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Abstract.

Rising traffic demand around university campuses and sports venues exacerbates parking scarcity and congestion. This study
develops a UAV-deep learning workflow for the automatic quantification of parked vehicles and the estimation of occupancy levels
across facilities at the Universidad Auténoma de Nuevo Ledn (UANL). UAV surveys of the East and West Estadio UANL lots and
the FIME faculty lots were conducted with DJI Mavic 2 and Matrice 350 RTK platforms during high-demand periods, including
football matches and student egress peaks. The imagery, processed into centimeter-scale orthomosaics (2.4-2.8 cm ground sampling
distance), enabled reliable instance detection using a pretrained Mask R-CNN Car Detection model. A total of 4,591 vehicles were
identified across the surveyed areas: 2,336 in the West lot, 1,684 in the East lot, and 571 in the FIME lots. Kernel density estimation
and spatial metrics revealed near-saturation of stadium lots during matches, reduced occupancy during off-event periods, and
elevated but distributed demand in faculty lots during class dismissal. These geospatial indicators were integrated into a parking
management framework using heat maps and bottleneck detection around access and egress roads. The approach demonstrates the
potential of UAV—deep learning workflows to support demand-responsive parking control, traffic guidance, and long-term planning

in congested university and event-driven environments.

1. Introduction

Increasing motorization and concentrated travel demand around
universities and sports venues often result in severe parking
scarcity and traffic congestion. Parking deficits not only reduce
mobility efficiency but also generate negative externalities such
as spillover into residential neighborhoods, safety hazards at
access points, and elevated emissions from circulation in search
of spaces. These challenges are magnified during large events
such as football matches, where sudden surges in demand
saturate existing infrastructure.

Traditional approaches to monitoring parking utilization manual
surveys, ground-based sensors, and closed-circuit cameras face
limitations of scale, cost, or field of view. In contrast, aerial
remote sensing has emerged as a flexible and scalable solution.
High-resolution imagery acquired from unmanned aerial
vehicles (UAVSs) has proven particularly effective for vehicle
detection in urban contexts due to its centimeter-level detail and
temporal flexibility (Ammour et al., 2017; Kaya et al., 2023).
When coupled with deep learning, UAV imagery enables
automatic and reliable identification of individual vehicles,
supporting large-scale traffic and parking analyses (Ragab et al.,
2023; Yildirim et al., 2024).

Recent developments in convolutional neural networks (CNNs),
object detection, and instance-segmentation architectures (e.g.,
YOLO, Mask R-CNN) have advanced the accuracy and
efficiency of vehicle detection in complex urban scenes (Gupta
et al., 2021; Srivastava et al., 2021; Bouguettaya et al., 2021).
Applications have included car detection in UAV orthomosaics
(Ammour et al., 2017; Kaya et al., 2023), traffic speed
monitoring in smart cities (Moshayedi et al., 2023), and
automated occupancy estimation (Ragab et al., 2023).
Nevertheless, empirical studies remain scarce in Latin
American urban-university contexts, where parking stress is

exacerbated by overlapping academic and sporting activities,
limited off-street capacity, and high surrounding urban density.

The UANL, one of the largest public universities in Mexico,
exemplifies this situation: its main campus hosts the Estadio
UANL football venue alongside major academic faculties,
concentrating vehicular flows that frequently overwhelm
available parking.

This study develops and implements a UAV-deep learning
workflow to automatically quantify parked vehicles and infer
occupancy patterns across principal UANL parking facilities,
focusing on the Estadio UANL East and West lots and the
FIME faculty lots. Specifically, it aims to (i) generate high-
resolution UAV orthomosaics of the parking areas, (ii) detect
and count vehicles using a pretrained Mask R-CNN model, (iii)
analyze occupancy and spatial density patterns under
contrasting demand conditions, and (iv) integrate these
indicators into a parking management framework to support
demand-responsive control and planning.

The contribution of this research is as follows:

° It develops a UAV—deep learning workflow for
centimeter-scale vehicle detection and parking occupancy
estimation in congested university—stadium contexts.

° It provides the first empirical application of such
workflow in Mexico, addressing overlapping academic
and sporting demand scenarios.

° It integrates kernel density estimation and
spatial analysis into a parking management framework,
supporting demand-responsive control, guidance, and
planning.
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1.1 Background

The study site is located at the UANL, in San Nicolés de los
Garza, within the Monterrey Metropolitan Area, Mexico.
UANL is one of the largest public universities in Latin America,
with a student population exceeding 200,000. Its main
campus hosts both major academic faculties and the
Estadio UANL football venue, which serves as home
stadium for Tigres UANL, one of the most popular soccer
teams in the country.

