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Abstract. 

Rising traffic demand around university campuses and sports venues exacerbates parking scarcity and congestion. This study 

develops a UAV–deep learning workflow for the automatic quantification of parked vehicles and the estimation of occupancy levels 

across facilities at the Universidad Autónoma de Nuevo León (UANL). UAV surveys of the East and West Estadio UANL lots and 

the FIME faculty lots were conducted with DJI Mavic 2 and Matrice 350 RTK platforms during high-demand periods, including 

football matches and student egress peaks. The imagery, processed into centimeter-scale orthomosaics (2.4–2.8 cm ground sampling 

distance), enabled reliable instance detection using a pretrained Mask R-CNN Car Detection model. A total of 4,591 vehicles were 

identified across the surveyed areas: 2,336 in the West lot, 1,684 in the East lot, and 571 in the FIME lots. Kernel density estimation 

and spatial metrics revealed near-saturation of stadium lots during matches, reduced occupancy during off-event periods, and 

elevated but distributed demand in faculty lots during class dismissal. These geospatial indicators were integrated into a parking 

management framework using heat maps and bottleneck detection around access and egress roads. The approach demonstrates the 

potential of UAV–deep learning workflows to support demand-responsive parking control, traffic guidance, and long-term planning 

in congested university and event-driven environments. 

1. Introduction

Increasing motorization and concentrated travel demand around 

universities and sports venues often result in severe parking 

scarcity and traffic congestion. Parking deficits not only reduce 

mobility efficiency but also generate negative externalities such 

as spillover into residential neighborhoods, safety hazards at 

access points, and elevated emissions from circulation in search 

of spaces. These challenges are magnified during large events 

such as football matches, where sudden surges in demand 

saturate existing infrastructure. 

Traditional approaches to monitoring parking utilization manual 

surveys, ground-based sensors, and closed-circuit cameras face 

limitations of scale, cost, or field of view. In contrast, aerial 

remote sensing has emerged as a flexible and scalable solution. 

High-resolution imagery acquired from unmanned aerial 

vehicles (UAVs) has proven particularly effective for vehicle 

detection in urban contexts due to its centimeter-level detail and 

temporal flexibility (Ammour et al., 2017; Kaya et al., 2023). 

When coupled with deep learning, UAV imagery enables 

automatic and reliable identification of individual vehicles, 

supporting large-scale traffic and parking analyses (Ragab et al., 

2023; Yildirim et al., 2024). 

Recent developments in convolutional neural networks (CNNs), 

object detection, and instance-segmentation architectures (e.g., 

YOLO, Mask R-CNN) have advanced the accuracy and 

efficiency of vehicle detection in complex urban scenes (Gupta 

et al., 2021; Srivastava et al., 2021; Bouguettaya et al., 2021). 

Applications have included car detection in UAV orthomosaics 

(Ammour et al., 2017; Kaya et al., 2023), traffic speed 

monitoring in smart cities (Moshayedi et al., 2023), and 

automated occupancy estimation (Ragab et al., 2023). 

Nevertheless, empirical studies remain scarce in Latin 

American urban-university contexts, where parking stress is 

exacerbated by overlapping academic and sporting activities, 

limited off-street capacity, and high surrounding urban density. 

The UANL, one of the largest public universities in Mexico, 

exemplifies this situation: its main campus hosts the Estadio 

UANL football venue alongside major academic faculties, 

concentrating vehicular flows that frequently overwhelm 

available parking. 

This study develops and implements a UAV–deep learning 

workflow to automatically quantify parked vehicles and infer 

occupancy patterns across principal UANL parking facilities, 

focusing on the Estadio UANL East and West lots and the 

FIME faculty lots. Specifically, it aims to (i) generate high-

resolution UAV orthomosaics of the parking areas, (ii) detect 

and count vehicles using a pretrained Mask R-CNN model, (iii) 

analyze occupancy and spatial density patterns under 

contrasting demand conditions, and (iv) integrate these 

indicators into a parking management framework to support 

demand-responsive control and planning. 

