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Abstract

Quickflow (QF) is the fraction of rainfall that rapidly runs off to channels, a key element for understanding floods and
designing control measures. It reflects rapid runoff pathways that drive peak flows, sediment pulses, water-quality downstream
impacts, and hazards. QF is influenced by the precipitation regime (seasonality and event concentration) and by surface properties
represented by land use/land cover (LULC) and soil types, which modulate infiltration and storage. We applied the InVEST—
Seasonal Water Yield (SWY) model at 30 m resolution in the San Fernando—Soto la Marina basin. We used monthly climate, 2020
LULC, and soil type data, and analyzed (i) the basin-wide distribution of QF, (ii) the spatial influence of LULC- and soil-based
on QF, and (iii) the precipitation—QF relationship. Results show a multimodal distribution of QF ratios; urban areas, bare soils, and
low-cover croplands yield higher QF than woody covers; and the precipitation—QF relationship is positive but dispersed, modulated
by the sequence and intensity of events and by surface conditions. We conclude that integrated land and water management should
(a) focus on targeted interventions in high-QF zones that maintain or improve vegetation cover and promote infiltration to reduce
flooding and erosion and promote increased dry season flows and (b) integrate improved temporal and spatial representation of

precipitation events with realistic LULC and soil parameterizations for more accurate model outputs and reliable planning.

1. Introduction

The study of QF is an essential component of hydrological
analysis, as it helps elucidate the processes that govern the
movement of water over the Earth’s surface and its relationship
with the physical and environmental characteristics of a
watershed (Reitz, 2019). The QF parameter represents the
fraction of precipitation that flows directly to channels without
infiltrating into the soil, making it a key indicator of surface
hydrological behavior and the immediate response of a basin to
rainfall events (Yamasaki et al., 2023).

In Tamaulipas, México, the importance of characterizing quick
runoff is reflected in the historical disaster pattern: between
1999 and 2018, storms and tropical cyclones accounted for the
largest share of FONDEN (Natural Disasters Fund) resources
allocated to the state (1.79 billion and 0.93 billion MXN,
respectively), far exceeding other disaster types such as fluvial,
pluvial, or drought events. Moreover, storm declarations have
shown the highest frequency and municipal coverage, with
notable peaks such as 2013 (99 municipalities affected)
(INECC, 2021; DOF, 2013). This pattern indicates high
exposure to intense rainfall and rapid hydrological responses, so
quantifying and mapping quickflow is especially relevant for
risk management and water-resource planning in the state
(INECC, 2021).

Understanding the spatial and temporal dynamics of runoff is
crucial, since excessive quickflow can generate significant
hydrological and environmental consequences, such as flooding,
soil erosion, loss of fertility, transport of sediments and
pollutants, and reduced aquifer recharge (Kayitesi et al., 2022;
Tedoldi et al., 2016). These impacts affect not only ecosystems
but also human activities, infrastructure, and the water security
of communities (Amundson et al., 2015; Mishra et al., 2021;

Othman et al.,, 2023). Therefore, detailed analysis of this
phenomenon is essential for sustainable water management and
land-use planning (Haasnot et al., 2011; Russo et al., 2014).

Multiple physical and environmental factors control the
generation and magnitude of quickflow on the landscape (Lang
et al., 2025). Chief among them is precipitation, which
determines the amount of water available for infiltration and
overland flow (Kirkby et al., 1969; Orchard et al., 2012).
Topography directly influences the velocity of surface flow and
the land’s capacity to retain or infiltrate water (Price et al.,
2011; Anderson and Burt, 1978). Soil properties and type, in
turn, determine storage
characteristics, which directly affect the proportion of runoff
generated (Hiimann, et al., 2011; Yand and Zhang, 2011). Land
use and land cover also play a decisive role, as impervious or

infiltration, permeability, and

degraded surfaces tend to increase volumes of surface runoff
(Zimmermann et al., 2006; Dias et al., 2015).

demonstrated that
characterization of land-use and land-cover dynamics using

Recent research has spatiotemporal
high-resolution remote sensing and machine-learning tools can
substantially improve the detection of patterns relevant to
hydrological processes, particularly in urban or environmentally
stressed basins (Rodriguez Gonzalez et al., 2024). Such LULC-
oriented approaches provide valuable support for runoff-related
assessments by refining the representation of surface conditions

that control infiltration and rapid flow responses.