The analysis domain covers approximately 34.61 ha,
encompassing the East and West parking lots of the Estadio
UANL and the parking areas of the Faculty of Mechanical and
Electrical Engineering (FIME). This area is characterized by
intense fluctuations in parking demand: near-saturation during
football matches, high turnover during class hours, and partial
vacancy during off-event periods. The combination of academic
and sporting functions in a dense urban setting creates a unique
environment for testing UAV-deep learning approaches to
vehicle detection and parking management.

The regional climate is semi-arid with warm summers, and the
study site is embedded in a dense metropolitan fabric, where
parking shortages regularly lead to traffic congestion
and spillover into surrounding neighborhoods. By focusing on
this environment, the research provides insights into
mobility challenges faced by universities and sports venues
in rapidly growing cities.

2. Study area

The study area is located in San Nicolés de los Garza, within the
Monterrey Metropolitan Area (MMA), northeastern Mexico. It
comprises the Estadio Universitario (commonly known
as Estadio UANL), home to the Tigres UANL football club, and
its immediate urban surroundings (25°43'21.7" N, 100°18'
42.9" W). The analysis domain (Figure 1) encompasses the
stadium bowl and the principal off-street parking facilities
that serve both the venue and adjacent university precincts,
including the West and East stadium lots and the parking areas
of the Faculty of Mechanical and Electrical Engineering
(FIME).

Figure 1. Study area

The mapped extent covers approximately 34.61 ha, offering a
compact yet heterogeneous environment for vehicle detection
and parking-demand estimation. This zone is characterized by
pronounced temporal fluctuations in vehicular occupancy: peak
saturation during football matches, elevated turnover during
university class hours, and partial vacancy during off-event

periods. Its mixed academic—sporting function, embedded
within a dense metropolitan setting, provides a representative
case study of mobility challenges in Latin American cities.

3. Methodology

3.1 Datacollection

Figure 2 illustrates the UAV-based workflow applied in this
study. Data collection was performed using two platforms: a
DJI Mavic 2 Pro and a DJI Matrice 350 RTK. The survey
covered ~34.61 ha, including the four principal parking
facilities adjacent to the Estadio UANL in San Nicolés de los
Garza, Mexico.

The aerial survey used 433 images from an FC2204 camera,
achieving a 2.44 cm/pixel GSD; produced 233,281 tie points
and 719,111 projections with a mean reprojection error of 0.984
pixels alignment in Agisoft Metashape.
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Figure 2. Workflow.

Flights were executed at an average altitude of 82.5 m above
ground level (AGL) and a cruising speed of ~8 m/s, producing
centimeter-scale ground sampling distance (GSD =~ 2-3
cm/pixel). Mission planning and execution were carried out in
DroneDeploy, employing terrain-following based on a digital
elevation model (DEM) to maintain constant altitude and
consistent GSD across variable topography.

Standard mission parameters included a lawn-mower flight
pattern, 75-85% forward and side overlap, nadir (—90°) camera
orientation, automatic exposure, and distance-based triggering.
Edge passes were incorporated to ensure complete coverage and
strengthen block geometry. Pre-flight checks verified obstacle
clearance, GNSS stability, and communications.

The resulting RGB imagery displayed uniform radiometry and
geometry, suitable for photogrammetric processing and
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subsequent vehicle-detection analysis. Complementing the
UAV flights, ground-level inspections with handheld digital
cameras were conducted to record local reference conditions
and support validation of automatic detections.

3.2 Data processing

The UAV imagery was processed in Agisoft Metashape
Professional to generate high-resolution, georeferenced
orthomosaics of each parking facility. The workflow included
automatic internal camera calibration, high-accuracy image
alignment, and block adjustment. From this process, dense point
clouds and digital surface models (DSMs) were generated as
intermediate products, although the primary deliverable for
analysis was the RGB orthomosaic.

The orthomosaics preserved the native ground sampling
distance of the input images (2.4 — 2.8 cm/pixel) and achieved
sub-pixel reprojection error, confirming the geometric stability
of the photogrammetric block. Each orthomosaic was exported
in WGS84/UTM Zone 14N coordinates and optimized for
integration into GIS environments.

