
Three-dimensional Change Detection and Description in Complex Construction Scenarios 

Xuming Ge*, Xinjing Liu 

Faculty of Geosciences and Engineering, Southwest Jiaotong University, 611756, Chengdu, China 

xuming.ge@swjtu.edu.cn; liu_xinjing@my.swjtu.edu.cn 

Keywords：Construction site, Laser point cloud, Change detection, Semantic description, Geometric change quantization. 

Abstract 

In large-scale engineering construction scenarios, construction objects and equipment are numerous; their spatial positions and postures change 

frequently and are complex and varied. Describing the changes between construction entities and the entities themselves in a three-dimensional 

(3D) geometric space and functional semantic space is challenging. In response to this challenging, we propose a novel workflow to detect and 

describe the changes in a construction site. First, we add the constraint of object surface continuity to the octree change detection (OCD), exclude 

the independently changing cells, and improve the change detection robustness. Second, based on the changes in entity elements that occur in the 

3D geometric space, we introduce six-type semantics to characterize the changes that occur. Differing from existing change detection semantic 

description methods that focus on the attribute semantics of changed entity elements, our method focuses on the semantic description of the 

change process. Finally, for the variations in different semantic types, we propose specific quantization methods that can better quantify the 

variations in entity elements in 3D geometric space. For the proposed solution, we tested it using two sets of multi-period time-series point cloud 

data, which can accurately identify the changing construction entities in space and complete the calculation of bridge construction progress, 

including the building demolition and construction, and the change in the construction apparatus position. 

1. Introduction

Perceiving changes in a construction scene is crucial for achieving 

progress detection, quality monitoring, and safety assurance in 

construction projects (Meyer et al.,2022). In large-scale construction 

projects, the extensive construction scene and numerous construction 

entities lead to complex and varied changes, rendering it difficult to 

accurately characterize the changes between construction entities and 

the entities themselves in three-dimensional (3D) geometric space and 

functional semantic space.  

Compared to traditional two-dimensional (2D) change detection 

(Levine et al.,2023), three-dimensional change detection has real 

geographic coordinate and feature depth information. This enables the 

identification and updating of the posture of objects, real position 

changes, surface deformation and defects. Such capabilities satisfy the 

demand for 3D information in the construction process. 

On one hand, advancements in LiDAR technology have 

significantly enhanced 3D change detection technology. On the other 

hand, the inherent limitations of laser point clouds, e.g., randomness, 

high noise levels, can pose challenges to change detection and 

description (Singh et al.,2023): 

(1) Effective change is difficult to judge. In complex construction

scenes, there is noise, imperfect data, and interference from natural 

changes, which render it easy to misjudge the change information. 

(2) Locating the change object is difficult. Construction occurs over

a long period and is multi-temporal; changes are widely distributed 

with complex processes, making it difficult to locate changes 

accurately. 

(3) Difficulty in matching homonymous entity elements. Man-made

construction objects are prone to structural symmetry and component 

occlusion, leading to difficulties in confirming the postures and 

positions of entity elements. 

In order to address the aforementioned challenges and achieve more 

precise and efficient three-dimensional change detection and 

description in complex construction environments, scholars have 

conducted extensive research. This includes the relocalization methods 

(Duong et al., 2019), point cloud registration techniques (Li et al., 

2020), utilization of octree technology (Park et al., 2021), and more to 

discover and describe spatial changes based on point clouds. Despite 

some progress in this task, there are still unresolved issues that require 

further refinement. In light of this, we designed a change detection 

framework for large and complex construction scenes. Our main 

contribution to this article is: 

(1) Adding constraints on object surface continuity to octree change

detection (OCD), reducing spatial occupancy change misjudgments, 

and improving 3D change detection robustness. 

(2) Defining six types of semantics to semantically describe the

change process and quantify the changes in construction entities, 

improving the cognitive power of these data. 