The contribution of this research is as follows: 

● It develops a UAV–deep learning workflow for

centimeter-scale vehicle detection and parking occupancy

estimation in congested university–stadium contexts.

● It provides the first empirical application of such

workflow in Mexico, addressing overlapping academic

and sporting demand scenarios.

● It integrates kernel density estimation and

spatial analysis into a parking management framework,

supporting demand-responsive control, guidance, and

planning.
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1.1   Background

The study site is located at the UANL, in San Nicolás de los 

Garza, within the Monterrey Metropolitan Area, Mexico. 

UANL is one of the largest public universities in Latin America, 

with a student population exceeding 200,000. Its main 

campus hosts both major academic faculties and the 

Estadio UANL football venue, which serves as home 

stadium for Tigres UANL, one of the most popular soccer 

teams in the country. 

The analysis domain covers approximately 34.61 ha, 

encompassing the East and West parking lots of the Estadio 

UANL and the parking areas of the Faculty of Mechanical and 

Electrical Engineering (FIME). This area is characterized by 

intense fluctuations in parking demand: near-saturation during 

football matches, high turnover during class hours, and partial 

vacancy during off-event periods. The combination of academic 

and sporting functions in a dense urban setting creates a unique 

environment for testing UAV–deep learning approaches to 

vehicle detection and parking management. 

The regional climate is semi-arid with warm summers, and the 

study site is embedded in a dense metropolitan fabric, where 

parking shortages regularly lead to traffic congestion 

and spillover into surrounding neighborhoods. By focusing on 

this environment, the research provides insights into 

mobility challenges faced by universities and sports venues 

in rapidly growing cities. 

2. Study area

The study area is located in San Nicolás de los Garza, within the 

Monterrey Metropolitan Area (MMA), northeastern Mexico. It 

comprises the Estadio Universitario (commonly known 

as Estadio UANL), home to the Tigres UANL football club, and 

its immediate urban surroundings (25°43′21.7″ N, 100°18′

42.9″ W). The analysis domain (Figure 1) encompasses the 

stadium bowl and the principal off-street parking facilities 

that serve both the venue and adjacent university precincts, 

including the West and East stadium lots and the parking areas 

of the Faculty of Mechanical and Electrical Engineering 

(FIME). 

Figure 1. Study area 

The mapped extent covers approximately 34.61 ha, offering a 

compact yet heterogeneous environment for vehicle detection 

and parking-demand estimation. This zone is characterized by 

pronounced temporal fluctuations in vehicular occupancy: peak 

saturation during football matches, elevated turnover during 

university class hours, and partial vacancy during off-event 

periods. Its mixed academic–sporting function, embedded 

within a dense metropolitan setting, provides a representative 

case study of mobility challenges in Latin American cities. 

3. Methodology

3.1 Data collection 

Figure 2 illustrates the UAV-based workflow applied in this 

study. Data collection was performed using two platforms: a 

DJI Mavic 2 Pro and a DJI Matrice 350 RTK. The survey 

covered ~34.61 ha, including the four principal parking 

facilities adjacent to the Estadio UANL in San Nicolás de los 

Garza, Mexico. 

The aerial survey used 433 images from an FC2204 camera, 

achieving a 2.44 cm/pixel GSD; produced 233,281 tie points 

and 719,111 projections with a mean reprojection error of 0.984 

pixels alignment in Agisoft Metashape.

Figure 2. Workflow. 

Flights were executed at an average altitude of 82.5 m above 

ground level (AGL) and a cruising speed of ~8 m/s, producing 

centimeter-scale ground sampling distance (GSD ≈ 2–3 

cm/pixel). Mission planning and execution were carried out in 

DroneDeploy, employing terrain-following based on a digital 

elevation model (DEM) to maintain constant altitude and 

consistent GSD across variable topography.  

Standard mission parameters included a lawn-mower flight 

pattern, 75–85% forward and side overlap, nadir (−90°) camera 

orientation, automatic exposure, and distance-based triggering. 

