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Abstract 

Quickflow (QF) is the fraction of rainfall that rapidly runs off to channels, a key element for understanding floods and 

designing control measures. It reflects rapid runoff pathways that drive peak flows, sediment pulses, water-quality downstream 

impacts, and hazards. QF is influenced by the precipitation regime (seasonality and event concentration) and by surface properties 

represented by land use/land cover (LULC) and soil types, which modulate infiltration and storage. We applied the InVEST–

Seasonal Water Yield (SWY) model at 30 m resolution in the San Fernando–Soto la Marina basin. We used monthly climate, 2020 

LULC, and soil type data, and analyzed (i) the basin-wide distribution of QF, (ii) the spatial influence of LULC- and soil-based 

on QF, and (iii) the precipitation–QF relationship. Results show a multimodal distribution of QF ratios; urban areas, bare soils, and 

low-cover croplands yield higher QF than woody covers; and the precipitation–QF relationship is positive but dispersed, modulated 

by the sequence and intensity of events and by surface conditions. We conclude that integrated land and water management should 

(a) focus on targeted interventions in high-QF zones that maintain or improve vegetation cover and promote infiltration to reduce 
flooding and erosion and promote increased dry season flows and (b) integrate improved temporal and spatial representation of 
precipitation events with realistic LULC and soil parameterizations for more accurate model outputs and reliable planning.

1. Introduction

The study of QF is an essential component of hydrological 

analysis, as it helps elucidate the processes that govern the 

movement of water over the Earth’s surface and its relationship 

with the physical and environmental characteristics of a 

watershed (Reitz, 2019). The QF parameter represents the 

fraction of precipitation that flows directly to channels without 

infiltrating into the soil, making it a key indicator of surface 

hydrological behavior and the immediate response of a basin to 

rainfall events (Yamasaki et al., 2023). 

In Tamaulipas, México, the importance of characterizing quick 

runoff is reflected in the historical disaster pattern: between 

1999 and 2018, storms and tropical cyclones accounted for the 

largest share of FONDEN (Natural Disasters Fund) resources 

allocated to the state (1.79 billion and 0.93 billion MXN, 

respectively), far exceeding other disaster types such as fluvial, 

pluvial, or drought events. Moreover, storm declarations have 

shown the highest frequency and municipal coverage, with 

notable peaks such as 2013 (99 municipalities affected) 

(INECC, 2021; DOF, 2013). This pattern indicates high 

exposure to intense rainfall and rapid hydrological responses, so 

quantifying and mapping quickflow is especially relevant for 

risk management and water‐resource planning in the state 

(INECC, 2021). 

Understanding the spatial and temporal dynamics of runoff is 

crucial, since excessive quickflow can generate significant 

hydrological and environmental consequences, such as flooding, 

soil erosion, loss of fertility, transport of sediments and 

pollutants, and reduced aquifer recharge (Kayitesi et al., 2022; 

Tedoldi et al., 2016). These impacts affect not only ecosystems 

but also human activities, infrastructure, and the water security 

of communities (Amundson et al., 2015; Mishra et al., 2021; 

Othman et al., 2023). Therefore, detailed analysis of this 

phenomenon is essential for sustainable water management and 

land‐use planning (Haasnot et al., 2011; Russo et al., 2014). 

Multiple physical and environmental factors control the 

generation and magnitude of quickflow on the landscape (Lang 

et al., 2025). Chief among them is precipitation, which 

determines the amount of water available for infiltration and 

overland flow (Kirkby et al., 1969; Orchard et al., 2012). 

Topography directly influences the velocity of surface flow and 

the land’s capacity to retain or infiltrate water (Price et al., 

2011; Anderson and Burt, 1978). Soil properties and type, in 

turn, determine infiltration, permeability, and storage 

characteristics, which directly affect the proportion of runoff 

generated (Hümann, et al., 2011; Yand and Zhang, 2011). Land 

use and land cover also play a decisive role, as impervious or 

degraded surfaces tend to increase volumes of surface runoff 

(Zimmermann et al., 2006; Dias et al., 2015). 

Recent research has demonstrated that spatiotemporal 

characterization of land-use and land-cover dynamics using 

high-resolution remote sensing and machine-learning tools can 

substantially improve the detection of patterns relevant to 

hydrological processes, particularly in urban or environmentally 

stressed basins (Rodríguez González et al., 2024). Such LULC-

oriented approaches provide valuable support for runoff-related 

assessments by refining the representation of surface conditions 

that control infiltration and rapid flow responses. 

