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Abstract

Knowledge about land cover is relevant for many different applications such as updating topographic information systems, monit-
oring the environment, and planning future land cover. Particularly for monitoring, it is of interest to be not only aware of current
land cover but of past land cover at different epochs, too. To allow for efficient, computer-aided spatio-temporal analysis, digital
land cover information is required explicitly. In this context, historic aerial orthophotos and scanned historic topographic maps can
serve as sources of information, in which land cover information is contained implicitly. The present work aims to automatically
extract land cover from this data using classification. Thus, a deep learning-based multi-modal classifier is proposed to exploit
information from aerial imagery and maps simultaneously for land cover prediction. Two variants of the classifier are trained,
utilizing a supervised training strategy, for building segmentation and vegetation segmentation, respectively. Both classifiers are
evaluated on independent test sets and compared to their respective two uni-modal counterparts, i.e. an aerial image classifier and
a map classifier. Thus, a mean F1-score of 62.2% for multi-modal building segmentation and a mean F1-score of 83.7% for multi-
modal vegetation segmentation can be achieved. Detailed analysis of quantitative and qualitative results gives hints for promising
directions for future research of multi-modal classifiers to further improve the performance of the multi-modal classifier.

1. Introduction

Obtaining knowledge about past and present land cover has
become an increasingly important topic. Such knowledge
is not only highly relevant in updating topographic maps,
but also allows for an analysis of former land cover, and
thus, monitoring, change detection, and identifying trends
in the spatial distribution of specific object types on the
Earth’s surface. Against this background, the German Fed-
eral Agency for Cartography and Geodesy (BKG) has es-
tablished the Gauss Centre (https://www.gausszentrum.
uni-hannover.de/en/, accessed: 17.05.2024). The overall
aim of the project is to derive land cover information for dif-
ferent points in time and to enable computer-aided analysis of
time series of the same. Sources of information, particularly for
past land cover, are historic remote sensing imagery, as well as
historic topographic maps. Nevertheless, information about the
coverage of the Earth is only implicitly contained in such data.
To enable automated analysis of land cover, the original raster
data, i.e. image data or scanned map data, must first be seg-
mented according to a predefined object type catalog and thus
be digitized. To obtain such explicit representations from im-
plicit representations, classification methods can be exploited,
in which raster data is presented to a land cover classifier that
provides pixel-wise predictions for different land cover classes.

Typically, in training, raster data of a single modality, i.e. im-
age data or map data, with a reference for land cover is used to
learn a classifier to map the respective input data to high-quality
predictions. To do so, recent approaches rely on deep learning,
e.g. to extract building information from maps (Heitzler and

Hurni, 2020) or to semantically segment aerial images (Mboga
et al., 2020). Instead of utilizing a single source of informa-
tion, multi-modal approaches incorporate different types of in-
put data to exploit complementary information contained in the
individual sources, e.g. historic aerial imagery and height in-
formation (Le Bris et al., 2020). Nevertheless, there does not
yet seem to be any approach that combines aerial imagery with
topographic map data. As these two kinds of data are often the
only regionwide sources of information for historic land cover,
it is of special interest to investigate the potential of semantic
segmentation techniques to derive land cover from both sources
simultaneously.

Accordingly, the goal of the present work is to consider image
and map data jointly as inputs for land cover classification. The
scientific contributions of the present work are the following:

• A multi-modal land cover classification approach is
presented that takes aerial orthophotos and topographic
maps to automatically derive land cover predictions. This
is the first approach that combines these two input modal-
ities.

• The multi-modal approach is compared to land cover pre-
dictions achieved by using the individual modalities as in-
puts for respective uni-modal classifiers.

• Based on a comprehensive analysis of the effects of ex-
ploiting multiple modalities for semantic segmentation on
the classification accuracies, promising directions for fu-
ture research of multi-modal classifiers are identified.
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2. Related Work

Deriving information about land cover from different types of
geodata is a classical task in geodesy, cartography, photogram-
metry, and remote sensing. In recent years, the interest in his-
torical geodata has become more and more relevant (Uhl et al.,
2021; Farella et al., 2022; Dahle et al., 2024), e.g. in histor-
ical aerial photographs (Farella et al., 2022; Dahle et al., 2024),
as well as in historical topographic maps (Uhl et al., 2021).
For land cover classification, each of the two data sources just
mentioned comes with its strengths and weaknesses, where it is
of interest to investigate a combination of them for land cover
classification compared to utilizing these sources independently
from each other to derive land cover. In the following para-
graphs, relevant existing works, as well as research gaps are
described concerning the segmentation of historic imagery, se-
mantic segmentation of historic maps, and approaches relying
on both modalities.