Edge passes were incorporated to ensure complete coverage and 

strengthen block geometry. Pre-flight checks verified obstacle 

clearance, GNSS stability, and communications. 

The resulting RGB imagery displayed uniform radiometry and 

geometry, suitable for photogrammetric processing and 
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subsequent vehicle-detection analysis. Complementing the 

UAV flights, ground-level inspections with handheld digital 

cameras were conducted to record local reference conditions 

and support validation of automatic detections. 

3.2 Data processing 

The UAV imagery was processed in Agisoft Metashape 

Professional to generate high-resolution, georeferenced 

orthomosaics of each parking facility. The workflow included 

automatic internal camera calibration, high-accuracy image 

alignment, and block adjustment. From this process, dense point 

clouds and digital surface models (DSMs) were generated as 

intermediate products, although the primary deliverable for 

analysis was the RGB orthomosaic. 

The orthomosaics preserved the native ground sampling 

distance of the input images (2.4 – 2.8 cm/pixel) and achieved 

sub-pixel reprojection error, confirming the geometric stability 

of the photogrammetric block. Each orthomosaic was exported 

in WGS84/UTM Zone 14N coordinates and optimized for 

integration into GIS environments. 

Quality control included visual inspection of areal coverage, 

radiometric continuity, and potential distortions. Minor artifacts 

were observed in localized areas adjacent to trees or elevated 

structures, but due to the high redundancy in image overlap, 

even vehicles partially occluded by canopies remained 

identifiable in the final products. In cases where inconsistencies 

were evident, minimal corrections were applied, or the region 

was flagged as a potential source of uncertainty for subsequent 

automatic detection. 

3.3 Photogrammetry analysis 

The photogrammetric survey (Table 1) was designed to 

generate geometrically stable, centimeter-scale RGB 

orthomosaics from UAV flights conducted at mean altitudes 

between 80 and 84 m. This configuration yielded ground 

sampling distances (GSD) ranging from 2.44 to 2.77 cm/pixel, 

ensuring sufficient spatial resolution for reliable vehicle 

discrimination. 

The West parking area was surveyed with 195 images across 

16.3 ha (GSD = 2.44 cm/pixel), the East lot with 178 images 

covering 13.1 ha (GSD = 2.60 cm/pixel), and the FIME-P.North 

sector with 60 images over 5.2 ha (GSD = 2.77 cm/pixel). 

Minor differences in GSD reflected small variations in effective 

flight altitude and acquisition geometry, but all missions 

provided centimeter-level resolution suitable for subsequent 

deep learning detection. 

Processing steps included block adjustment with automatic 

camera calibration, dense point cloud generation, followed by 

the production of the high-resolution RGB orthomosaic as the 

principal analysis product. Sub-pixel reprojection errors 

confirmed the stability of the photogrammetric block. All 

deliverables were exported in WGS84/UTM Zone 14N for 

seamless integration into GIS and deep learning workflows. 

Area Images 
Mapping 

coverage (ha) 

Flight 

altitude 

GSD 

(cm/pixel) 

P. East 178 13.1 83.3 2.60 

P. West 195 16.3 83.8 2.44 

FIME 60 5.2 80.3 2.77 

Table 1. Photogrannetry survey 

Quality control procedures assessed areal coverage, radiometric 

continuity, and potential geometric artifacts. In cases where 

localized inconsistencies were detected such as near wooded 

areas or elevated structures minimal corrections were applied, 

or the areas were flagged as potential sources of uncertainty for 

automatic detection. 

3.4 Calibration and overlap 

Automatic internal camera calibration was performed during 

processing. Image residuals revealed minimal deviations from 

the ideal projection geometry, confirming the stability of the 

optical system and supporting reliable image orientation. 

3.5 Car detection 

Car detection is a pre-trained deep learning MaskRCNN model 

architecture implemented in the ArcGIS API for Python, 

through the "Detect objects using deep learning" tool (Hou & Li 

2024). When local domain adaptation is required, it supports 

fine-tuning with Train Deep Learning Model. The workflow 

begins with downloading the model and obtained orthomosaics 

with an expected spatial resolution of =< 20 cm aproximately 

(Gui et al 2024).  