(3) Proposing a stable alignment posture method for construction

entity elements, obtaining the body orientation expression of the entity 

model, solving alignment problems caused by easily symmetric and 

structural occlusion of man-made objects. 

2. Related works

2.1 Point-based change detection 

In point-based change detection methods, changes are identified by 

calculating the difference in spatial location of either homonymous 

points or nearest neighbor points. Cloud2Cloud distance calculation 

method (Girardeau-Montaut et al., 2005) reflects point movements of 

two or more point-clouds at the same location generated from 

terrestrial laser scanning. In addition to point-to-point distances, 

changes can also be represented by point-to-surface or surface-to-

surface distances. Distance-based differential estimation and 

occupancy grids can be mixed (Xiao et al., 2012) to detect changes in 

point clouds to improve the accuracy of variation calculation. 

Multiscale model-to-model cloud comparison distance measurements 

(Lague et al., 2013) can detect changes in complex terrain on point 

clouds without meshing. In addition, the variation calculation is less 

affected by the spatial point density, surface roughness and different 
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sampling positions. Height differences and gray-scale similarity of 

distances method (Du et al., 2016) are used to show building 

modifications based on existing information of the scene, in order to 

detect the change from observed distances. 

Single-dimensional changes such as building height and terrain 

undulation can be computationally achieved by point-based change 

detection, but it is not possible to achieve posture monitoring and entity 

position change monitoring. To achieve change detection and 

chronological monitoring at construction sites, we need to combine 

other methods. 

2.2 Voxel-based change detection 

The voxel-based change detection method divides the point cloud 

into 3D grid cells or voxels. Changes are detected by comparing the 

occupancy status of a grid or voxel. However, the data characteristics 

of the point cloud create uncertainty in the visibility of the occupancy 

grids (Stilla et al, 2023). Occupancy grids with the Dempster–Shafer 

theory (Pagac et al., 1998) is used to establish and sustain environment 

maps for self-driving cars. Hebel et al. (2013) demonstrated variation 

as an occupancy grid. Occupancy analyses can be augmented with 

other metrics to estimate variance. For instance, Xiao et al. (2016) 

combined occupancy checks with point-to-triangle distances to assess 

point consistency in occupancy analyses, addressing variances in point 

densities and occlusions. Ray casting can lead to artifacts when 

traversing negative discrete spaces. Gehrung et al (2018) used planar 

knowledge to avoid such artifacts and later implemented octree to 

index changes, which improved change detection efficiency. 

Voxel-based change detection is less impacted by point density 

compared with point-based change detection, resulting in improved 

efficiency, but it does not account for high-level semantic changes. We 

conducted semantic analyses of change objects utilizing voxel-based 

change detection to attain a dual enhancement in work efficiency and 

semantic clarity. 

2.3 Object-based change detection 

Object-based change detection can detect semantic label changes by 

using deep learning. Random Forest algorithm (Tran et al., 2018) trains 

artificial features on multi-targeted multi-temporal features, performs 

change detection and classification in a single step to avoid multi-step 

error transfer. Concatenated or feed-forward early fusion network on a 

2.5D DSM (digital surface model) is used to acquire binary building 

classification changes (Zhang et al., 2019). Siam Graph Convolutional 

Network is used to define five change label types, performs change 

detection on 3D point clouds of complex street scenes (Ku et al., 2021). 

Convolutional operator (Landrieu et al., 2018) can also be used on 

segmentation change detection. Wang et al. (2018), introduced the 

underlying graph representation, which maps the initial point cloud 

onto the graph structure for semantic segmentation change detection. 

Siamese KPConv framework (de Gélis et al., 2023) is dedicated to 

change detection and classification of 3D point clouds, completes the 

extraction of six change types in urban scenes. However, the accuracy 

of this variation’s estimation is highly dependent on the classification 

or segmentation results. 

The deep learning methods need enough amounts of labeled data to 

ensure classification accuracy. However, in construction scenes, the 

changing objects' structures are intricate, the high diversity and 

complexity of transformation types all contribute to an increase in the 

production cost of samples, subsequently reducing the model's 

generalization ability. 