A widely used parameter to integrate the influence of these 

factors is the Curve Number (CN), developed by the USDA Soil 

Conservation Service (SCS). This index synthesizes a surface’s 

hydrological response by combining soil type, land cover, 

management practices, and antecedent moisture conditions, 
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becoming a fundamental tool for estimating surface runoff in 

hydrological models (Brandão et al., 2025; Wang et al., 2025). 

In this context, spatial modeling tools such as the InVEST 

(Integrated Valuation of Ecosystem Services and Tradeoffs) 

model are highly useful for comprehensively evaluating 

quickflow and partitioning of the hydrologic cycle (Raji et al., 

2021). The InVEST Seasonal Water Yield (SWY) model 

estimates the generation and spatial distribution of runoff from 

climatic, topographic, edaphic, and land‐cover information, 

enabling the identification of areas with greater susceptibility to 

runoff and associated processes (Hamel et al., 2020). Its 

application strengthens understanding of hydrological processes 

and informs management and conservation strategies in 

watersheds (Wang et al., 2016). 

This study evaluates the spatial variability of quickflow (QF) 

using InVEST by (1) describing its basin-wide distribution, (2) 

comparing QF across LULC classes and soil types while 

accounting for their areal shares, and (3) assessing the 

relationship between annual precipitation and QF across the 

study area. 

2. Study Area

San Fernando–Soto la Marina basin is located between 

25°44′02.49″ N - 23°16′55.93″ N and 98°47′23″ W - 

98°24′21.10″ W, in the state of Tamaulipas (Figure 1). Its 

terrain ranges from coastal plains and rolling hills to the ranges 

of the Sierra Madre Oriental, which lie to the west of the area 

(DOF, 2018). 

Figure 1. San Fernando-Soto la Marina basin in Tamaulipas, 

México, showing (1) study site, (2) quickflow, (3) soil type; 

categorized as calcaric cambisol (CC), eutric cambisol (EC), 

haplic kastanozem (HK), calcaric kastanozem (CK), luvic 

kastanozem (LK), haplic chernozem (HCH), calcaric chernozem 

(CCH), luvic chernozem (LCH), calcaric phaeozem (CP), haplic 

phaeozem (HP), luvic phaeozem (LP), eutric gleysol (EG), 

leptosol (L), chromic luvisol (CL), vertic luvisol (VL), 

calcaric regosol (CR), eutric regosol (ER), rendzina 

(RND), gleyic solonchak (GS), chromic vertisol (CV), pelic 

vertisol (PV), calcaric xerosol (CX), haplic xerosol (HX), luvic 

xerosol (LX) and (4) land use/land cover (LULC); 

categorized as water (WA), pine forest (PF), tropical dry forest 

(TDF), oak-pine forest (OPF), cloud forest (CF), shrubland 

(SHU), submontane shrublands (SS), grassland (GSS), bare soil 

(BS), halophytic grassline (HG), cropland (CRL) and urban 

zone (URB). 

Tamaulipas experiences its highest average maximum 

temperatures in June and August (34.6 °C and 34.5 °C), while 

the lowest values occur in December and January (11.2 °C and 

10.6 °C) (INECC, 2021). Precipitation (P) is greatest during the 

June–October wet season, reaching a maximum in September 

(160.4 mm). These seasonal patterns frame a heterogeneous 

land-use/land-cover (LULC) mosaic set over diverse soils 

across the state (INEGI, 2014; CONABIO, 2023). 

3. Data and Methods

3.1 InVEST model 

The InVEST SWY is a simple, spatially explicit hydrologic 

model that estimates the seasonal contribution of the landscape 

to runoff (Natural Capital Project, 2025). It operates at a 

monthly scale using climate, LULC, and soils to partition the 

hydrologic response into quickflow (rapid runoff) and slower 

components (i.e., recharge and baseflow) (Guswa et al., 2018). 

Its outputs are relative indices, useful for comparing scenarios 

and seasons; the quick-flow equation is presented below (eq. 1). 