A widely used parameter to integrate the influence of these
factors is the Curve Number (CN), developed by the USDA Soil
Conservation Service (SCS). This index synthesizes a surface’s
hydrological response by combining soil type, land cover,
management practices, and antecedent moisture conditions,
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becoming a fundamental tool for estimating surface runoff in
hydrological models (Brandao et al., 2025; Wang et al., 2025).

In this context, spatial modeling tools such as the InVEST
(Integrated Valuation of Ecosystem Services and Tradeoffs)
model are highly useful for comprehensively evaluating
quickflow and partitioning of the hydrologic cycle (Raji et al.,
2021). The InVEST Seasonal Water Yield (SWY) model
estimates the generation and spatial distribution of runoff from
climatic, topographic, edaphic, and land-cover information,
enabling the identification of areas with greater susceptibility to
runoff and associated processes (Hamel et al., 2020). Its
application strengthens understanding of hydrological processes
and informs management and conservation strategies in
watersheds (Wang et al., 2016).

This study evaluates the spatial variability of quickflow (QF)
using InVEST by (1) describing its basin-wide distribution, (2)
comparing QF across LULC classes and soil types while
accounting for their areal shares, and (3) assessing the
relationship between annual precipitation and QF across the
study area.

2. Study Area

San Fernando—Soto la Marina basin is located between
25°44'02.49" N - 23°16'55.93” N and 98°4723" W -
98°24"21.10" W, in the state of Tamaulipas (Figure 1). Its
terrain ranges from coastal plains and rolling hills to the ranges
of the Sierra Madre Oriental, which lie to the west of the areca
(DOF, 2018).
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Figure 1. San Fernando-Soto la Marina basin in Tamaulipas,
México, showing (1) study site, (2) quickflow, (3) soil type;
categorized as calcaric cambisol (CC), eutric cambisol (EC),
haplic kastanozem (HK), calcaric kastanozem (CK), luvic

kastanozem (LK), haplic chernozem (HCH), calcaric chernozem
(CCH), luvic chernozem (LCH), calcaric phacozem (CP), haplic
phacozem (HP), luvic phacozem (LP), eutric gleysol (EG),
leptosol (L), chromic Iluvisol (CL), vertic luvisol (VL),
calcaric regosol (CR), eutric regosol (ER), rendzina
(RND), gleyic solonchak (GS), chromic vertisol (CV), pelic
vertisol (PV), calcaric xerosol (CX), haplic xerosol (HX), luvic
xerosol (LX) and (4) land wuse/land cover (LULC);
categorized as water (WA), pine forest (PF), tropical dry forest
(TDF), oak-pine forest (OPF), cloud forest (CF), shrubland
(SHU), submontane shrublands (SS), grassland (GSS), bare soil
(BS), halophytic grassline (HG), cropland (CRL) and urban
zone (URB).

Tamaulipas experiences its highest average maximum
temperatures in June and August (34.6 °C and 34.5 °C), while
the lowest values occur in December and January (11.2 °C and
10.6 °C) (INECC, 2021). Precipitation (P) is greatest during the
June—October wet season, reaching a maximum in September
(160.4 mm). These seasonal patterns frame a heterogeneous
land-use/land-cover (LULC) mosaic set over diverse soils
across the state (INEGI, 2014; CONABIO, 2023).

3. Data and Methods
3.1 InVEST model

The InVEST SWY is a simple, spatially explicit hydrologic
model that estimates the seasonal contribution of the landscape
to runoff (Natural Capital Project, 2025). It operates at a
monthly scale using climate, LULC, and soils to partition the
hydrologic response into quickflow (rapid runoff) and slower
components (i.e., recharge and baseflow) (Guswa et al., 2018).
Its outputs are relative indices, useful for comparing scenarios
and seasons; the quick-flow equation is presented below (eq. 1).
This flow is computed using a CN based method, assuming that
daily rainfall depths on rainy days follow an exponential
distribution (Natural Capital Project, 2025). Its outputs are
relative indices, useful for comparing scenarios and seasons; the
quick-flow equation is presented below:

My = number of rainfall events at pixel i during
month 1
@; ;= mean rainfall depth on a rainy day at pixel i

where

during month

1000
5 ===
cN

i

10; CNi= curve number for pixel

E, = exponential integral function

Q% the annual quickflow, is computed as the
sum of the monthly values @F; ..