3. Methodology

3.1 Overview 

We aim to attain effective and accurate change detection and 

quantitative analysis of complex construction scenes over time. The 

process is illustrated in Fig. 1. and involves optimized octree spatial 

change detection, spatial clustering segmentation of geometric changes 

objects, and measurement of change scales. 

Figure 1. Workflow. 

3.2 Robust octree spatial change detection 

We aim to attain effective and accurate change detection and 

quantitative analysis of complex construction scenes over time. The 

process is illustrated in Fig. 1 and involves optimized octree spatial 

change detection, spatial clustering segmentation of geometric changes 

objects, and measurement of change scales. 

We create an octree index with a change resolution of 𝜎𝑚 and add 

the next period of aligned point cloud data to the same octree. 

Spatially, the occupancy state can be represented by 0 and 1, that 0 is 

empty and 1 is occupied (Lu et al., 2019).  

We define 𝑈(𝑎, 𝑏), 𝑎, 𝑏 ∈ {0,1}, as the space occupation state of the 

ontology, where 𝑎 is the occupancy state of voxels in the first period, 

𝑏 is the occupancy state of voxels in the second period. 

The change in the voxel occupied is: 

C = {

𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑, 𝑈 = (0,1)

𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑, 𝑈 = (1,0)

𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑,𝑈 ∈ {(0,0)(1,1)}
. (1) 

We use Boolean operations (Mntyl, 1986) to search added nodes of 

the spatial octree and extract the geometric added point cloud under 

the added nodes. 

We analyze the point cloud within voxels and the relationship 

between adjacent voxels to reduce the misclassification of interference 

point clouds. 

The point distribution within a voxel can be classified into three 

cases: 1. isolated points within a voxel (See in Fig. 2(a)), 2. no common 

plane within a voxel (See in Fig. 2(b)), 3. finite planes within a voxel 

(See in Fig. 2(c)). Only in cases where the points within a voxel are 

finite planes are valid variations. 
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Change type Semantics of change types Mathematical description 

appeared The space occupied is empty at  and occupied at . 𝑈(  ) = 0 𝑎𝑛𝑑 𝑈( ) = 1 

disappeared The space occupied is occupied at  and empty at . 𝑈(  ) = 1 𝑎𝑛𝑑 𝑈( ) = 0 

reduced The volume changes, and it occupies more space at  than at . 𝑉(𝑈(  )) > 𝑉(𝑈( )) 

grew The volume changes, and it occupies less space at  than at . 𝑉(𝑈(  )) < 𝑉(𝑈( )) 

moved 
The volume and posture are unchanged, but its position changes between 

and     . 

𝑉(𝑈(  )) = 𝑉(𝑈( )), 

𝐿(𝑈(  )) ≠ 𝐿(𝑈( )) 

rotated 
The volume and position are unchanged, but its posture changes between 

and     . 

𝑉(𝑈(  )) = 𝑉(𝑈( )), 

𝐿(𝑈(  )) = 𝐿(𝑈( )), 

𝐴(𝑈(  )) ≠ 𝐴(𝑈( )) 

Table 1. Change type semanticization. 

Figure 2. Normal vector distribution states of points within voxels. (a) 

Isolated points (b) Discrete distribution (c) points are distributed in 

planes: ①:one plane; ②: two planes. 

When no neighboring voxels occur around a change voxel, the 

points within the voxel are outlier noise, which are considered invalid 

changes and are rejected. 

First, changing voxels with a lot of point clouds smaller than the 

threshold are eliminated; we use the product of the octree resolution 

and the coefficient of the point cloud density as the threshold: 

𝜀𝑥 = 𝑎 ∙ 𝑓𝑚, (𝑎 < 1), ( )

where 𝜀𝑥 is the judgment threshold, a is the product coefficient, 𝑓 is

the octree resolution, and 𝑚 is the number of points per unit volume 

(1 𝑚3) in the ideal case.