Image Classification: Recent approaches for pixel-wise im-
age classification, i.e. semantic segmentation, utilize fully con-
volutional networks (Long et al., 2015) or encoder-decoder net-
works such as UNets (Ronneberger et al., 2015) to extract relev-
ant image features with an encoder, e.g. based on convolutional
neural networks (LeCun et al., 1989; Krizhevsky et al., 2012),
and subsequently processing the features to come to one pre-
diction per pixel of the input image. Such approaches also have
been applied to historical imagery, aiming to semantically seg-
ment them. While a UNet predicts six classes, including ice,
snow, and sky, for all pixels of individual historic oblique aer-
ial images in (Dahle et al., 2024), orthomosaics are classified
by a UNet in (Le Bris et al., 2020; Mboga et al., 2020). Five
land cover classes are differentiated in (Le Bris et al., 2020),
where predictions are made for two different epochs, i.e. 1981
and 2001. Mboga et al. (2021) differentiates three and six land
cover classes, respectively. UNets are also considered for se-
mantic segmentation of current aerial imagery. In this context,
recent works exploit variants of Vision Transformers (Dosovit-
skiy et al., 2021) as encoders, e.g. (He et al., 2022). Neverthe-
less, all these works rely on (historical) images only to predict
land cover and do not consider topographic map data.

Classification of maps: The automatic interpretation of his-
toric maps has seen a growing interest in recent years. Those
maps contain past states of the Earth’s surface and land cover
or land use and allow to inspect and analyze the temporal evol-
ution of those states back in time (Uhl et al., 2021). Differ-
ent approaches have been developed to exploit the potential of
Deep Learning methods to identify the map objects, e.g. build-
ing footprints (Heitzler and Hurni, 2020). An essential problem
is providing ground truth, for which different approaches have
been proposed. (Jiao et al., 2022) propose to create so-called
Imitation maps, i.e. use old symbology to create maps from
current vector data. (Wu et al., 2023) exploit the fact that des-
pite changes in topographic objects over the years, there is still
a high likelihood that some objects (or parts thereof) did not
change their position; this co-occurrence is implemented in a
domain adaptation framework. Even though these works aim at
the automatic interpretation of historical maps, none of them in-
vestigated exploiting further modalities to potentially improve
the results.

Multi-modal classification: While aerial imagery and topo-
graphic maps were interpreted in uni-modal frameworks in the
works cited so far, there is a growing interest in simultaneously

exploiting multiple input modalities in the context of classific-
ation. Many works aim to improve land cover classification by
combining remote sensing imagery with other types of geodata:
For instance, Wang et al. (2023) combine image data with
LiDAR data, optical data is combined with radar data in (Garnot
et al., 2022) and with height information in (Le Bris et al.,
2020), respectively, and optical data from multiple satellites are
jointly considered in (Li et al., 2022). All these works demon-
strate that the consideration of multiple sources of information
can improve the quality of semantic segmentation. The only
works that consider both, historical aerial images and historic
topographic maps, e.g. (Liu et al., 2018), exploit ancient maps
as a source of information for older epochs and aerial imagery
as such for younger epochs; due to the combination, a longer
period can be considered for analyzing land cover changes. No
work could be identified, that combines topographic maps and
aerial (ortho-) images of the same epoch for multi-modal land
cover segmentation.

Discussion: It has been shown that both, historic images,
e.g. (Le Bris et al., 2020), as well as scanned historic maps,
e.g. (Heitzler and Hurni, 2020), can be utilized to extract in-
formation about land cover. Furthermore, many different ap-
proaches have demonstrated that the consideration of multiple
modalities can improve classification performance, e.g. (Wang
et al., 2023). To the best of the authors’ knowledge, there are
not yet any approaches investigating multi-modal semantic seg-
mentation of topographic maps and aerial imagery. Thus, in-
spired by the success of the respective uni-modal approaches,
this work aims to investigate the potential of a first multi-modal
classification considering topographic maps and aerial imagery
of (approximately) the same epoch.

3. Methodology

The goal of the proposed method is to exploit historical to-
pographic maps and historical aerial images simultaneously to
predict land cover at the epoch of the historic input data. For
this purpose, an aerial image xae and a scanned topographic
map xm showing the same area at approximately the same point
in time and with the same spatial resolution are jointly presen-
ted to the proposed multi-modal classifier. The proposed classi-
fier is based on a UPerNet (Xiao et al., 2018) (see Figure 1) and
consists of one Swin Transformer encoder (Liu et al., 2022) per
input modality and one decoder that exploits features at differ-
ent stages of both input modalities. As output, one of the K land
cover classes c1, ..., ck, ..., cK of interest is predicted per pixel.
The label map thus produced has the same extent as the two in-
puts xae and xm, respectively. As the predictions provided by
the proposed multi-modal classifier are based on both, inform-
ation contained in maps, as well as information contained in
aerial images, they allow for an analysis of the potential of such
a multi-modal classifier compared the to respective uni-modal
classifiers.

3.1 Network Architecture

The main objective of the proposed multi-modal UPerNet is to
allow for exploiting knowledge about past land cover contained
in multiple modalities, namely in historical orthophotos xae

originating from aerial flights and in scanned historical topo-
graphic maps xm, to provide pixel-wise predictions for K land
cover classes of interest. Accordingly, the inputs of the network
are two input images xae, xm of the size H x W pixels; H is
the height of the image and W is the width of the image with
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Figure 1. Multi-modal UPerNet. The encoder feature maps of
the image branch (gray) and the map branch (purple) are

combined (green arrows). The resulting combined feature maps
(green) are presented to a Feature Pyramid Network (FPN; blue)

with Pyramid Pooling Module (PPM; red). The output of the
decoder (orange) is presented to a classification head (pink) the

output of which is a label map with pixel-wise predictions.