The detection tool is then configured by specifying the input 

raster, the output feature class, and the model with .dlpk 

package. Critical inference parameters are set under Model 

Arguments: tile_size (chip size used to tile the image), padding 

(margin to blend adjacent predictions and mitigate edge 

artifacts, capped at half of tile_size), batch_size (number of tiles 

per step, constrained by available memory), threshold 

(confidence cutoff for filtering detections), and return_bboxes 

(Esri. 2021).   

Optionally, Non-Maximum Suppression can be applied to 

suppress lower-confidence overlapping detections, configuring 

the score field and the maximum allowable overlap. In the 

Environments pane, the processing extent, a Cell Size of 0.1 

(consistent with the working scale), and the processor type are 

specified; use of a GPU is recommended, when available, to 

accelerate inference. Upon execution, the model outputs a 

feature layer containing the detections (class and score), which 

is automatically added to the map and is ready for post-analysis 

such as zonal counts, occupancy estimation, or visual 

validation. 

According to the reported accuracy metrics, the Car Detection 

model in ArcGIS Pro attains an average precision of 0.81 on its 

evaluation set, indicating strong positive predictive performance 

with a comparatively low false-positive rate across decision 

thresholds. 

In accordance with the objective of this study, we did not create 

a local reference dataset with manual annotations, nor did we 

retrain the pre-trained model. Instead, we adopted an operational 

validation strategy that comprised: (i) spot visual checks on 

representative tiles to verify the correct identification of visible 

vehicles; (ii) a sensitivity analysis of the inference parameters to 

ensure the stability of the counts; and (iii) spatial consistency 

checks with respect to observable capacity constraints and 

expected density gradients near entry/exit points. 

Although the workflow is referred to as automated, it should be 

clarified that the process was implemented as a modular and 
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automation-ready sequence across interoperable software 

environments rather than within a single integrated system. The 

methodology combines UAV image acquisition, 

photogrammetric processing, and deep-learning-based detection 

as independent but connected modules through standard 

geospatial formats (GeoTIFF, shapefile). Each stage can be 

executed in batch mode or via scripting (Metashape and ArcGIS 

APIs), ensuring reproducibility and scalability. This modular 

design enhances adaptability and transparency, prioritizing 

methodological clarity over closed end-to-end automation. 

4. Results and discussion

4.1 UAV photogrammetry 

The photogrammetric processing successfully generated high-

resolution orthomosaics of the surveyed parking areas, 

providing a geometrically consistent base for vehicle detection. 

The workflow began with the alignment of photographs (Figure 

3), where common tie points across overlapping images were 

identified to estimate the position and orientation of each 

camera station. This stage produced a stable block geometry 

and confirmed sufficient redundancy for dense reconstruction. 

Figure 3. Aligning photos processing 

Following alignment, a sparse point cloud was generated to 

eliminate outliers and non-essential features (Figure 4). This 

was subsequently densified into a dense point cloud (Figure 5), 

capturing the structural details of the parking facilities, 

including rows of vehicles, access lanes, and vegetation. The 

dense reconstruction was further interpolated into a mesh, 

which served as the geometric framework for orthomosaic 

generation. 

Figure 4. Point cloud with aligned camera positions. 

The final orthomosaics corrected for perspective distortions 

inherent in the original oblique imagery, producing a true 

orthogonal view with centimeter-level resolution. This enabled 

reliable visual interpretation of individual vehicles and parking 

patterns across the 34.1 ha study domain. Comparable levels of 

geometric precision and radiometric continuity have been 

reported in other UAV-based vehicle detection studies 

(Ammour et al., 2017; Kaya et al., 2023; Ragab et al., 2023), 

supporting the suitability of the dataset for deep learning–based 

detection. 

Figure 5. Dense point cloud, west parking. 