The voxel changes state at this point is: 

𝐶 = {
𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝜀 ≥ 𝜀𝑥
𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝜀 < 𝜀𝑥

. ( ) 

Second, the normal direction of the points within the voxel is 

calculated, and those with the same normal direction are clustered, and 

the number of point cloud clusters —𝑛 is calculated. 

At this point, the voxel changes state is: 

𝐶 = {
𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝑛 ≠ ∞
𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝑛 = ∞

. ( ) 

Finally, the connectivity of the voxel is judged, and if neighboring 

voxels surround it, it is considered a valid change voxel. 

At this point, the voxel changes state is: 

𝐶 = {
𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝑘 > 0
𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑, 𝑘 = 0

, (5) 

where 𝑘 is the current voxel’s number of neighboring voxels. 

3.3 Semantic change process description 

To express change types clearly and explicitly, we define the change 

types. We define the following six change types: appeared, 

disappeared, reduced, grew, moved, and rotated, as shown in Table 1, 

where 𝑈(  ) is the space occupancy state of the object, 𝑉(𝑈(  )) is 

the space occupied volume of the object, 𝐿(𝑈(  ))  is the spatial 

location of the object, and 𝐴(𝑈(  )) is the spatial posture of the object. 

3.4 Geometric change extent quantification 

For different types, we choose different quantification methods to 

quantify the change scale (Table 2), where 𝐷(𝑥) is the change in the 

object, 𝐿(  ) is the spatial position, 𝑉(  ) is the spatially occupied 

volumes, 𝐴(  ) is the spatial attitude, and 𝑆(  ) is the length, width, 

or height of the object. 

Change type 
Quantitative 

method 
Mathematical description 

appeared 
Position and 

volume 
𝐷(𝑥) = (𝐿( ), 𝑉( )) 

disappeared 
Position and 

volume 
𝐷(𝑥) = (𝐿(  ), 𝑉(  )) 

reduced Length change 𝐷(𝑥) = 𝑆( ) − 𝑆(  ) 

grew Length change 𝐷(𝑥) = 𝑆(  ) − 𝑆( ) 

moved Position change 𝐷(𝑥) = 𝑓(𝐿( ), 𝐿(  )) 

rotated Posture change 𝐷(𝑥) = 𝑓(𝐴( ), 𝐴(  )) 

Table 2. Quantification of change scales. 

3.4.1. Length and volume change: The four types of changes: 

appeared, disappeared, reduced and grew, can be quantified by 

calculating the length and volume of buildings that have grown or been 

demolished. 

The length change can be calculated by: 

∆𝐿 = 𝐻2 −𝐻 , ( ) 

where ∆𝐿 is the change length, 𝐻  is the building height in the first 

period of point cloud, and 𝐻2  is the building height in the second

period of point cloud. 

The volume change can be calculated by: 

∆𝑉 = 𝑉2 − 𝑉 , ( ) 

or: 

∆𝑉 = 𝑙 ∙ 𝑚 ∙ ℎ, (8) 

where ∆𝑉 is the volume change, 𝑉  is the building volume in the 

first period of point cloud, and 𝑉2 is the building volume in the second

period of point cloud, 𝑙, 𝑚, ℎ are the changes in the length, width, and 

(a) (c)(b)

① ②
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height of building. 

3.4.2 Posture change: Due to data density and structural occlusion, 

there may be some missing components. Still, the collected point cloud 

of construction components is a proper subset of the real model of 

construction components. The surface features will not be completely 

lost, so in this case, the normal vector distribution features can 

also be used to complete the point cloud alignment.  