This flow is computed using a CN based method, assuming that 

daily rainfall depths on rainy days follow an exponential 

distribution (Natural Capital Project, 2025). Its outputs are 

relative indices, useful for comparing scenarios and seasons; the 

quick-flow equation is presented below: 

,   (1) 

where = number of rainfall events at pixel during 

month 

= mean rainfall depth on a rainy day at pixel 

during month 

= curve number for pixel 

 = exponential integral function 

 the annual quickflow, is computed as the 

sum of the monthly values 

3.2 InVEST model inputs 

A 30 m DEM (USGS/NASA, 2024) was used for topography; 

2020 LULC (CONABIO–CONAFOR–INEGI, 2020; Landsat-8, 

30 m) for land cover/use; and the Soil Map, Series II (INEGI, 

2014) for soil types (Figure 1). Soil polygons were reclassified 

into USDA Hydrologic Soil Groups (A–D) using INEGI 

descriptions of the soil classes, and Curve Number (CN) values 
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were assigned by combining LULC and soil groups using the 

USDA SCS lookup table, ensuring unique runoff responses for 

each pairing. Climate inputs included monthly precipitation 

from CRU-TS v4.09 downscaled with WorldClim 2.1 (Harris et 

al., 2020; Fick & Hijmans, 2017) and potential 

evapotranspiration from the CGIAR-CSI Global PET dataset 

(Trabucco & Zomer, 2019). As these rasters represent monthly 

totals, no temporal aggregation was needed; all inputs were 

clipped to the basin and linked through monthly CSV tables. 

Long-term rainfall event normals (e.g., the number of events per 

month from January through December) from SMN 

meteorological stations were spatially interpolated using the 

Inverse Distance Weighting (IDW) method to create continuous 

climate-zone maps differentiated by mean monthly precipitation 

events. Based on these, a rainfall-events table was generated to 

indicate the number of rainy days (> 0.1 mm) per month. The 

InVEST SWY model uses the CSV rainfall events table to 

partition total monthly precipitation into discrete storm events 

and the GeoTIFF climate-zone raster to assign each pixel to a 

representative climatic regime, enabling simulation of spatially 

variable quickflow (Natural Capital Project, 2025). 

A biophysical table linked each LULC class to hydrologic 

parameters, incorporating vegetation coefficients (Kc) from 

FAO guidelines (Allen et al., 1998) and Curve Number (CN) 

ranges recommended by the USDA-NRCS (1986) and the 

InVEST User Guide (Natural Capital Project, 2025) (Figure 2). 

Figure 2. A schematic illustration of the Seasonal Water Yield 

(SWY) model workflow for quickflow estimation. 

4. Results

4.1 Pixel-scale distribution of QF/P across the basin 

The distribution of QF/P is right-skewed and multimodal 

(Figures 1(2) and 2). Three well-defined peaks are observed at 

0–0.12 (n = 620,478), 0.22–0.30 (n = 225,070), and 0.48–0.56 

(n = 108,499). The mass of the distribution is concentrated 

below 0.20, followed by a mid-range peak and a smaller high-

value peak (Figure 2). 

Figure 3. Histogram of the quickflow ratio (QF/P). 

4.2 Quickflow variability across LULC and soil types 

QF differed markedly among LULC classes (Figure 3). The 

highest median QF was observed in water (WA; 870.8 mm/yr). 

An intermediate group included Halophytic grassline (HG;530.1 

mm/yr), Urban zone (URB; 395.2 mm/yr), Cropland (CRL; 

384.5 mm/yr), and Bare soil (BS; 363.8 mm/yr). Lower medians 

were observed for Shrubland (SHU; 171.0), Grassland (GSS; 

137.2 mm/yr), and Tropical dry forest (TDF; 117.2 mm/yr), 

whereas Submontane shrublands (SS;63.5 mm/yr) and Cloud 

forest (CF;41.5 mm/yr) were very low, and Pine forest (PF; 3.6 

mm/yr) and Oak-pine forest (OPF; 1.8 mm/yr) clustered near 0 

mm/yr. All classes included observations of 0 mm/yr QF. 

Areal proportions provide critical context: despite high medians, 

water (WA), Halophytic grassline (HG), Urban zone (URB), 

and Bare soil (BS) occupy only 1.07%, 1.71%, 0.60%, and 

0.86% of the basin, respectively (Table 1), while Submontane 

shrubland (SS) (20.79%) and Cropland (CRL) (16.81%) 

dominate the landscape, followed by Grassland (GSS) (6.63%), 

Tropical dry forest (TDF) (3.32%), Oak-pine forest (OPF) 

(2.90%), Pine forest (PF) (2.67%), and Shrubland (SHU) 

(1.90%). Thus, basin-wide QF patterns are shaped by high-QF 

but spatially limited classes and by extensive low-to-moderate 

classes with large area shares. 