3.2 InVEST model inputs

A 30 m DEM (USGS/NASA, 2024) was used for topography;
2020 LULC (CONABIO-CONAFOR-INEG]I, 2020; Landsat-8,
30 m) for land cover/use; and the Soil Map, Series II (INEGI,
2014) for soil types (Figure 1). Soil polygons were reclassified
into USDA Hydrologic Soil Groups (A-D) using INEGI
descriptions of the soil classes, and Curve Number (CN) values
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were assigned by combining LULC and soil groups using the
USDA SCS lookup table, ensuring unique runoff responses for
each pairing. Climate inputs included monthly precipitation
from CRU-TS v4.09 downscaled with WorldClim 2.1 (Harris et
al., 2020; Fick & Hijmans, 2017) and potential
evapotranspiration from the CGIAR-CSI Global PET dataset
(Trabucco & Zomer, 2019). As these rasters represent monthly
totals, no temporal aggregation was needed; all inputs were
clipped to the basin and linked through monthly CSV tables.

Long-term rainfall event normals (e.g., the number of events per
month from January through December) from SMN
meteorological stations were spatially interpolated using the
Inverse Distance Weighting (IDW) method to create continuous
climate-zone maps differentiated by mean monthly precipitation
events. Based on these, a rainfall-events table was generated to
indicate the number of rainy days (> 0.1 mm) per month. The
InVEST SWY model uses the CSV rainfall events table to
partition total monthly precipitation into discrete storm events
and the GeoTIFF climate-zone raster to assign each pixel to a
representative climatic regime, enabling simulation of spatially
variable quickflow (Natural Capital Project, 2025).

A Dbiophysical table linked each LULC class to hydrologic
parameters, incorporating vegetation coefficients (Kc) from
FAO guidelines (Allen et al., 1998) and Curve Number (CN)
ranges recommended by the USDA-NRCS (1986) and the
InVEST User Guide (Natural Capital Project, 2025) (Figure 2).
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Figure 2. A schematic illustration of the Seasonal Water Yield
(SWY) model workflow for quickflow estimation.

4. Results
4.1 Pixel-scale distribution of QF/P across the basin

The distribution of QF/P is right-skewed and multimodal
(Figures 1(2) and 2). Three well-defined peaks are observed at
0-0.12 (n = 620,478), 0.22-0.30 (n = 225,070), and 0.48-0.56
(n = 108,499). The mass of the distribution is concentrated
below 0.20, followed by a mid-range peak and a smaller high-
value peak (Figure 2).
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Figure 3. Histogram of the quickflow ratio (QF/P).

4.2 Quickflow variability across LULC and soil types

QF differed markedly among LULC classes (Figure 3). The
highest median QF was observed in water (WA; 870.8 mm/yr).
An intermediate group included Halophytic grassline (HG;530.1
mm/yr), Urban zone (URB; 395.2 mm/yr), Cropland (CRL;
384.5 mm/yr), and Bare soil (BS; 363.8 mm/yr). Lower medians
were observed for Shrubland (SHU; 171.0), Grassland (GSS;
137.2 mm/yr), and Tropical dry forest (TDF; 117.2 mm/yr),
whereas Submontane shrublands (SS;63.5 mm/yr) and Cloud
forest (CF;41.5 mm/yr) were very low, and Pine forest (PF; 3.6
mm/yr) and Oak-pine forest (OPF; 1.8 mm/yr) clustered near 0
mm/yr. All classes included observations of 0 mm/yr QF.