H = W . In the present work, both images are RGB images, but
the presented method is adaptable to deal with another number
of input channels, e.g. a single grayscale channel as available
for historic data before roughly 2000.

Each of the images xae, xm is presented to another encoder
Eae(xae,w

E
ae), Em(xm,wE

m) with an individual set of train-
able weights wE

ae, wE
m, where all weights in the encoder are

denoted as wE := [wE
ae,w

E
m]T . Both encoders are tiny vari-

ants of Swin Transformers (Liu et al., 2022), requiring a par-
titioning of the input images into patches of P x P pixels.
The embeddings of all patches are presented to four subsequent
Transformer blocks, delivering feature maps f for the respect-
ive input modality at four different down-sampling stages s, i.e.
{f (s)

ae (xae,w
E
ae), f

(s)
m (xm,wE

m)}4s=1. To get multi-modal fea-
ture maps, the uni-modal feature at each stage s are concaten-
ated so that in case of having d(s) uni-modal feature maps per
modality at stage s the resulting multi-modal features consist of
2 · d(s) feature maps.

Subsequently, these multi-modal features are presented to a
Pyramid Parsing Module (Zhao et al., 2017), parameterized by
the weights wPPM , and a Feature Pyramid Network (Lin et al.,
2017), parameterized by the weights wFPN . The outputs of the
Feature Pyramid Network are feature maps with identical spa-
tial dimensions as f

(1)
m (xm,wm) and f

(1)
ae (xae,wae), respect-

ively, where the number of feature maps is 2 · d(1).

These feature maps are presented to a classification head that re-
duces the 2 ·d(1) feature maps to K feature maps based on con-
volutions with weights whead, where the entire set of weights
of the decoder is denoted by wD := [wFPN ,whead]T . Af-
terwards, the feature maps are bilinearly up-sampled to the in-
put image size, i.e. H x W pixels, and the resulting H · W
K-dimensional class scores a⃗h,w that are normalized using the
Softmax function. The class ĉk with the highest Softmax ac-
tivation for the K features at position (h,w), h ∈ [1, ..., H],
w ∈ [1, ...,W ] is predicted for the corresponding pixel in the
input images. The output of the classifier is the label map con-
taining the predictions for all pixels.

3.2 Training

The proposed multi-modal UPerNet is trained by iteratively up-
dating the network’s weights w := [wE ,wE ,wPPM ,wD]T

so that the loss function L becomes minimal. In the present
work, the Softmax cross-entropy is used to measure the net-
work’s ability to correctly predict the reference class ck for the
pixel at position (h,w), indicated by a binary indicator variable
th,w,k = 1 (th,w,k = 0 for all other classes). Accordingly, the
loss for a single training sample, consisting of an aerial image
xae, the corresponding scanned map xm, and reference inform-
ation t := {th,w,k h = 1, ..., H ∧w = 1, ...,W ∧ k = 1, ...K},
becomes

L(xae,xm, t,w) =
∑
(h,w)

∑
k

th,w,k · sm(⃗ah,w,w). (1)

Due to the dependencies of the Softmax activation sm in equa-
tion 1 on both input modalities and thus, the dependency of
the loss L on the same, the network is forced to learn weights
w such that the most meaningful information is extracted from
the two input modalities.

4. Dataset

The data used to evaluate the multi-modal UPerNet is based on
digital orthophotos (DOPs) and scanned topographic maps with
a scale of 1:25 000 (TK25), and manually created reference data
for land cover. All data represent areas in the region of the Ger-
man city Hamelin, where a DOP from 2010 is available, and
the first TK25 of that region (map sheet 3822) produced after
this image acquisition year is selected, i.e. a map from 2011.
The land cover reference was created by manually digitizing
one vector layer per land cover class of interest based on the
visual interpretation of the DOP, where the polygons of all lay-
ers belonging to one epoch are disjoint in space. Below, sec-
tion 4.1 provides details about the general workflow for gener-
ating a multi-modal reference required by the method described
in section 3. Based on available reference polygons two data-
sets are thus generated: One dataset for binary building clas-
sification belonging to the inner city of Hamelin (section 4.2),
and one dataset for multi-class classification of different veget-
ation types belonging to a rural area in the north of Hamelin
(section 4.3).