QF varied markedly across soil types (Figure 4). Median QF 

spanned 0.51–610.27 mm/yr, with the highest medians in 

Gleyic Solonchak (GS; 610.27 mm/yr), Eutric Gleysol (EG; 

514.59 mm/yr), and Pelic Vertisol (PV; 417.13 mm/yr). A mid-

range was observed for Luvic Phaeozhem (LP; 345.63 mm/yr), 

Calcaric Xerosol (CX; 316.33 mm/yr), Vertic Luvisol (VL; 

277.01 mm/yr), Eutric Cambisol (EC; 270.58 mm/yr), Haplic 

Xerosol (HX; 253.28 mm/yr), Chromic Luvisol (CL; 252.74 

mm/yr), and Chromic Vertisol (CV; 250.53 mm/yr). Lower 

medians occurred in (RND; 69.24 mm/yr), Luvic Kastanozem 

(LK; 70.88 mm/yr), Luvic Chernozem (LCH; 71.71 mm/yr), 

Calcaric Phaeozem (CP; 76.81 mm/yr), Calcaric Kastanozem 

(CK; 87.99 mm/yr), Calcaric Regosol (CR; 96.69 mm/yr), 

Calcaric Chernozem (CCH; 114.22 mm/yr), Calcaric Cambisol 

(CC; 119.58 mm/yr), Luvic Xerosol (LX; 171.24 mm/yr), 

Haplic Chernozem (HCH; 198.55 mm/yr), and Haplic 

Phaeozem (HP; 204.97 mm/yr), with LIT (33.74 mm/yr) and 

Eutric Regosol (ER; 0.51 mm/yr) at the bottom. Most soil types 

include 0 mm/yr observations; Luvic Phaeozem (LP), Vertic 

Luvisol (VL), Eutric Cambisol (EC), and Luvic Chernozem 

(LCH) do not. Several violins display elongated upper tails, 

indicating a strong right-skew. 
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Figure 4. Violin/boxplots of QF (mm/yr) by LULC; classes 

ordered by median; boxes display median and IQR. 

Table 1. Areal extent of LULC (km²; % of basin). 

LULC Area (km2) % 

SS 17155.12 20.79 

CRL 13876.73 16.81 

GSS 5468.92 6.63 

TDF 2736.95 3.32 

OPF 2391.03 2.90 

PF 2202.71 2.67 

SHU 1569.53 1.90 

HG 1409.65 1.71 

WA 884.52 1.07 

BS 709.94 0.86 

URB 493.72 0.60 

CF 13.88 0.02 

Figure 5. Violin/boxplots of QF (mm/yr) by soil type; types 

ordered by median; boxes show median and IQR. 

Areal composition provides essential context (Table 2): three 

classes dominate the basin: RND (9,603.99 km²; 20.37%), LIT 

(8,674.84 km²; 18.40%), and PV (7,200.82 km²; 15.27%) 

together accounting for 54% of the area. Mid-extent classes 

include CK (9.88%), CX (7.69%), and CV (7.50%), followed 

by LK (3.47%), GS (3.19%), EG (3.07%), CP (2.81%), and CR 

(2.44%). Smaller fractions correspond to LX (1.39%) and EC 

(1.26%), whereas the remaining soil types each occupy <1% of 

the basin, the smallest being LCH, 0.01%. Thus, basin-wide QF 

patterns reflect the interplay between a few high-QF soils with 

modest areal contributions and extensive low-to-moderate QF 

soils that dominate the landscape. 