Gaussian mapping of normal vectors. Taking the center of the 

externally connected sphere of the object as the computational center, 

the normal vectors 𝑁𝑖⃗⃗  ⃗(𝑁𝑥𝑖⃗⃗⃗⃗⃗⃗ ，𝑁𝑦𝑖⃗⃗⃗⃗⃗⃗ ，𝑁𝑧𝑖⃗⃗ ⃗⃗  ⃗) are computed at each point of

the point cloud. All the normal vectors are projected onto the Gaussian 

sphere. The normal vector starting point falls on the center 𝑂(0,0,0) 
of the Gaussian sphere, and the endpoint falls on the Gaussian sphere 

surface; the radius of the Gaussian sphere is 𝑟. Then, the Gaussian 

mapping point cloud 𝑃𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) of the construction element:

{

𝑥𝑖 = 𝑟 ∙ 𝑁𝑥𝑖⃗⃗⃗⃗⃗⃗ 

𝑦𝑖 = 𝑟 ∙ 𝑁𝑦𝑖⃗⃗⃗⃗⃗⃗ 

𝑧𝑖 = 𝑟 ∙ 𝑁𝑧𝑖⃗⃗ ⃗⃗  ⃗

( ) 

Gaussian mapping point cloud clustering. We perform K-means 

clustering (Saglam et al., 2020) on the Gaussian-mapped point cloud 

of construction elements to extract the cluster centers (Fig. 3(b)). The 

clustering center serves as the densest point of the normal direction 

distribution, which we use as the feature point for Gaussian sphere 

alignment. At the same time, we obtain clusters with consistent normal 

direction (Fig. 3(a)), which are described specifically in Section 

III.D.c.

Solving for posture change. We compute the rotation matrix using

the clustering center of the Gaussian-mapped point cloud as the feature 

point. 

Figure 3. Gaussian mapping and mean clustering isotropic plane 

extraction. (a) Gaussian sphere clustering corresponding to 

component point clouds (b) Gaussian mapping point cloud clustering 

(black point cloud is the center of clustering). 

Extract the clustering centers of each point cloud cluster in the two 

objects 𝐴, 𝐵 respectively and obtain the point sets 𝑀𝑘 , 𝑁𝑘. Correspond

the points in the point sets 𝑀𝑘 and 𝑁𝑘 two by two randomly to obtain

𝑘 groups of point pairs, calculate the angular distances 𝜃𝑘 from each

pair of points to the origin 𝑂 , and calculate the sum of angular 

distances of the 𝑘 groups of pairs 𝐸𝑘.

𝜃𝑘 = 𝑎𝑟𝑐𝑐𝑜𝑠
𝑟2 − [(𝑥𝑚 − 𝑥 )

2 + (𝑦𝑚 − 𝑦 )
2 + (𝑧𝑚 − 𝑧 )

2]

 𝑟2
, (10)

𝐸𝑘 =∑𝜃𝑘

𝑘

𝑘=0

, (11) 

where 𝑟  is the radius of the Gaussian sphere, 𝑥𝑚, 𝑦𝑚, 𝑧𝑚  and

𝑥 , 𝑦 , 𝑧  are the coordinates of the corresponding points in the 𝑀𝑘 , 𝑁𝑘
point sets. 

The sum of angular distances for all combinations 𝐸𝑘 is calculated

iteratively, and the homonymous point correspondences of the two 

construction component point sets 𝑀𝑘 and 𝑁𝑘 are determined when 𝐸𝑘
is smallest.  

Four pairs of homonymous clustering center points are arbitrarily 

selected to solve the Gaussian sphere rotation matrix 𝑅 using the SVD 

(singular value decomposition) method (Arun et al., 1987), and the 

rotation matrix of the Gaussian sphere 𝑆𝐵 to 𝑆𝐴 is the rotation matrix

𝑅 of component B to A: 

𝑅 = (

𝑟 𝑟 2 𝑟 3
𝑟2 𝑟22 𝑟23
𝑟3 𝑟32 𝑟33

) . (1 ) 

3.4.3. Position change: When Gaussian mapping point cloud 

clustering in Section III.D.b, we separate the clusters with the same 

normal direction, and each cluster is all the planes in that normal 

direction. According to the summation principle of space vector 

decomposition, the sum of the projections of the distances of two 

elements in any three directions on the coordinate axes can be 

calculated to obtain the spatial position change distance of elements. 