4.1 Preparation of the input data

The goal of the data preparation is to obtain aligned raster rep-
resentations of the DOPs, the TK25, and the reference poly-
gons, where corresponding pixels of these three data sources
have to represent identical areas in object space, i.e. on the
ground. Thus, in the first step, a joint coordinate reference sys-
tem is selected, which is here ETRS89 / UTM zone 32N (EPSG:
25832), i.e. the reference system of the georeferenced DOP and
thus, of the reference polygons, too. In the second step, the
scanned TK25 maps are georeferenced by measuring the four
corner points of the map sheet, assigning UTM coordinates to
them, and applying an affine transformation to the scanned map.
The resulting georeferenced TK25 raster then is available with a
possibly deviation of an average of 1 m in the ground sampling
distance in horizontal and vertical direction. At this point, all
three data sources are available in the same coordinate reference
system. As the classification method requires aligned rasters
with quadratic cells/pixels of all data, a joint raster is defined
in a third step: As the TK25 map sheet are given in a scale of
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1:25 000, objects in the map are represented with an accuracy
of about 1.25 m, assuming a line width of approximately 0.05
mm and an ideal map accuracy. The DOPs of the two time
steps are available with a ground sampling distance of 20 cm.
Thus, a joint raster with a ground sampling distance of 1 m is
defined to have a compromise between maintaining the detailed
information in the DOPs and still having a meaningful differ-
ence between neighbouring TK25 pixels. Furthermore, the 1
m raster is defined such that the upper left corner of a pixel
belongs to integer values of Easting and Northing of the UTM
coordinates. In the next step, the values of all data sources are
interpolated to that joint raster, where bilinear interpolation is
used for the DOPs and the TK25. Nearest neighbor interpola-
tion is used to obtain the reference rasters, where the reference
raster contains values between 0 and K, having K classes of in-
terest in a region. In the final step, the raster is partitioned into
tiles of 500 x 500 pixels, where individual tiles are assigned to
training, validation, or testing, respectively, and from which the
input patches for network training are randomly drawn.

4.2 Multi-modal building dataset

For binary building classification, the procedure described in
section 4.1 is applied to DOPs and building reference polygons
from 2010 showing the inner city of Hamelin, as well as the
corresponding TK25 from 2011. This results in a multi-modal
dataset, where the region of interest is visualized based on the
binary reference information in Figure 2.

Figure 2. Reference of the binary building classification dataset,
covering 6 km2. Yellow belongs to the class Building and black
to the class No Building. The blue area is used for validation, the

green area for testing, and the remaining areas for training.

In Figure 2, all 24 tiles of 500 x 500 pixels are shown; the ex-
tent covers 4 tiles in height and 10 tiles in width. Only tiles
with reference information for all buildings that are visible in
the corresponding DOP tile were selected to contribute to the
dataset. The tiles are assigned to a training, a validation, and a
test subset, respectively, such that each subset contains all types
of buildings in the dataset. The distribution of the data over
the subsets and the corresponding relative class frequencies are
shown in Table 1. In general, most of the pixels belong to the
background class No Building. The amount of building pixels
is around 15% in the training and validation sets. In the test set,
around 23% of the pixels belong to buildings.

Set #Tiles Frequencies [%]
No Building Building

Train 16 86.0 14.0
Val 4 84.6 15.4
Test 4 76.8 23.2

Table 1. Statistics for the binary building dataset. Set: Name of
the subset; #Tiles: Number of tiles in that subset; Frequencies

[%]: Percentage of pixels belonging to the respective class in the
respective subset.

4.3 Multi-modal vegetation dataset

Similarly, a multi-modal multi-class dataset is generated from
DOPs, the TK25 map sheet, and the reference polygons (see
Figure 3). The test area consists of 16 tiles of 500 x 500 pixels
with a ground sampling distance of 1m, where 9 classes are
contained in the reference (see the legend in Figure 3). Due
to the rare frequency of all classes except for Crop, Decidu-
ous trees and Coniferous trees, they are merged and considered
as Other class so that in total 4 classes (the 3 just mentioned
and a Other class) are differentiated for that area. The tiles are
partitioned into 12 tiles for training and 2 tiles each for valida-
tion and testing (see Figure 3). Note that considering all of the
nine classes would not have allowed to split the tiles into these
three subsets, such that each class is contained in each subset.
Thus, the statistics about relative class frequencies in Table 2
can be obtained. The most dominant class is Deciduous trees,
followed by the class Crop, and the least frequent class of in-
terest is Coniferous trees. The Other class, consisting of several
object types, makes up in total between 4.7% and 8.6% of the
subsets.

Figure 3. Reference of the multi-class vegetation classification
dataset, covering 4 km2. The blue area is used for validation,

the purple area for testing, and the remaining areas are used for
training.

Class name Frequencies [%]
Train Val Test

Crop 30.5 24.4 36.5
Deciduous trees 54.2 69.2 51.4
Coniferous trees 9.8 1.7 3.5
Other 5.5 4.7 8.6

Table 2. Statistics for the multi-class vegetation dataset. Class
name: Name of the class; Frequencies [%]: Percentage of pixels

belonging to the respective class in the respective subset.

5. Experiments

The experiments conducted in this work aim to evaluate the im-
pact of multi-modal classification, utilizing the method presen-
ted in section 3, compared to the two respective uni-modal clas-
sifiers based on the two multi-modal datasets described in sec-
tion 4. First of all, an overview of the experimental setup with
training specifications, the conducted experiments, and the util-
ized evaluation protocol is presented in section 5.1. Afterward,
the results thus obtained are presented, described, and discussed
in section 5.2.