Table 2.  Area and percentage by soil type class in the San 

Fernando-Soto la Marina basin 

Soil Area (km2) % 

RND 9603.99 20.37 

LIT 8674.84 18.40 

PV 7200.82 15.27 

CK 4657.78 9.88 

CX 3625.26 7.69 

CV 3535.23 7.50 

LK 1634.93 3.47 

GS 1501.74 3.19 

EG 1445.38 3.07 

CP 1322.72 2.81 

CR 1151.98 2.44 

LX 657.00 1.39 

EC 593.50 1.26 

LP 355.90 0.75 

HX 294.45 0.62 

CL 270.76 0.57 

ER 191.77 0.41 

CC 102.80 0.22 

HK 98.59 0.21 

HCH 70.35 0.15 

HP 68.12 0.14 

VL 54.77 0.12 

CCH 27.07 0.06 

LCH 2.85 0.01 

4.3 Precipitation–quickflow relationship 

The P-QF relationship is positive, with the upper envelope of 

quickflow increasing as precipitation rises. The fitted linear 

model (R² = 0.21) summarizes this basin-wide association and 

indicates a moderate relationship with substantial dispersion 

around the trend (Figure 6). This dispersion reflects the wide 

range of QF values observed across the basin for similar 

precipitation levels. At the monthly scale, the relationship 

varied considerably, with very low coefficients of determination 

(R² ≤ 0.02) in most months and a modest peak during July (R² = 

0.13), indicating that the strength of the P–QF association 

changes seasonally but is strongest at the annual scale. 

Figure 6. Relationship between annual precipitation and 

log(QF)+1; density shading indicates observation counts. The 

fitted trend is positive (R² = 0.21). 

5. Discussion

5.1 Distribution of quickflow ratios 

The multimodal distribution of QF/P, skewed to the right, 

indicates that most pixels contribute little to direct runoff in an 

average year, while a smaller group clusters around 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W3-2025 
Conference on Geoinformation 2025, 24–28 November, Mérida, Yucatán, México

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-69-2026 | © Author(s) 2026. CC BY 4.0 License.

 
72



intermediate and high fractions. This pattern is consistent with a 

landscape where (i) precipitation is seasonally concentrated and 

spatially uneven (Good et al., 2016), (ii) infiltration capacity 

varies considerably with soil structure and vegetation (Jencso et 

al., 2011), and (iii) hydrological connectivity differs among 

terrain units. 

Areas with dense tree cover, higher infiltration capacity, or 

longer overland flow paths tend to populate the low QF/P mode, 

while zones with shallow or poorly structured soils, sparse 

vegetation, or short and well-connected flow paths between 

hillslopes and channels tend to occupy the higher modes 

(Kumar et al., 2021). Pixels with QF values close to zero likely 

reflect locations where vegetation and soils prevent most 

rainfall from becoming QF (Hamel et al., 2020). 

These characteristics align with the CN-based representation of 

quickflow in SWY, where antecedent moisture, soil group, and 

LULC jointly modulate the distribution of a given rainfall depth 

(Muche et al., 2020). In summary, multimodality is to be 

expected in a watershed that combines coastal lowlands, 

agricultural plains, shrublands, and forested highlands. 

Importantly, the distribution pattern of intermediate-to-high 

QF/P fractions (Figure 6) identifies areas where rapid 

hydrological response could amplify the impacts of intense or 

atypical rainfall events. High-fraction pixels may coincide with 

sectors that are more prone to rapid accumulation and runoff 

concentration during storms, especially in landscapes where 

drainage density or flow-path connectivity is high (Hamel et al., 

2020; Xu et al., 2020). These spatial signals align with the 

disaster patterns described for Tamaulipas and point to potential 

subareas where hydrometeorological vulnerability is elevated. 

5.2 LULC and soil impacts on QF 

Classes associated with low infiltration or effective 

imperviousness (e.g., Urban zone [URB], Bare soils [BS], 

Croplands [CRL], Halophytic grassline [HG]) typically show 

higher QF values than forest covers (Xu et al., 2020; Zhang et 

al., 2017). However, their basin-scale influence depends on the 

areal extent of each LULC class: several high-QF classes may 

occupy small fractions (e.g., Water [WA], Halophytic grassline 

[HG], Urban zone [URB], and Bare soil [BS]), whereas 

extensive classes with moderate or low QF (e.g., Submontane 

shrublands [SS], Cropland [CRL], Grasslands [GSS], and 

Tropical dry forests [TDF]) determine the aggregated signal 

(Zhang et al., 2017; Xu et al., 2020). From a mechanistic 

perspective, vegetation structure, rooting depth, and surface 

roughness attenuate event responses in forests and some 

shrublands, whereas sparse canopies, soil disturbance, or 

imperviousness amplify them in urban, agricultural, or bare 

settings (Zhang et al., 2017; Li et al., 2017). 