Quality control included visual inspection of areal coverage,
radiometric continuity, and potential distortions. Minor artifacts
were observed in localized areas adjacent to trees or elevated
structures, but due to the high redundancy in image overlap,
even vehicles partially occluded by canopies remained
identifiable in the final products. In cases where inconsistencies
were evident, minimal corrections were applied, or the region
was flagged as a potential source of uncertainty for subsequent
automatic detection.

3.3 Photogrammetry analysis

The photogrammetric survey (Table 1) was designed to
generate  geometrically  stable, centimeter-scale RGB
orthomosaics from UAV flights conducted at mean altitudes
between 80 and 84 m. This configuration yielded ground
sampling distances (GSD) ranging from 2.44 to 2.77 cm/pixel,
ensuring sufficient spatial resolution for reliable vehicle
discrimination.

The West parking area was surveyed with 195 images across
16.3 ha (GSD = 2.44 cm/pixel), the East lot with 178 images
covering 13.1 ha (GSD = 2.60 cm/pixel), and the FIME-P.North
sector with 60 images over 5.2 ha (GSD = 2.77 cm/pixel).
Minor differences in GSD reflected small variations in effective
flight altitude and acquisition geometry, but all missions
provided centimeter-level resolution suitable for subsequent
deep learning detection.

Processing steps included block adjustment with automatic
camera calibration, dense point cloud generation, followed by
the production of the high-resolution RGB orthomosaic as the
principal analysis product. Sub-pixel reprojection errors
confirmed the stability of the photogrammetric block. All
deliverables were exported in WGS84/UTM Zone 14N for
seamless integration into GIS and deep learning workflows.

Mapping Flight GSD

Area Images coverage (ha) | altitude | (cm/pixel)
P. East 178 13.1 83.3 2.60
P. West 195 16.3 83.8 2.44
FIME 60 5.2 80.3 2.77

Table 1. Photogrannetry survey

Quality control procedures assessed areal coverage, radiometric
continuity, and potential geometric artifacts. In cases where
localized inconsistencies were detected such as near wooded
areas or elevated structures minimal corrections were applied,
or the areas were flagged as potential sources of uncertainty for
automatic detection.

3.4 Calibration and overlap

Automatic internal camera calibration was performed during
processing. Image residuals revealed minimal deviations from
the ideal projection geometry, confirming the stability of the
optical system and supporting reliable image orientation.

3.5 Car detection

Car detection is a pre-trained deep learning MaskRCNN model
architecture implemented in the ArcGIS APl for Python,
through the "Detect objects using deep learning" tool (Hou & Li
2024). When local domain adaptation is required, it supports
fine-tuning with Train Deep Learning Model. The workflow
begins with downloading the model and obtained orthomosaics
with an expected spatial resolution of =< 20 cm aproximately
(Gui et al 2024).

The detection tool is then configured by specifying the input
raster, the output feature class, and the model with .dIpk
package. Critical inference parameters are set under Model
Arguments: tile_size (chip size used to tile the image), padding
(margin to blend adjacent predictions and mitigate edge
artifacts, capped at half of tile_size), batch_size (number of tiles
per step, constrained by available memory), threshold
(confidence cutoff for filtering detections), and return_bboxes
(Esri. 2021).

Optionally, Non-Maximum Suppression can be applied to
suppress lower-confidence overlapping detections, configuring
the score field and the maximum allowable overlap. In the
Environments pane, the processing extent, a Cell Size of 0.1
(consistent with the working scale), and the processor type are
specified; use of a GPU is recommended, when available, to
accelerate inference. Upon execution, the model outputs a
feature layer containing the detections (class and score), which
is automatically added to the map and is ready for post-analysis
such as zonal counts, occupancy estimation, or visual
validation.

According to the reported accuracy metrics, the Car Detection
model in ArcGIS Pro attains an average precision of 0.81 on its
evaluation set, indicating strong positive predictive performance
with a comparatively low false-positive rate across decision
thresholds.

In accordance with the objective of this study, we did not create
a local reference dataset with manual annotations, nor did we
retrain the pre-trained model. Instead, we adopted an operational
validation strategy that comprised: (i) spot visual checks on
representative tiles to verify the correct identification of visible
vehicles; (ii) a sensitivity analysis of the inference parameters to
ensure the stability of the counts; and (iii) spatial consistency
checks with respect to observable capacity constraints and
expected density gradients near entry/exit points.