5.1 Experimental Setup

The overall goal of the experiments is to evaluate the quality
of land cover predictions produced by the multi-modal clas-
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sification approach and to compare the achieved qualities to
those of the uni-modal counterparts of the classifier. Thus, the
multi-modal approach is compared to uni-modal classification
approaches, where a single modality, i.e. either map or aerial
image, is presented to the network and a single encoder extracts
feature maps for the PPM and the subsequent FPN with clas-
sification head. This is realized based on the building dataset
and the vegetation dataset (section 4) by training the network
architecture presented in section 3.1 based on the loss function
presented in section 3.2. For training, images of H = W = 256
pixels are randomly extracted from the respective training tiles
and partitioned into patches with P=4 pixels (see section 3.1 for
a definition), where additional data augmentation (random ro-
tation, transposition, horizontal and vertical flipping) is applied
to artificially enlarge the training dataset; the augmentations for
both input modalities are the same. Furthermore, the RGB in-
put data is normalized to zero mean and a standard deviation of
one for all channels of the two modalities independently. Thus,
training batches with a batch size of 8 samples are produced,
and presented to the network in each training iteration. The
network weights w are initialized randomly using variance scal-
ing (He et al., 2015), except for the encoder weights wE

ae and
wE

m; each set of encoder weights is initialized using pre-trained
weights achieved on ImageNet (Russakovsky et al., 2015). Dur-
ing training, all weights are updated using mini-batch stochastic
gradient descent with adaptive moments, i.e. Adam (Kingma
and Ba, 2015). Preliminary experiments showed that a learning
rate of 1·10−2 is optimal in combination with the standard para-
meters (β1 = 0.9, β2 = 0.999 and ϵ̂ = 1 · 10−8). Training is
terminated using early stopping, where the stopping criterion is
reached after 10 epochs of training without any further improve-
ment of the validation (mean F1) score. To get an impression of
the stability of the conducted experiments, all experiments are
conducted three times, each with another random seed for the
random components, i.e. weight initialization, and mini-batch
sampling. For evaluation of the experiments, the Overall Accur-
acy (OA), the mean F1 score (mF1), and the mean Intersection
Over Union (mIOU) are calculated on the independent test set.
The presented mean values and the corresponding standard de-
viations of those three metrics are calculated out of the metrics
achieved in the three runs per experiment.

Following this general experimental setup, the experiments lis-
ted in Table 3 are conducted. For each of the two datasets, a
multi-modal experiment, as well as two uni-modal experiments,
i.e. a uni-modal aerial image classification and a uni-modal
map classification, are conducted. Thus, the performance of the
multi-modal classifications (Bae+m and Vae+m, respectively)
can be compared to those of the uni-modal experiments (Bae,
Bm and Vae, Vm, respectively). Furthermore, a comparison of
experiments with identical input modalities evaluated on data-
sets with different object types can be conducted (e.g. Bae+m

and Vae+m), allowing for an analysis of the ability of a certain
modality to represent a certain object type such that the pro-
posed classifier can be trained to correctly predict it.

5.2 Results and Discussion

The average quality metrics of all conducted experiments are
presented in Table 4. For both of the datasets, all metrics are
highest in the case of uni-modal classification based on aerial
digital orthophotos (Bae and Vae, respectively). While the dif-
ference in performance to the other experiments conducted on
the same dataset is significant by a large margin on the build-
ing dataset, i.e. all metrics obtained in Bae are around 5.4%

Name Dataset Modality
DOP TK25

Bae+m Building yes yes
Bae Building yes No
Bm Building No yes
Vae+m Vegetation yes yes
Vae Vegetation yes No
Vm Vegetation No yes

Table 3. List of Experiments. Name: Name of the experiment;
Dataset: either Building dataset (section 4.2) or Vegetation

dataset (section 4.3); Modality: Input modality presented to the
network (DOP for xae and TK25 for xm).

to 11.3% higher than those of the second best experiment Bm,
the difference in all metrics is relatively small between the best
experiment Vae and the second best experiment Vae+m (1.9% -
2.9%). This behavior is somewhat unexpected, having assumed
that learning from multiple modalities would support the clas-
sifier in distinguishing different land cover classes. A more de-
tailed analysis of the results, as well as potential reasons for the
observed results, will be presented below, where Tables 5 and 6
show the class-specific F1-scores and the class-specific IOUs.

Building dataset: As already observed in the average quality
metrics in Table 4, the uni-modal experiment with aerial DOPs
also results in the highest class-specific quality metrics (see
Table 5). In Table 5, the class of interest, i.e. Building, achieves
the lowest scores in all of the three experiments, where the met-
rics in the multi-modal experiment Bae+m are lower than those
obtained for both of the uni-modal experiments, i.e. Bae and
Bm. There are several potential reasons for this: An analysis of
the input modalities and the corresponding reference label maps
shows that there are different kinds of discrepancies between
the input data, i.e. DOP, TK25, and reference label map (see
Figure 4), which are mainly due to generalization effects:

• Both of the examples show that due to generalization of
the buildings in the map, the map does not contain all de-
tails of the building outlines that are visible in the DOP
and the reference, respectively.