Soils indicative of low permeability, shallow profiles, 

salinity/alkalinity issues, or shrink–swell behavior (e.g., Gleyic 

Solonchak [GS], Eutric Gleysol [EG], and Pelic Vertisol [PV]) 

tend to exhibit higher QF medians and longer upper tails; in 

contrast, deeper soils with better structure or coarser texture 

(e.g., Eutric Regosol [ER], Litosol [LIT], Calcaric Regosol 

[CR], Calcaric Cambisol [CC], Calcaric Chernozem [CCH], 

Luvic Kastanozem [LK], and Luvic Chernozem [LCH]) show 

lower medians (Issa et al., 2011; Mandal et al., 2008; Bagarello 

et al., 2014). 

As with LULC, area matters: some high-QF soils do not 

dominate basin-wide responses if they are distributed in isolated 

patches, whereas more widespread low- to moderate-QF soils 

govern the basin’s aggregated values (Zhang et al., 2017). 

These gradients align with long-standing evidence that land 

cover and soil hydraulic properties co-control runoff generation 

via infiltration-excess and saturation-excess processes 

urbanization and ground exposure increase quickflow, while 

forested or undisturbed covers reduce it (Stewart et al., 2019; 

Xu et al., 2020; Zhang et al., 2017) and the CN-based 

parameterization used by the SWY model intentionally 

integrates LULC and soil information; therefore, the observed 

ranges are consistent with CN theory (Natural Capital Project, 

2025; USDA-NRCS, 1986; Guswa et al., 2018). 

The spatial arrangement of these LULC–soil combinations also 

highlight areas that may be more vulnerable to 

hydrometeorological hazards. High-QF classes concentrated 

near drainage lines, lowlands, or urbanized sectors can 

accelerate surface runoff during intense storms, increasing 

susceptibility to localized flooding. Conversely, forested and 

well-vegetated zones function as hydrological buffers, 

suggesting priority areas for conservation or restoration to 

mitigate the impacts of extreme rainfall (Zhang et al., 2017; Xu 

et al., 2020). These spatial contrasts underscore how QF maps 

can support the identification of critical subareas relevant for 

disaster prevention and risk-reduction planning. 

5.3 Evaluation of precipitation – quickflow relationship 

At the basin scale, we observe a positive QF-P trend: more 

precipitation generally produces more quickflow. However, the 

weak fit (R² = 0.21) and the large spread around the trend 

indicate that QF is shaped not only by rainfall totals but also by 

the temporal structure of rainfall and the surface conditions 

controlling the partitioning between runoff and infiltration. 

Within the InVEST–SWY framework, which implements a CN-

based formulation, this behavior is expected because the model 

responds to the depth of rainfall on rainy days and the number 

of effective events, rather than to monthly or annual 

precipitation alone (Natural Capital Project, 2025; USDA 

NRCS, 1986). 

A key factor behind this dispersion is event sequencing. Months 

with the same total rainfall can generate markedly different QF 

depending on whether precipitation occurs as many small 

storms or as a few large storms. This pattern is also supported 

by the weak relationships between precipitation and quickflow 

in individual months (R² < 0.02 for all months except July). 

Fewer, more intense events produce higher mean storm depths 

and therefore greater QF, whereas numerous small events often 

generate lower QF, even under similar precipitation totals. 

Similarly, antecedent soil moisture modulates the runoff 

response between successive storms. Temporal clusters of 

rainfall events limit drying time and increase antecedent soil 

moisture, reducing infiltration and amplifying QF; in contrast, 

widely spaced storms allow drying and increased infiltration 

capacity, yielding lower QF. These mechanisms help explain 

why pixels subjected to similar precipitation exhibit contrasting 

QF values and why the relationship follows an envelope pattern 

rather than a tight linear trend (Hamel et al., 2020). 

Previous applications of InVEST–SWY report similar 

outcomes: precipitation is the primary driver of QF, but land 

cover, soil hydrologic group, event frequency, and storm 

intensity jointly determine how closely QF follows rainfall at 

fine spatial scales (Natural Capital Project, 2025; Hamel et al., 

2020). Improving representations of event sequencing, 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W3-2025 
Conference on Geoinformation 2025, 24–28 November, Mérida, Yucatán, México

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-69-2026 | © Author(s) 2026. CC BY 4.0 License.

 
73



vegetation dynamics, and soil moisture states has been shown to 

strengthen the precipitation–runoff relationship. 

