on
harmonic regression and identified a more explicit breakpoint
in Santuario de las Aves as a case study.

Santuario de las Aves is an ecotouristic area that received
payments for ecosystem services (PES) (Herndndez-Aguilar
et al.,, 2017). PES is an incentive-based instrument for nat-
ural resource management that provides economic incentives
for landowners, conditional on either the direct provision of
ecosystem services or a specific resource management activity
(Izquierdo-Tort et al., 2025). Near this place, confrontations oc-
curred between the inhabitants of Llano de Guadalupe Tlaxiaco
and SMG due to a dispute over 2,300 hectares of forest. Fig-
ure 5 shows the Facebook page; the last post was on August
18th, 2022.

The CCDC harmonic regressions on pixels of LUCs. The
identification of breakpoints corresponds to the occurrence of
LUCs. Figure 6shows the harmonic regression for the SWIR2
band in a pixel of the natural area called the Santuario de las
aves. It is possible to identify a breakpoint between the two seg-
ments, red and yellow, in 2023. The surface reflectance change
from 0.08 to 0.16 is due to human actions and vegetation loss.

3.4 Understanding land use conflict based on news reports

Process tracing with new reports is a tool for better under-
standing LUCs. According to local authorities, Comisariado de
Bienes Comunales, the main aggressions of Llano de Guada-
lupe Tlaxiaco were on May 5th and November 22nd to Lazaro

Cardenas in SMG, where five people died: two agents of the
State Investigations Agency (AEI), two police, two municipal
agents, and a community member (Fiscalia General de Oax-
aca, 2023). The expressions of LUCS have included casual-
ties, illegal logging, forest fires, and housing fires, which lead
to biodiversity loss, soil erosion, and the infiltration of rainwa-
ter (H. Ayuntamiento Constitucional de San Miguel El Grande,
Tlaxiaco, Oaxaca, 2023). Figure 7 shows two photos provided
by the community people to the poderlatam website (Contreras
and Balderas, 2024). These LUCs’ photos show social and en-
vironmental impacts on LS.

The state government reported the presence of illicit activities
such as drug trafficking, arms trafficking, and illegal logging
(Miranda, 2023). These drivers have been incorporated into
land use change models (Tellman et al., 2020). Recently, the
government announced the solution of LUCs; the Santuario de
las Aves will be registered as a protected natural area in the
Comision Nacional de Areas Naturales Protegidas, and a milit-
ary cuartel (Guardia Nacional in México) will be created (Ba-
dillo, 2024).

Therefore, it is essential to examine other global causes with
local community impacts, as people in this region are migrants
in the USA due to telecoupled changes that can be better ex-
plained through a telecoupling framework (Martin-Lépez et al.,
2019), as seen in studies in the European Arctic (Zivojinovié et
al., 2024).

4. Conclusion

We identified a forest natural revegetation process, where cro-
pland and bare land were diminished. It is necessary for more
scientific research to explain this process in SMG.

This study employs Landsat time series analysis, combined
with the CCDC algorithm and process tracing, to assess the im-
pact of human activities on land system changes. The harmonic
regression coefficient provides useful information; for example,
the start and end times, as well as the magnitude, can be inter-
preted as a metric of impact.

Data from Landsat time series analysis is a source to ex-
plain LUCs, considering the stages: pre-conflict, conflict, and
post-conflict in a harmonic continuous model and with land
use/cover annual maps. The information generated can help
forest community monitoring and decision makers to address
the solutions of LUCs in in rural communities.

5. Limitations and future research

In this study, only one breakpoint of LUC was explained in
more depth. A more in-depth analysis is necessary in the study
area. We defined only three general classes; in future research,
we can be more specific and only consider new reports as tra-
cing processes.

For future research we are considering to explore advances in
near-real time forest change monitoring systems with CCDC
algorithm and Sentinel data, for example such as experiences
in Madagascar (Bullock et al., 2022) with Sentinel 1 radar, in
Portugal with Sentinel 2 provided timely change detection with
high spatial detail for continuous forest loss monitoring (Mor-
aes et al., 2024), Landsat and Sentinel 2 data harmonized to de-
tect disturbances around the world (Li et al., 2025). Addition-
ally, it will be possible to integrate more remote sensing data
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Figure 4. LULC Annual classifications in SMG
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Figure 5. Santuario de las Aves Facebook page.

available for land cover mapping with socio-economic data and
qualitative methodologies, such as interviews and workshops
with different stakeholders, to analyze LS as a complex and
multifaceted problem (wicked problem).
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