• The first example (upper row) shows a displacement
between some buildings in the DOP and thus, also the ref-
erence compared to the TK25.

• Furthermore, the two examples in Figure 4 show that not
all buildings in the TK25 are not contained in the ref-
erence. Specifically, the second example (bottom row)
shows that there are building parts contained in the TK25
that are not considered in the reference. A closer look at
the corresponding DOP indeed shows that it is often quite
hard to distinguish between gray roofs, e.g. from garages,
and roads, which is likely to be the reason for the discrep-
ancies in the data.

A solution to reduce such effects could be to consider both,
DOPs and the TK25, for labelling.

Still, a closer look at the predictions of the three classifiers in
Figure 5 shows that the two uni-modal classifiers Bae and Bm

predict relatively meaningful results, which fit to the quality
metrics in Tables 4 and 5. While the boundaries of the two
classifiers Bae and Bm tend to be too roundish, Bae tends to
predict finer details of the buildings, and Bm does not provide
such details. To produce shapes which have adequate building
characteristics (e.g. rectangularity, parallelism) can be either
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Name Quality metric [%]
mF1 mIOU OA

Bae+m 61.5 ± 0.61 45.6 ± 0.45 65.4 ± 0.74
Bae 89.1 ± 0.12 80.8 ± 0.26 92.2 ± 0.20
Bm 81.1 ± 0.21 69.5 ± 0.21 86.8 ± 0.12
Vae+m 82.3 ± 0.64 72.0 ± 1.03 91.0 ± 0.61
Vae 84.4 ± 0.75 74.9 ± 1.00 92.6 ± 0.29
Vm 59.3 ± 0.69 52.6 ± 0.56 87.0 ± 0.50

Table 4. Average experimental results with mean and standard
deviation achieved in three runs per experiment. Name: Name of

the experiment; Quality metric: respective average quality
metric achieved in an experiment. The best results per dataset is

highlighted in bold font.

F1 Score
Class name Experiment

Bae+m Bae Bm

No Building 73.6 ± 1.32 94.9 ± 0.20 91.5 ± 0.12
Building 49.4 ± 2.32 83.2 ± 0.15 70.8 ± 0.45
IOU
Class name Experiment

Bae+m Bae Bm

No Building 58.2 ± 1.64 90.3 ± 0.30 84.3 ± 0.21
Building 32.8 ± 2.02 71.3 ± 0.26 54.7 ± 0.50

Table 5. Class-specific results on the building dataset. Class
name: Name of the class; Experiment: Name of the experiment.
Per metric and class, the experiment with the highest metric is

highlighted in bold font.

achieved in post processing (Feng et al. (2020), Neidhart and
Sester (2008), or by including it in the segmentation process
(Marmanis et al. (2018)).

Beyond that, it is an interesting finding that the predictions of
the uni-modal map classifier fit relatively well with the map
contents: Figure 6 presents qualitative results of Bm, i.e. the
building predictions and the corresponding part of the map. It
can be seen that the predictions of Bm fit well with the map
content, particularly compared to the alignment of the reference
and the map in Figure 4. Accordingly, the classifier learned in a
relatively good way to predict buildings, even though the train-
ing data had contained shifts. As the evaluation was done with
regards to the reference data, this leads to large discrepancies
and thus the quantitative numbers in Table 5 are the lowest for
the class Building in the experiment Bm.

The predictions of the multi-modal classifier Bae+m (see Fig-
ure 5, right) show that the classifier predicts buildings not only
for regions that belong to buildings but also for many other re-
gions. This is likely to be caused by the displacements between
the TK25 and the DOP (and thus the reference), which becomes
clear when, e.g. looking at the first example in Figure 4: as
the yellow reference is aligned with the buildings in the DOP
but not with those in the TK25, buildings in the TK25 and the
DOP are not aligned. To achieve better multi-modal predic-
tions, another fusion scheme, i.e. late fusion, could mitigate
the problems of the current classifier by exploiting the already
relatively well uni-modal predictions. Furthermore, auxiliary
supervision, e.g. (Garnot et al., 2022), forcing a network to pro-
duce correct predictions based on all input modalities in addi-
tion to the multi-modal-based predictions might be helpful to
overcome this issue, too.

Vegetation dataset: As already observed in the average qual-
ity metrics in Table 4, the uni-modal experiment with aerial
DOPs results in the highest class-specific quality metrics (see

DOP + L TK25 + L DOP + L TK25 + L

Figure 4. Examples for test tiles with reference overlay. DOP +
L: Aerial image with yellow reference overlay. TK25 + L:

topographic map with yellow reference overlay.

Bae Bm Bae+m

Figure 5. Examples for predictions achieved on two test tiles.
Each row shows one of the test tile areas. The columns belong to

the three conducted experiments (see Table 3).

Table 6) on the vegetation dataset, too. In contrast to the qual-
ity metrics achieved on the building dataset, the multi-modal
classifier (Vae+m) can predict all classes nearly as good as the
best performing uni-modal aerial image classifier (Vae). Ac-
cordingly, it is assumed that the fusion of all encoder features
is suitable for predicting land cover in rural areas, in contrast to
urban areas. This could be caused by fewer occurrences of ob-
ject boundaries in rural areas compared to urban areas such that
small geometric discrepancies between the DOP and the map
have a lower impact on the classification performance.