Areal proportions provide critical context: despite high medians,
water (WA), Halophytic grassline (HG), Urban zone (URB),
and Bare soil (BS) occupy only 1.07%, 1.71%, 0.60%, and
0.86% of the basin, respectively (Table 1), while Submontane
shrubland (SS) (20.79%) and Cropland (CRL) (16.81%)
dominate the landscape, followed by Grassland (GSS) (6.63%),
Tropical dry forest (TDF) (3.32%), Oak-pine forest (OPF)
(2.90%), Pine forest (PF) (2.67%), and Shrubland (SHU)
(1.90%). Thus, basin-wide QF patterns are shaped by high-QF
but spatially limited classes and by extensive low-to-moderate
classes with large area shares.

QF varied markedly across soil types (Figure 4). Median QF
spanned 0.51-610.27 mm/yr, with the highest medians in
Gleyic Solonchak (GS; 610.27 mm/yr), Eutric Gleysol (EG;
514.59 mm/yr), and Pelic Vertisol (PV; 417.13 mm/yr). A mid-
range was observed for Luvic Phacozhem (LP; 345.63 mm/yr),
Calcaric Xerosol (CX; 316.33 mm/yr), Vertic Luvisol (VL;
277.01 mm/yr), Eutric Cambisol (EC; 270.58 mm/yr), Haplic
Xerosol (HX; 253.28 mm/yr), Chromic Luvisol (CL; 252.74
mm/yr), and Chromic Vertisol (CV; 250.53 mm/yr). Lower
medians occurred in (RND; 69.24 mm/yr), Luvic Kastanozem
(LK; 70.88 mm/yr), Luvic Chernozem (LCH; 71.71 mm/yr),
Calcaric Phaeozem (CP; 76.81 mm/yr), Calcaric Kastanozem
(CK; 87.99 mm/yr), Calcaric Regosol (CR; 96.69 mm/yr),
Calcaric Chernozem (CCH; 114.22 mm/yr), Calcaric Cambisol
(CC; 119.58 mm/yr), Luvic Xerosol (LX; 171.24 mm/yr),
Haplic Chernozem (HCH; 198.55 mm/yr), and Haplic
Phaeozem (HP; 204.97 mm/yr), with LIT (33.74 mm/yr) and
Eutric Regosol (ER; 0.51 mm/yr) at the bottom. Most soil types
include 0 mm/yr observations; Luvic Phaeozem (LP), Vertic
Luvisol (VL), Eutric Cambisol (EC), and Luvic Chernozem
(LCH) do not. Several violins display elongated upper tails,
indicating a strong right-skew.
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Figure 4. Violin/boxplots of QF (mm/yr) by LULC; classes
ordered by median; boxes display median and IQR.

Table 1. Areal extent of LULC (km?; % of basin).

LULC Area (km?) %
SS 17155.12 20.79
CRL 13876.73 16.81
GSS 5468.92 6.63
TDF 2736.95 3.32
OPF 2391.03 2.90
PF 2202.71 2.67
SHU 1569.53 1.90
HG 1409.65 1.71
WA 884.52 1.07
BS 709.94 0.86
URB 493.72 0.60
CF 13.88 0.02

Table 2. Area and percentage by soil type class in the San
Fernando-Soto la Marina basin

Soil Area (km?) %
RND 9603.99 20.37
LIT 8674.84 18.40
PV 7200.82 15.27
CK 4657.78 9.88
CcX 3625.26 7.69
Ccv 3535.23 7.50
LK 1634.93 3.47
GS 1501.74 3.19
EG 1445.38 3.07
CP 1322.72 2.81
CR 1151.98 2.44
LX 657.00 1.39
EC 593.50 1.26
LP 355.90 0.75
HX 294 .45 0.62
CL 270.76 0.57
ER 191.77 0.41
CcC 102.80 0.22
HK 98.59 0.21
HCH 70.35 0.15
HP 68.12 0.14
VL 54.77 0.12
CCH 27.07 0.06
LCH 2.85 0.01

4.3 Precipitation—quickflow relationship
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Figure 5. Violin/boxplots of QF (mm/yr) by soil type; types
ordered by median; boxes show median and IQR.