Although the workflow is referred to as automated, it should be
clarified that the process was implemented as a modular and
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automation-ready sequence across interoperable software
environments rather than within a single integrated system. The
methodology combines UAV image acquisition,
photogrammetric processing, and deep-learning-based detection
as independent but connected modules through standard
geospatial formats (GeoTIFF, shapefile). Each stage can be
executed in batch mode or via scripting (Metashape and ArcGIS
APIs), ensuring reproducibility and scalability. This modular
design enhances adaptability and transparency, prioritizing
methodological clarity over closed end-to-end automation.

4, Results and discussion
4.1 UAV photogrammetry

The photogrammetric processing successfully generated high-
resolution orthomosaics of the surveyed parking areas,
providing a geometrically consistent base for vehicle detection.
The workflow began with the alignment of photographs (Figure
3), where common tie points across overlapping images were
identified to estimate the position and orientation of each
camera station. This stage produced a stable block geometry
and confirmed sufficient redundancy for dense reconstruction.

Toigm.

e %

Figure 3. Aligning photos processing

Following alignment, a sparse point cloud was generated to
eliminate outliers and non-essential features (Figure 4). This
was subsequently densified into a dense point cloud (Figure 5),
capturing the structural details of the parking facilities,
including rows of vehicles, access lanes, and vegetation. The
dense reconstruction was further interpolated into a mesh,
which served as the geometric framework for orthomosaic
generation.

Figure 4. Point cloud with aligned camera positions.

The final orthomosaics corrected for perspective distortions
inherent in the original oblique imagery, producing a true
orthogonal view with centimeter-level resolution. This enabled
reliable visual interpretation of individual vehicles and parking
patterns across the 34.1 ha study domain. Comparable levels of

geometric precision and radiometric continuity have been
reported in other UAV-based vehicle detection studies
(Ammour et al., 2017; Kaya et al., 2023; Ragab et al., 2023),
supporting the suitability of the dataset for deep learning—based
detection.

Snap: Axis, 3D

Figure 5. Dense point cloud, west parking.
4.2 Image orientation

The spatial distribution of camera (Figure 6) stations and
footprints indicates continuous coverage and sufficient
photogrammetric redundancy, consistent with the number of
observations and an average tie-point multiplicity of 3.79,
which supports block stability during triangulation.
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Figure 6. Image orientation

The reported RMS reprojection error = 1.20 px confirms that
the estimated poses and calibration parameters coherently
explain image measurements at a typical sub- to bi-pixel level
for low-altitude surveys with self-calibrated cameras.
Collectively, the image count, GSD, projections, and
reprojection error validate the geometric quality of the block
and the suitability of the overlap pattern for DEM/orthomosaic
generation.

Color-coded depth of coverage indicates the number of images
per ground pixel (1 to >9). The lawn-mower flight pattern yields
banded redundancy; black dots mark camera stations estimated
after bundle adjustment. The survey acquired 178 images at
83.3 m (GSD ~ 2.6 cm/pixel) over 13.1 ha, achieving a mean
reprojection error of ~1.2 px
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High, uniform overlap in the core (>9 images) ensures robust
triangulation and supports reliable ortho/DEM generation,
whereas peripheral areas with lower overlap (1-3) are more
error-prone and should be trimmed or handled carefully during
seamline editing.
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Figure 7. Camera locations and image overlap

The image residuals (Figure 8) summarize the quality of the
camera’s interior and exterior orientation within the
photogrammetric block. Each arrow depicts the residual vector
of a tie point—the difference between its measured image
location and the position projected by the bundle-adjusted
model; the arrow direction indicates local bias, and its length
(scaled to 1 px) the error magnitude, typically color-coded
(green/yellow: low; red: high). The observed pattern—short,
scattered vectors near the image center and longer, partially
radial vectors toward the edges—is characteristic of wide-angle
optics and denotes residual radial and tangential lens distortion.

1 pix
Figure 8. Camera Calibration-Image residual

According to the calibration coefficient and correlation matrix,
the interior orientation is consistent with wide-angle UAV
optics. The sensor (4000x3000 px; 1.58 pum pixel pitch) implies
a physical size of ~6.32x4.74 mm. The adjusted principal
distance is F = 3167.76 px, equivalent to ~ 5.01 mm (3167.76
px x 1.58 pm px™), slightly exceeding the nominal 4.386 mm
as expected from effective focusing and flight conditions. The
principal point exhibits modest offsets (Cx = —23.38 px = —36.9
pm; Cy = 11.83 px =~ 18.7 um), typical and well bounded.
Radial distortion is captured by K1 = —0.0383, K2 = 0.0526,

and K3 = —0.0536, indicating an undulating pattern with
predominant barrel behavior toward the periphery, whereas
tangential distortion is small (P1 = —0.00128; P2 = 0.000737).
Reported parameter uncertainties are very low ([K1] = 2x107%
o[P1] = 4.9x107°), supporting a stable bundle adjustment and
aligning with sub-pixel reprojection residuals.