A second interesting observation is that two of the three fore-
ground classes in the vegetation dataset, i.e. the classes Crop
and Deciduous trees, are predicted relatively well by the uni-
modal map classifier (Vm): The F1-score and the IOU for the
class Crop are en par for all of the three classifiers (93.7% -
95.2%) and the class Deciduous trees is also predicted relat-
ively well based on maps (Vm) with an F1-score of 90.4% and
an IOU of 82.6%. While correctly predicting Other is much
more difficult for all of the three classifiers compared to the two
foreground classes just mentioned, the map-based classifier Vm

tends to fully fail in predicting Coniferous trees. A qualitative
analysis of the results provides some potential reasons for the
class-specific quality metrics in Table 6.

Figure 7 shows the input data for both modalities and the ref-
erence label maps, whereas the predictions of all three vegeta-
tion classifiers for the two test tiles in the vegetation dataset are
presented in Figure 8. There, it can be seen that the class Other
is mostly confused with the class Crop. While a part of the
agricultural area in the upper example in Figure 8 is predicted
as Other in Vae+m and partly Vae, a larger part of the class
Other in the lower example in Figure 8 is predicted as Crop
both by Vae and Vae+m. This might be the case because these
classes are relatively heterogeneous in their appearance and in
particular, both classes, Crop and Other, contain areas with low
green vegetation, which explains the confusion between these
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DOP + Bm TK25 + Bm DOP + L TK25 + L

Figure 6. Examples for test tiles with uni-modal map predictions
(Bm). The test tiles in this figure are identical to those in

Figure 4 (for an easier comparison, the original overlay of the
reference data is replicated here again; DOP + L, TK25 + L).

F1 Score
Class name Experiment

Vae+m Vae Vm

Crop 93.7 ± 0.71 95.2 ± 0.32 94.5 ± 0.15
Deciduous 94.1 ± 0.44 95.2 ± 0.15 90.4 ± 0.45
Coniferous 79.8 ± 2.40 81.6 ± 0.95 3.5 ± 1.31
Other 61.4 ± 1.85 65.8 ± 2.15 48.7 ± 1.61
IOU
Class name Experiment

Vae+m Vae Vm

Crop 88.2 ± 1.27 90.9 ± 0.59 89.6 ± 0.25
Deciduous 88.8 ± 0.84 90.8 ± 0.25 82.6 ± 0.80
Coniferous 66.4 ± 3.27 68.9 ± 1.35 1.8 ± 0.66
Other 44.3 ± 1.95 49.0 ± 2.44 32.2 ± 1.34

Table 6. Class-specific results on the vegetation dataset. Class
name: Name of the class; Experiment: Name of the experiment.
Per metric and class, the experiment with the highest metric is

highlighted in bold font.

two classes. In contrast, the map in the lower examples in Fig-
ure 7 has predominantly a homogeneous red signature in the
area, where Vae and Vae+m confuse Crop and Other. Accord-
ingly, Vm is better in correctly predicting Other in that region,
which can be seen in Figure 8. Ideally, the multi-modal classi-
fier would have taken advantage of the ability to correctly pre-
dict the class Other based on the map. It is assumed that aux-
iliary supervision in future work could support the multi-modal
classifier in exploiting this strength of the map-based classific-
ation.

There is another interesting observation that supports the idea
of learning land cover not only from aerial images but also from
maps. In Figure 7, there are water bodies in the areas of both
of the two test tiles according to the topographic map. Because
of vegetation like trees and bushes that are visible in the or-
thophotos, the reference label maps, that were produced from
these images, do not contain this information. As concluded
in the context of the building dataset, both input modalities are
recommended to be used for the generation of future reference
label maps to allow for the full exploitation of the information
in both of the modalities.

Other than that, there is another interesting observation con-
cerning the prediction of the class Coniferous trees. A compar-
ison of the topographic map (TK25) and the reference labels
(L) in the upper example in Figure 7 shows that the area with
Coniferous trees in the reference is marked to be Deciduous
trees in the map; only a small part of the map content in the
bottom example is marked to be an area with Coniferous trees.
Thus, it can be explained that the quality metrics for Conifer-
ous trees are extremely low for the map-based classifier Vm,
i.e. an F1 score of 3.5% and an IOU of 1.8% are achieved (see
Table 6). Indeed, the predictions of Vm in the upper example
in Figure 8 fit very well with these low-quality metrics, because

DOP TK25 Reference

Figure 7. Test tiles for the vegetation dataset. Each row shows
one of the test tile areas. DOP: Aerial image. TK25:

topographic map. Reference: Reference label map. For the
legend see Figure 3 and black indicates Other.

Vae Vm Vae+m

Figure 8. Predictions achieved on the two test tiles. Each row
shows one of the test tile areas. The columns belong to the three

conducted experiments (see Table 3).