Areal composition provides essential context (Table 2): three
classes dominate the basin: RND (9,603.99 km?; 20.37%), LIT
(8,674.84 km? 18.40%), and PV (7,200.82 km? 15.27%)
together accounting for 54% of the area. Mid-extent classes
include CK (9.88%), CX (7.69%), and CV (7.50%), followed
by LK (3.47%), GS (3.19%), EG (3.07%), CP (2.81%), and CR
(2.44%). Smaller fractions correspond to LX (1.39%) and EC
(1.26%), whereas the remaining soil types each occupy <1% of
the basin, the smallest being LCH, 0.01%. Thus, basin-wide QF
patterns reflect the interplay between a few high-QF soils with
modest areal contributions and extensive low-to-moderate QF
soils that dominate the landscape.

The P-QF relationship is positive, with the upper envelope of
quickflow increasing as precipitation rises. The fitted linear
model (R? = 0.21) summarizes this basin-wide association and
indicates a moderate relationship with substantial dispersion
around the trend (Figure 6). This dispersion reflects the wide
range of QF values observed across the basin for similar
precipitation levels. At the monthly scale, the relationship
varied considerably, with very low coefficients of determination
(R? <0.02) in most months and a modest peak during July (R? =
0.13), indicating that the strength of the P-QF association
changes seasonally but is strongest at the annual scale.
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Figure 6. Relationship between annual precipitation and
log(QF)+1; density shading indicates observation counts. The
fitted trend is positive (R?=0.21).

5. Discussion
5.1 Distribution of quickflow ratios
The multimodal distribution of QF/P, skewed to the right,

indicates that most pixels contribute little to direct runoff in an
average year, while a smaller group clusters around
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intermediate and high fractions. This pattern is consistent with a
landscape where (i) precipitation is seasonally concentrated and
spatially uneven (Good et al., 2016), (ii) infiltration capacity
varies considerably with soil structure and vegetation (Jencso et
al., 2011), and (iii) hydrological connectivity differs among
terrain units.

Areas with dense tree cover, higher infiltration capacity, or
longer overland flow paths tend to populate the low QF/P mode,
while zones with shallow or poorly structured soils, sparse
vegetation, or short and well-connected flow paths between
hillslopes and channels tend to occupy the higher modes
(Kumar et al., 2021). Pixels with QF values close to zero likely
reflect locations where vegetation and soils prevent most
rainfall from becoming QF (Hamel et al, 2020).

These characteristics align with the CN-based representation of
quickflow in SWY, where antecedent moisture, soil group, and
LULC jointly modulate the distribution of a given rainfall depth
(Muche et al., 2020). In summary, multimodality is to be
expected in a watershed that combines coastal lowlands,
agricultural plains, shrublands, and forested highlands.

Importantly, the distribution pattern of intermediate-to-high
QF/P fractions (Figure 6) identifies areas where rapid
hydrological response could amplify the impacts of intense or
atypical rainfall events. High-fraction pixels may coincide with
sectors that are more prone to rapid accumulation and runoff
concentration during storms, especially in landscapes where
drainage density or flow-path connectivity is high (Hamel et al.,
2020; Xu et al., 2020). These spatial signals align with the
disaster patterns described for Tamaulipas and point to potential
subareas where hydrometeorological vulnerability is elevated.

5.2 LULC and soil impacts on QF

Classes associated with low infiltration or effective
imperviousness (e.g., Urban zone [URB], Bare soils [BS],
Croplands [CRL], Halophytic grassline [HG]) typically show
higher QF values than forest covers (Xu et al., 2020; Zhang et
al., 2017). However, their basin-scale influence depends on the
areal extent of each LULC class: several high-QF classes may
occupy small fractions (e.g., Water [WA], Halophytic grassline
[HG], Urban zone [URB], and Bare soil [BS]), whereas
extensive classes with moderate or low QF (e.g., Submontane
shrublands [SS], Cropland [CRL], Grasslands [GSS], and
Tropical dry forests [TDF]) determine the aggregated signal
(Zhang et al.,, 2017; Xu et al., 2020). From a mechanistic
perspective, vegetation structure, rooting depth, and surface
roughness attenuate event responses in forests and some
shrublands, whereas sparse canopies, soil disturbance, or
imperviousness amplify them in urban, agricultural, or bare
settings (Zhang et al., 2017; Li et al., 2017).