4.2 Image orientation 

The spatial distribution of camera (Figure 6) stations and 

footprints indicates continuous coverage and sufficient 

photogrammetric redundancy, consistent with the number of 

observations and an average tie-point multiplicity of 3.79, 

which supports block stability during triangulation. 

Figure 6. Image orientation 

The reported RMS reprojection error ≈ 1.20 px confirms that 

the estimated poses and calibration parameters coherently 

explain image measurements at a typical sub- to bi-pixel level 

for low-altitude surveys with self-calibrated cameras. 

Collectively, the image count, GSD, projections, and 

reprojection error validate the geometric quality of the block 

and the suitability of the overlap pattern for DEM/orthomosaic 

generation. 

Color‐coded depth of coverage indicates the number of images 

per ground pixel (1 to >9). The lawn-mower flight pattern yields 

banded redundancy; black dots mark camera stations estimated 

after bundle adjustment. The survey acquired 178 images at 

83.3 m (GSD ≈ 2.6 cm/pixel) over 13.1 ha, achieving a mean 

reprojection error of ~1.2 px 
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High, uniform overlap in the core (≥9 images) ensures robust 

triangulation and supports reliable ortho/DEM generation, 

whereas peripheral areas with lower overlap (1–3) are more 

error-prone and should be trimmed or handled carefully during 

seamline editing. 

Figure 7. Camera locations and image overlap 

The image residuals (Figure 8) summarize the quality of the 

camera’s interior and exterior orientation within the 

photogrammetric block. Each arrow depicts the residual vector 

of a tie point—the difference between its measured image 

location and the position projected by the bundle-adjusted 

model; the arrow direction indicates local bias, and its length 

(scaled to 1 px) the error magnitude, typically color-coded 

(green/yellow: low; red: high). The observed pattern—short, 

scattered vectors near the image center and longer, partially 

radial vectors toward the edges—is characteristic of wide-angle 

optics and denotes residual radial and tangential lens distortion. 

Figure 8. Camera Calibration-Image residual 

According to the calibration coefficient and correlation matrix, 

the interior orientation is consistent with wide-angle UAV 

optics. The sensor (4000×3000 px; 1.58 µm pixel pitch) implies 

a physical size of ~6.32×4.74 mm. The adjusted principal 

distance is F = 3167.76 px, equivalent to ≈ 5.01 mm (3167.76 

px × 1.58 µm px⁻¹), slightly exceeding the nominal 4.386 mm 

as expected from effective focusing and flight conditions. The 

principal point exhibits modest offsets (Cx = −23.38 px ≈ −36.9 

µm; Cy = 11.83 px ≈ 18.7 µm), typical and well bounded. 

Radial distortion is captured by K1 = −0.0383, K2 = 0.0526, 

and K3 = −0.0536, indicating an undulating pattern with 

predominant barrel behavior toward the periphery, whereas 

tangential distortion is small (P1 = −0.00128; P2 = 0.000737). 

Reported parameter uncertainties are very low (σ[K1] ≈ 2×10⁻⁴; 

σ[P1] ≈ 4.9×10⁻⁶), supporting a stable bundle adjustment and 

aligning with sub-pixel reprojection residuals. 

4.3 Car detection 

The parking areas surrounding the UANL stadium display 

heterogeneous layouts, with the predominant configuration 

being 45° angled parking, complemented by sections of 90° 

perpendicular parking, and some areas lacking formal 

demarcation (Figure 9). In the latter, drivers adaptively combine 

perpendicular and parallel parking depending on the available 

space. 

Figure 9. Orthomosaics of the parking lots, showing the 

different existing layouts. A) 45° angled parking, B) 90° 

perpendicular parking and C) 90° perpendicular parking without 

space demarcation. 
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Using the pretrained Mask R-CNN deep learning model 

implemented in ArcGIS, a total of 4,591 vehicles were 

automatically detected across the three analysed parking lots. 