4.3 Car detection

The parking areas surrounding the UANL stadium display
heterogeneous layouts, with the predominant configuration
being 45° angled parking, complemented by sections of 90°
perpendicular parking, and some areas lacking formal
demarcation (Figure 9). In the latter, drivers adaptively combine
perpendicular and parallel parking depending on the available
space.

Figure 9. Orthomosaics of the parking lots, showing the
different existing layouts. A) 45° angled parking, B) 90°
perpendicular parking and C) 90° perpendicular parking without
space demarcation.
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Using the pretrained Mask R-CNN deep learning model
implemented in ArcGIS, a total of 4,591 vehicles were
automatically detected across the three analysed parking lots.
Table 2 summarizes the vehicle counts per facility, with the
West lot containing 2,336 vehicles, the East lot 1,684 vehicles,
and the FIME lot 571 vehicles. Detection outputs demonstrated
high reliability, consistently identifying vehicles despite
challenges such as tree cover or cast shadows. Even when
partial occlusions occurred, the algorithm successfully
delineated bounding boxes, and each car was correctly
registered as a single detection (Figures 10-11).

Parking area Number of vehicles
P. East 1684
P. West 2336
FIME (P. North) 571

Table 2. Number of vehicles per parking area.

These results are consistent with recent advances in vehicle
detection from UAV imagery, where deep learning models have
shown resilience to complex urban environments and partial
occlusion (Ragab et al., 2023; Yildirim et al., 2024). The
detection rate achieved in this study demonstrates a comparable
level of precision to other high-resolution UAV applications
(Bouguettaya et al., 2021; Kaya et al., 2023), confirming the
effectiveness of pretrained architectures for real-world parking
scenarios. Unlike prior work focused primarily on traffic
monitoring (Moshayedi et al., 2023) or general object
recognition (Gupta et al., 2021), this study emphasizes the
university-stadium context, a setting characterized by sudden
surges in demand linked to scheduled events, which remains
underexplored in the literature.

Figure 10. Aerial photo of the stadium and car detection for the
entirety of the UANL stadium’s parking lots.
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Figure 11. Car detection for the existing parking areas
demarcations.

4.4 Density analysis

It is important to note that in this study, the term occupancy is
used in a geospatial sense to represent the areal intensity of
vehicle presence, rather than the conventional metric of
occupied spaces divided by total parking capacity. Because the
orthomosaics include both marked and unmarked areas, it was
not possible to compute an accurate ratio of vehicles per
designated bay. Instead, Kernel Density Estimation (KDE) was
employed to transform discrete vehicle detections into a
continuous density surface, enabling the identification of
congestion hotspots and spatial gradients of use pressure across
each facility.

Analysis of detected vehicle counts, and mapped coverage
enabled estimation of use pressure for each lot. In Parking East
density (Figure 12) with 1,684 vehicles distributed across 13.1
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ha, vehicular density is high and concentrates around primary
access points adjacent to the main avenue.
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Figure 12. Kernel density P.East

Kernel density estimation delineates critical linear zones
foreshadowing bottlenecks at egresses to the arterial network.
Under maximum occupancy, clearance times are expected to
exceed 25-35 minutes due to concurrent exit maneuvers and the
limited capacity of evacuation corridors.