Soils indicative of low permeability, shallow profiles,
salinity/alkalinity issues, or shrink—swell behavior (e.g., Gleyic
Solonchak [GS], Eutric Gleysol [EG], and Pelic Vertisol [PV])
tend to exhibit higher QF medians and longer upper tails; in
contrast, deeper soils with better structure or coarser texture
(e.g., Eutric Regosol [ER], Litosol [LIT], Calcaric Regosol
[CR], Calcaric Cambisol [CC], Calcaric Chernozem [CCH],
Luvic Kastanozem [LK], and Luvic Chernozem [LCH]) show
lower medians (Issa et al., 2011; Mandal et al., 2008; Bagarello
etal., 2014).

As with LULC, area matters: some high-QF soils do not
dominate basin-wide responses if they are distributed in isolated

patches, whereas more widespread low- to moderate-QF soils
govern the basin’s aggregated values (Zhang et al., 2017).

These gradients align with long-standing evidence that land
cover and soil hydraulic properties co-control runoff generation
via infiltration-excess and saturation-excess processes
urbanization and ground exposure increase quickflow, while
forested or undisturbed covers reduce it (Stewart et al., 2019;
Xu et al., 2020; Zhang et al, 2017) and the CN-based
parameterization used by the SWY model intentionally
integrates LULC and soil information; therefore, the observed
ranges are consistent with CN theory (Natural Capital Project,
2025; USDA-NRCS, 1986; Guswa et al., 2018).

The spatial arrangement of these LULC—soil combinations also
highlight areas that may be more vulnerable to
hydrometeorological hazards. High-QF classes concentrated
near drainage lines, lowlands, or wurbanized sectors can
accelerate surface runoff during intense storms, increasing
susceptibility to localized flooding. Conversely, forested and
well-vegetated zones function as hydrological buffers,
suggesting priority areas for conservation or restoration to
mitigate the impacts of extreme rainfall (Zhang et al., 2017; Xu
et al., 2020). These spatial contrasts underscore how QF maps
can support the identification of critical subareas relevant for
disaster prevention and risk-reduction planning.

5.3 Evaluation of precipitation — quickflow relationship

At the basin scale, we observe a positive QF-P trend: more
precipitation generally produces more quickflow. However, the
weak fit (R*> = 0.21) and the large spread around the trend
indicate that QF is shaped not only by rainfall totals but also by
the temporal structure of rainfall and the surface conditions
controlling the partitioning between runoff and infiltration.
Within the IN'VEST-SWY framework, which implements a CN-
based formulation, this behavior is expected because the model
responds to the depth of rainfall on rainy days and the number
of effective events, rather than to monthly or annual
precipitation alone (Natural Capital Project, 2025; USDA
NRCS, 1986).

A key factor behind this dispersion is event sequencing. Months
with the same total rainfall can generate markedly different QF
depending on whether precipitation occurs as many small
storms or as a few large storms. This pattern is also supported
by the weak relationships between precipitation and quickflow
in individual months (R?> < 0.02 for all months except July).
Fewer, more intense events produce higher mean storm depths
and therefore greater QF, whereas numerous small events often
generate lower QF, even under similar precipitation totals.
Similarly, antecedent soil moisture modulates the runoff
response between successive storms. Temporal clusters of
rainfall events limit drying time and increase antecedent soil
moisture, reducing infiltration and amplifying QF; in contrast,
widely spaced storms allow drying and increased infiltration
capacity, yielding lower QF. These mechanisms help explain
why pixels subjected to similar precipitation exhibit contrasting
QF values and why the relationship follows an envelope pattern
rather than a tight linear trend (Hamel et al., 2020).

Previous applications of InVEST-SWY report similar
outcomes: precipitation is the primary driver of QF, but land
cover, soil hydrologic group, event frequency, and storm
intensity jointly determine how closely QF follows rainfall at
fine spatial scales (Natural Capital Project, 2025; Hamel et al.,
2020). Improving representations of event sequencing,
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vegetation dynamics, and soil moisture states has been shown to
strengthen the precipitation—runoff relationship.