Table 2 summarizes the vehicle counts per facility, with the 

West lot containing 2,336 vehicles, the East lot 1,684 vehicles, 

and the FIME lot 571 vehicles. Detection outputs demonstrated 

high reliability, consistently identifying vehicles despite 

challenges such as tree cover or cast shadows. Even when 

partial occlusions occurred, the algorithm successfully 

delineated bounding boxes, and each car was correctly 

registered as a single detection (Figures 10–11). 

Parking area Number of vehicles 

P. East 1684 

P. West 2336 

FIME (P. North) 571 

Table 2. Number of vehicles per parking area. 

These results are consistent with recent advances in vehicle 

detection from UAV imagery, where deep learning models have 

shown resilience to complex urban environments and partial 

occlusion (Ragab et al., 2023; Yildirim et al., 2024). The 

detection rate achieved in this study demonstrates a comparable 

level of precision to other high-resolution UAV applications 

(Bouguettaya et al., 2021; Kaya et al., 2023), confirming the 

effectiveness of pretrained architectures for real-world parking 

scenarios. Unlike prior work focused primarily on traffic 

monitoring (Moshayedi et al., 2023) or general object 

recognition (Gupta et al., 2021), this study emphasizes the 

university–stadium context, a setting characterized by sudden 

surges in demand linked to scheduled events, which remains 

underexplored in the literature. 

Figure 10. Aerial photo of the stadium and car detection for the

entirety of the UANL stadium’s parking lots. 

Figure 11. Car detection for the existing parking areas 

demarcations. 

4.4 Density analysis 

It is important to note that in this study, the term occupancy is 

used in a geospatial sense to represent the areal intensity of 

vehicle presence, rather than the conventional metric of 

occupied spaces divided by total parking capacity. Because the 

orthomosaics include both marked and unmarked areas, it was 

not possible to compute an accurate ratio of vehicles per 

designated bay. Instead, Kernel Density Estimation (KDE) was 

employed to transform discrete vehicle detections into a 

continuous density surface, enabling the identification of 

congestion hotspots and spatial gradients of use pressure across 

each facility. 

Analysis of detected vehicle counts, and mapped coverage 

enabled estimation of use pressure for each lot. In Parking East 

density (Figure 12) with 1,684 vehicles distributed across 13.1 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-3/W3-2025 
Conference on Geoinformation 2025, 24–28 November, Mérida, Yucatán, México

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-3-W3-2025-85-2026 | © Author(s) 2026. CC BY 4.0 License.

 
90



ha, vehicular density is high and concentrates around primary 

access points adjacent to the main avenue.  

Figure 12. Kernel density P.East 

Kernel density estimation delineates critical linear zones 

foreshadowing bottlenecks at egresses to the arterial network. 

Under maximum occupancy, clearance times are expected to 

exceed 25–35 minutes due to concurrent exit maneuvers and the 

limited capacity of evacuation corridors. 

Additionally, in FIME area, with 571 vehicles over 5.2 ha, 

density (Figure 13) values are less critical; nevertheless, 

restricted access and adjacency to academic facilities increase 

vulnerability to internal obstructions and lane blockages. 

Although relative evacuation capacity is higher, projected peak 

egress times of 15–20 minutes may affect pedestrian mobility 

and concurrent academic operations. 

Figure 13. Kernel density FIME 

A salient finding is that a portion of vehicles is parked outside 

designated bays, occupying areas not intended for parking. This 

irregular (spillover) placement reduces the effective 

maneuvering envelope within the lots and degrades egress 

throughput, increasing the likelihood of lane blockages, 

obstruction of pedestrian access points, and evacuation delays. 

While exit capacity is relatively adequate under routine 

conditions, this pattern of informal occupancy can drive 

clearance times beyond expected ranges and further 

compromise traffic safety and internal circulation across the 

university campus 

In Parking West, which recorded 2,336 vehicles over 16.3 ha, 

the greater spatial capacity partially attenuates pressure. Kernel 

density estimation (Figure 14) reveals a clear spatial gradient in 

vehicular concentration, with high-congestion clusters rendered 

in red and, conversely, low-intensity zones depicted in blue to 

purple, enabling rapid visual discrimination of potential 

bottlenecks versus relatively uncongested corridors. 