Additionally, in FIME area, with 571 vehicles over 5.2 ha,
density (Figure 13) values are less critical; nevertheless,
restricted access and adjacency to academic facilities increase
vulnerability to internal obstructions and lane blockages.
Although relative evacuation capacity is higher, projected peak
egress times of 15-20 minutes may affect pedestrian mobility
and concurrent academic operations.
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Figure 13. Kernel density FIME

A salient finding is that a portion of vehicles is parked outside
designated bays, occupying areas not intended for parking. This
irregular  (spillover) placement reduces the effective
maneuvering envelope within the lots and degrades egress
throughput, increasing the likelihood of lane blockages,
obstruction of pedestrian access points, and evacuation delays.
While exit capacity is relatively adequate under routine
conditions, this pattern of informal occupancy can drive

clearance times beyond expected ranges and further
compromise traffic safety and internal circulation across the
university campus

In Parking West, which recorded 2,336 vehicles over 16.3 ha,
the greater spatial capacity partially attenuates pressure. Kernel
density estimation (Figure 14) reveals a clear spatial gradient in
vehicular concentration, with high-congestion clusters rendered
in red and, conversely, low-intensity zones depicted in blue to
purple, enabling rapid visual discrimination of potential
bottlenecks versus relatively uncongested corridors.

However, hotspots identified in the southern sector reveal
accumulations that trigger localized congestion. Proximity to
the high-demand Avenida Universidad constrains egress by
through traffic, with delays estimated at 30-40 minutes during
mass departures after sporting events. Despite its size, this lot
exhibits a high risk of point saturation capable of propagating
congestion onto secondary avenues.
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Figure 14. Kernel density P. West

While the total number of vehicles detected in each lot provides
the basis for computing exact densities (vehicles/ha), KDE
offers additional insight by revealing local concentration
patterns that may not coincide with lot boundaries. Future work
could integrate detailed parking-space inventories to derive true
occupancy ratios and validate congestion metrics under
different event scenarios.

4.5 Limitations of the study

Although the workflow demonstrated robust performance in
detecting and quantifying vehicles, certain limitations must be
acknowledged. First, partial occlusions caused by trees, light
poles, and building shadows occasionally led to incomplete
bounding boxes, even if vehicles were ultimately counted.
Second, the study relied on a pretrained Mask R-CNN model
without extensive local fine-tuning; while results were
consistent with previous literature (Ragab et al., 2023; Yildirim
et al., 2024), domain-specific training could further improve
detection accuracy in complex urban scenes. Finally, the
analysis was conducted during a single high-demand event,
limiting the temporal representativeness of parking dynamics.

Multi-event or longitudinal surveys would provide a more
comprehensive understanding of variability across seasons and
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event types. Because the workflow purposefully avoids manual
annotation to preserve full automation, we did not compute site-
specific precision—recall statistics; future extensions may
include a small audit sample (=1-2% of the area) to report local
metrics without altering the automated nature of the pipeline.

4.6 Implications for parking and mobility management

The integration of UAV photogrammetry with deep learning
offers significant potential to improve parking and mobility
planning in high-demand environments such as university
campuses and sports venues. The detection of congestion
hotspots and irregular parking patterns provides actionable
evidence to guide interventions, including redesigning
access/egress corridors, allocating staff for traffic control during
peak periods, and implementing dynamic guidance systems to
direct drivers toward underutilized areas. In addition, the
methodology can support the integration of intelligent
transportation systems (ITS), combining UAV monitoring with
real-time sensors and digital signage to reduce clearance times
and enhance safety. Beyond the UANL case study, this
approach can be scaled to other urban campuses and
metropolitan sports facilities, contributing to more resilient and
sustainable urban mobility strategies.

5. Conclusions

This study demonstrated the effectiveness of integrating UAV-
derived orthomosaics with pretrained deep learning models in
ArcGIS Pro for the automatic detection and quantification of
parked vehicles in high-demand environments such as the
UANL Stadium. The workflow achieved reliable detection of
4,591 vehicles across 36.4 ha, confirming its suitability for
large-scale applications in complex urban and campus contexts.

By combining object detection with kernel density analysis, the
study not only quantified parking occupancy but also identified
critical congestion hotspots. Results revealed that the East and
West lots generate the highest pressure on the external road
network, creating recurrent bottlenecks at main exits. In
contrast, the FIME lot exhibited lower overall occupancy but
showed irregular parking patterns that reduce maneuvering
space and increase the risk of internal blockages and evacuation
delays.

These findings highlight the potential of UAV deep learning
integration as a decision support tool for parking management,
providing actionable indicators for mitigating congestion,
improving traffic safety, and optimizing evacuation efficiency
during mass events. The methodology is transferable to other
urban and sporting contexts, contributing to the implementation
of intelligent transportation systems and supporting more
sustainable urban mobility planning.

Future work should focus on refining detection accuracy under
challenging conditions and conducting temporal monitoring
across multiple events. Such improvements will enhance the
integration of UAV-based monitoring into broader frameworks
of smart city governance and campus mobility management.
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