In practice, relying on annual precipitation alone can
underestimate QF in urban or compacted areas where
antecedent moisture and storm clustering greatly increase runoff
and overestimate QF in vegetated or highly permeable areas,
where infiltration dominates (Ran et al., 2022; O’Driscoll et al.,
2010). Therefore, planning and assessment should integrate
precipitation scenarios with realistic LULC and soil
parameterizations and, when possible, incorporate information
on the temporal distribution and sequencing of rainfall events,
particularly in urbanizing basins where increases in runoff are
well documented (Chen et al., 2017; Huang et al., 2024).

5.4 Study Limitations and Model Constraints

Like other InVEST tools, the SWY model provides a simplified
representation of hydrological processes and is primarily
designed for comparative or scenario-based analyses. QF
estimation relies on the CN approach, which simplifies the
surface-runoff relationship and does not explicitly incorporate
topographic variability or event-scale dynamics. Consequently,
the model does not effectively capture short-term fluctuations
associated with extreme precipitation events or the non-linear
response of saturated areas (Natural Capital Project, 2025).

Temporal resolution represents another key limitation. The
SWY model operates at a monthly time step, which smooths
peak flows and prevents accurate reproduction of event-based
runoff or flood magnitudes. Thus, the outputs are best
interpreted as relative indicators of spatial variation rather than
absolute discharge values. This temporal aggregation also
affects the representation of antecedent moisture and storm
sequencing, which influence quickflow generation in real-world
conditions.

Uncertainties may also arise from the parameterization of input
datasets. The CN and Kc values are assigned by land-cover
class and soil hydrologic group, assuming homogeneity within
each class. These empirical values are based on generalized
tables and may not reflect local soil structure, vegetation
condition, or management practices. Similarly, rainfall and
evapotranspiration inputs derived from global datasets (e.g.,
WorldClim, = CGIAR-CSI) involve downscaling and
interpolation steps that introduce additional spatial uncertainty.

Finally, the SWY framework uses simplified flow routing and
does not simulate groundwater-surface water interactions,
channel transmission losses, or feedbacks between land cover
and evapotranspiration. As a result, the model’s outputs are
more reliable for identifying spatial patterns and relative
differences in QF across the basin than for quantifying absolute
magnitudes. While effective as a tool to inform long-term water
resource management through spatial patterns and trends in
water yield across years to decades, these limitations necessitate
caution when applying SWY model results to questions the
model is not designed to answer.

6. Conclusions

Taken together, these results meet the study’s objective by: (1)
describing a multimodal QF distribution, (2) identifying
systematic contrasts by LULC and soil while accounting for
area, and (3) confirming a primary precipitation control
tempered by surface properties.

(1) In the San Fernando—Soto la Marina basin, quickflow (QF)
is highly heterogeneous: most areas contribute little in a typical
year, while a smaller area shows intermediate to high values,
consistent with the combined effects of seasonal precipitation,
land cover/use, and soil properties. (2) For LULC, urban zones,
bare soils, and crops with low cover tend to generate more QF
than woody covers; however, at the basin scale, most of the land
area contributes very little, whereas high-QF zones, especially
where flow paths are short, contribute most of the QF.

For soils, those associated with waterlogging/salinity and
shrink—swell clays (e.g., GS, EG, PV) tend to generate higher
QF than deeper, better-structured, or coarser soils (e.g., ER,
LIT, CR, CC, CCH, LK, LCH); however, at the basin scale, the
overall behavior is determined by the extensive low-to-
moderate QF soils, while the high-QF classes being more
limited in area have less influence on the total outcome. (3) The
precipitation—QF relationship is positive but weak: annual
rainfall totals alone are not good predictors of local QF because
the sequence/intensity of events and surface conditions
modulate runoff generation within the InVEST-SWY
framework (CN-based).

These results bear important implications for improving
watershed and water resource management. For instance,
regional management should focus on combining targeted
actions in zones that are prone to waterlogging and rapid runoff
improving retention and reducing quickflow to prevent flooding
and erosion (e.g., urban drainage upgrades and protection of
exposed or agricultural soils) with broader actions across the
rest of the basin to maintain vegetation and enhance water
infiltration. Future work should integrate precipitation scenarios
with realistic LULC and soil parameterizations and, when
possible, evaluate the impact of seasonal and event-specific
differentiation of precipitation, to avoid under- or
overestimating QF.
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