However, hotspots identified in the southern sector reveal 

accumulations that trigger localized congestion. Proximity to 

the high-demand Avenida Universidad constrains egress by 

through traffic, with delays estimated at 30-40 minutes during 

mass departures after sporting events. Despite its size, this lot 

exhibits a high risk of point saturation capable of propagating 

congestion onto secondary avenues. 

Figure 14. Kernel density P. West 

While the total number of vehicles detected in each lot provides 

the basis for computing exact densities (vehicles/ha), KDE 

offers additional insight by revealing local concentration 

patterns that may not coincide with lot boundaries. Future work 

could integrate detailed parking-space inventories to derive true 

occupancy ratios and validate congestion metrics under 

different event scenarios. 

4.5 Limitations of the study 

Although the workflow demonstrated robust performance in 

detecting and quantifying vehicles, certain limitations must be 

acknowledged. First, partial occlusions caused by trees, light 

poles, and building shadows occasionally led to incomplete 

bounding boxes, even if vehicles were ultimately counted. 

Second, the study relied on a pretrained Mask R-CNN model 

without extensive local fine-tuning; while results were 

consistent with previous literature (Ragab et al., 2023; Yildirim 

et al., 2024), domain-specific training could further improve 

detection accuracy in complex urban scenes. Finally, the 

analysis was conducted during a single high-demand event, 

limiting the temporal representativeness of parking dynamics.  

Multi-event or longitudinal surveys would provide a more 

comprehensive understanding of variability across seasons and 
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event types. Because the workflow purposefully avoids manual 

annotation to preserve full automation, we did not compute site-

specific precision–recall statistics; future extensions may 

include a small audit sample (≈1–2% of the area) to report local 

metrics without altering the automated nature of the pipeline. 

4.6 Implications for parking and mobility management 

The integration of UAV photogrammetry with deep learning 

offers significant potential to improve parking and mobility 

planning in high-demand environments such as university 

campuses and sports venues. The detection of congestion 

hotspots and irregular parking patterns provides actionable 

evidence to guide interventions, including redesigning 

access/egress corridors, allocating staff for traffic control during 

peak periods, and implementing dynamic guidance systems to 

direct drivers toward underutilized areas. In addition, the 

methodology can support the integration of intelligent 

transportation systems (ITS), combining UAV monitoring with 

real-time sensors and digital signage to reduce clearance times 

and enhance safety. Beyond the UANL case study, this 

approach can be scaled to other urban campuses and 

metropolitan sports facilities, contributing to more resilient and 

sustainable urban mobility strategies.  

5. Conclusions

This study demonstrated the effectiveness of integrating UAV-

derived orthomosaics with pretrained deep learning models in 

ArcGIS Pro for the automatic detection and quantification of 

parked vehicles in high-demand environments such as the 

UANL Stadium. The workflow achieved reliable detection of 

4,591 vehicles across 36.4 ha, confirming its suitability for 

large-scale applications in complex urban and campus contexts. 

By combining object detection with kernel density analysis, the 

study not only quantified parking occupancy but also identified 

critical congestion hotspots. Results revealed that the East and 

West lots generate the highest pressure on the external road 

network, creating recurrent bottlenecks at main exits. In 

contrast, the FIME lot exhibited lower overall occupancy but 

showed irregular parking patterns that reduce maneuvering 

space and increase the risk of internal blockages and evacuation 

delays. 

These findings highlight the potential of UAV deep learning 

integration as a decision support tool for parking management, 

providing actionable indicators for mitigating congestion, 

improving traffic safety, and optimizing evacuation efficiency 

during mass events. The methodology is transferable to other 

urban and sporting contexts, contributing to the implementation 

of intelligent transportation systems and supporting more 

sustainable urban mobility planning. 

Future work should focus on refining detection accuracy under 

challenging conditions and conducting temporal monitoring 

across multiple events. Such improvements will enhance the 

integration of UAV-based monitoring into broader frameworks 

of smart city governance and campus mobility management. 
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