In practice, relying on annual precipitation alone can 

underestimate QF in urban or compacted areas where 

antecedent moisture and storm clustering greatly increase runoff 

and overestimate QF in vegetated or highly permeable areas, 

where infiltration dominates (Ran et al., 2022; O’Driscoll et al., 

2010). Therefore, planning and assessment should integrate 

precipitation scenarios with realistic LULC and soil 

parameterizations and, when possible, incorporate information 

on the temporal distribution and sequencing of rainfall events, 

particularly in urbanizing basins where increases in runoff are 

well documented (Chen et al., 2017; Huang et al., 2024). 

5.4 Study Limitations and Model Constraints 

Like other InVEST tools, the SWY model provides a simplified 

representation of hydrological processes and is primarily 

designed for comparative or scenario-based analyses. QF 

estimation relies on the CN approach, which simplifies the 

surface-runoff relationship and does not explicitly incorporate 

topographic variability or event-scale dynamics. Consequently, 

the model does not effectively capture short-term fluctuations 

associated with extreme precipitation events or the non-linear 

response of saturated areas (Natural Capital Project, 2025). 

Temporal resolution represents another key limitation. The 

SWY model operates at a monthly time step, which smooths 

peak flows and prevents accurate reproduction of event-based 

runoff or flood magnitudes. Thus, the outputs are best 

interpreted as relative indicators of spatial variation rather than 

absolute discharge values. This temporal aggregation also 

affects the representation of antecedent moisture and storm 

sequencing, which influence quickflow generation in real-world 

conditions. 

Uncertainties may also arise from the parameterization of input 

datasets. The CN and Kc values are assigned by land-cover 

class and soil hydrologic group, assuming homogeneity within 

each class. These empirical values are based on generalized 

tables and may not reflect local soil structure, vegetation 

condition, or management practices. Similarly, rainfall and 

evapotranspiration inputs derived from global datasets (e.g., 

WorldClim, CGIAR-CSI) involve downscaling and 

interpolation steps that introduce additional spatial uncertainty. 

Finally, the SWY framework uses simplified flow routing and 

does not simulate groundwater-surface water interactions, 

channel transmission losses, or feedbacks between land cover 

and evapotranspiration. As a result, the model’s outputs are 

more reliable for identifying spatial patterns and relative 

differences in QF across the basin than for quantifying absolute 

magnitudes. While effective as a tool to inform long-term water 

resource management through spatial patterns and trends in 

water yield across years to decades, these limitations necessitate 

caution when applying SWY model results to questions the 

model is not designed to answer.  

6. Conclusions

Taken together, these results meet the study’s objective by: (1) 

describing a multimodal QF distribution, (2) identifying 

systematic contrasts by LULC and soil while accounting for 

area, and (3) confirming a primary precipitation control 

tempered by surface properties. 

(1) In the San Fernando–Soto la Marina basin, quickflow (QF) 
is highly heterogeneous: most areas contribute little in a typical 
year, while a smaller area shows intermediate to high values, 
consistent with the combined effects of seasonal precipitation, 
land cover/use, and soil properties. (2) For LULC, urban zones, 
bare soils, and crops with low cover tend to generate more QF 
than woody covers; however, at the basin scale, most of the land 
area contributes very little, whereas high-QF zones, especially 
where flow paths are short, contribute most of the QF.

For soils, those associated with waterlogging/salinity and 

shrink–swell clays (e.g., GS, EG, PV) tend to generate higher 

QF than deeper, better-structured, or coarser soils (e.g., ER, 

LIT, CR, CC, CCH, LK, LCH); however, at the basin scale, the 

overall behavior is determined by the extensive low-to-

moderate QF soils, while the high-QF classes being more 

limited in area have less influence on the total outcome. (3) The 

precipitation–QF relationship is positive but weak: annual 

rainfall totals alone are not good predictors of local QF because 

the sequence/intensity of events and surface conditions 

modulate runoff generation within the InVEST–SWY 

framework (CN-based).  

These results bear important implications for improving 

watershed and water resource management. For instance, 

regional management should focus on combining targeted 

actions in zones that are prone to waterlogging and rapid runoff 

improving retention and reducing quickflow to prevent flooding 

and erosion (e.g., urban drainage upgrades and protection of 

exposed or agricultural soils) with broader actions across the 

rest of the basin to maintain vegetation and enhance water 

infiltration. Future work should integrate precipitation scenarios 

with realistic LULC and soil parameterizations and, when 

possible, evaluate the impact of seasonal and event-specific 

differentiation of precipitation, to avoid under- or 

overestimating QF. 
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