Vm predicts Deciduous trees for most of the forest area instead
of Coniferous trees, which would be required by the reference.
In the multi-modal classification scenario, Vae+m, Coniferous
trees is correctly predicted (see Figure 8), which is why it is as-
sumed that the information provided by the digital orthophoto
compensates for the misleading information that the classifier
obtained from the map. Accordingly, Coniferous trees are sim-
ilarly well predicted by Vae+m as by the aerial image classifier
Vae. It is concluded that a multi-modal setting with maps and
aerial images is to be preferred over a uni-modal map setting
in such cases to overcome issues with error-prone or less de-
tailed information in maps (see the upper example in Figure 7)
because the aerial images always show the actual land cover at
the time of recording.

Summary: The conducted experiments showed that a multi-
modal land cover classification of topographic maps and aerial
imagery is possible in principle. Currently, the uni-modal aer-
ial image classifier performs best on both, the urban and the
rural datasets, where several reasons have been identified that
explain this behavior. For both datasets, it has been found that
future reference labels should be generated under consideration
of both modalities instead of based on orthophotos only. Thus,
for instance, buildings with a roof appearing similar to the sur-
rounding underground workings can be detected more easily,
leading to fewer conflicts between the inputs and the land cover
reference. Further conflicts observed in urban areas are caused
by spatial displacements of buildings in the maps compared to
the other data and the generalization of the buildings. As the
uni-modal classifiers performed much better on the building
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dataset, it is assumed that both, auxiliary supervision, as well
as a modification of the fusion scheme to late fusion, might
help to fully exploit the info in the individual modalities and to
improve the current results. In the rural test area, the three fore-
ground classes were predicted rather well by the multi-modal
classifier. Only the heterogeneous Other class achieved lower
quality metrics in the multi-modal classification. In a qualitat-
ive analysis, it was found that some of the areas with the class
Other are relatively homogeneous in the map, which is why
the uni-modal map classifier delivered better predictions in that
area compared to the other two classifiers. Also in this context,
auxiliary supervision is assumed to help a future multi-modal
classifier to better exploit such strengths of an individual mod-
ality. It is particularly noteworthy that the multi-modal clas-
sifier was able to correctly predict coniferous trees in contrast
to the uni-modal map classifier, even though the signature in
the map is wrong. This demonstrates the general ability of the
current multi-modal classifier to rely on the more informative
input modality for making correct predictions for some of the
classes. All in all, it was found that there is a great potential for
learning to predict land cover utilizing both aerial imagery and
topographic maps.

6. Conclusions & Outlook

In this paper, a multi-modal classifier for predicting land cover
from historical aerial orthophotos and historical topographic
maps was proposed. The classifier takes photos and maps
from approximately the same epoch, having the same ground
sampling distance. For the supervised training approach, a
pixel-wise land cover reference is required to update the net-
work weights. The classifier is trained to extract representative
uni-modal features from both input modalities and to predict
land cover based on the combined features that are processed
in a joint decoder. In comprehensive experiments, the multi-
modal classifier is compared to a uni-modal aerial image classi-
fier and a uni-modal map classifier, respectively. The results
show that currently, uni-modal classification based on aerial
imagery performs best for building classification, achieving a
mean F1-score of 89.2%, and the results are in the same or-
der of magnitude for such a uni-modal classifier and the multi-
modal classifier for vegetation classification, i.e. around 84% as
a mean F1-score. The main reason for the different result char-
acteristics on the building dataset is assumed to be the realized
fusion scheme; as both uni-modal classifiers perform better than
the multi-modal classifier, late fusion should be investigated.
Nevertheless, the results obtained in the context of classifying
vegetation demonstrated that the multi-modal classifier can rely
on the more informative input modality to come to a prediction,
showing potential for future refined multi-modal classifiers.

Accordingly, there are many directions for investigations in fu-
ture work. Concerning the reference information to be used
for training, all input modalities are recommended to be used
for creating (further) manual reference labels. Expanding the
reference information is of special interest to be able to dif-
ferentiate more land cover classes and to have a better repres-
entation of underrepresented classes in the training data. Fur-
thermore, it would be very interesting to investigate the gen-
erality of the proposed approach by applying it to other data-
sets, even though, to the best of the knowledge of the authors,
there is not yet any dataset publicly available coming along with
topographic map data, aerial imagery, and a high-quality land
cover reference. From a methodological point of view, realiz-
ing auxiliary supervision, e.g. (Garnot et al., 2022), is also as-

sumed to help to overcome the problems in the context of build-
ing classification, because the two uni-modal building classifi-
ers were found to perform better by a large margin than the
multi-modal classifier. Furthermore, a more advanced fusion
scheme, e.g. using attention mechanisms (Guo et al., 2022), has
the potential to help the classifier to focus on relevant features.
Beyond that, it would be interesting how well uni-modal and
multi-modal classification of land cover can be realized in older
epochs where typically grayscale aerial images and topographic
maps with fewer colors are available. Having the required data
for multiple epochs would also allow for an expansion of the
classification approach to a multi-temporal classifier, e.g. by
adapting the uni-modal, multi-temporal classifier in (Voelsen et
al., 2023).
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