Determine the main plane of the element. Priority is given to 

selecting the three direction point cloud clusters with the most uniform 

distribution of the normal direction in the element. The largest area and 

the densest point cloud in each point cloud cluster is extracted as the 

main plane in that direction, by the regional growth clustering method. 

Such as Fig. 4(b) for the clusters of planes with the same direction, in 

which the red point cloud is the main plane. 

Figure 4. Extraction of three pairs of principal planes of counterpart 

elements. (a)(e) Two counterpart elements (b) principal planes in a 

certain direction (c)(f) three pairs of principal planes corresponding 

to the direction (d)(g) top view of three pairs of principal planes. 

Similarly, as Fig. 4 extracts the three pairs of isotropic principal 

planes of the corresponding elements, if there are problems such as 

uneven distribution of the normal direction of the largest principal 

plane, other planes can be selected to replace (Fig. 4(c)), but it is 

necessary to ensure that the replacement plane and the original plane 

have zero distance in that direction. 

Solving for position change. The distance of the three pairs of 

principal planes is calculated and projected to the coordinate axes. The 

sum of the distances in the direction of each axis is found, for attaining 

the moving distance of the element in the direction of each axis. 

Corresponding to the calculation of the distance from the principal 

planes as shown in Fig. 5. 

(a) (b)

𝑥
𝑦

𝑧

𝑥
𝑦

𝑧

(a) (b) (c)

(e) (f) (g)

(d)
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Figure 5. Main plane distance calculation. 

Take the plane (𝜑𝐴, 𝜑𝐵) as an example, the distance from the plane

𝜑𝐵 to the plane 𝜑𝐴 is the distance from the centroid 𝑝  of the plane 𝜑𝐴
to the plane 𝜑𝐵, and the plane 𝜑𝐵 is in the same direction as the normal

direction of 𝜑𝐴 , which is written as ( 𝑛𝜑𝑥, 𝑛𝜑𝑦,  𝑛𝜑𝑧) , and the

translation matrix 𝑇 of component 𝐵′ to 𝐴 is:

𝑇 = |

 𝑛𝜑𝑥 ∙ 𝑑 + 𝑛𝜙𝑥 ∙ 𝑑2 + 𝑛𝜔𝑥 ∙ 𝑑3
𝑛𝜑𝑦 ∙ 𝑑 + 𝑛𝜙𝑦 ∙ 𝑑2 + 𝑛𝜔𝑦 ∙ 𝑑3
 𝑛𝜑𝑧 ∙ 𝑑 + 𝑛𝜙𝑧 ∙ 𝑑2 + 𝑛𝜔𝑧 ∙ 𝑑3

| , (1 )

where ( 𝑛𝜑𝑥, 𝑛𝜑𝑦 ,  𝑛𝜑𝑧), ( 𝑛𝜙𝑥 , 𝑛𝜙𝑦 ,  𝑛𝜙𝑧), and ( 𝑛𝜔𝑥, 𝑛𝜔𝑦,  𝑛𝜔𝑧)

are the normal directions of the planes 𝜑𝐴, 𝜙𝐴, 𝜔𝐴 respectively, and 

𝑑 , 𝑑2, and 𝑑3 are the distances between the planes 𝜑𝐴 and 𝜑𝐵,

planes 𝜙𝐴 and 𝜙𝐵, and the planes 𝜔𝐴 and 𝜔𝐵respectively.

4. Experiment and analysis

4.1 Experimental data 

Scene 1 is a suspension bridge construction site. We collected two 

periods of laser point cloud data in June 2022 and May 2023; due to 

the equipment, data from May 2023 have no true color data. The scene 

range is approximately 500 m×280 m, the bridge construction adopts 

the longitudinal segmental pouring method, and the construction was 

carried out at a single point from bottom to top. The construction scene 

has a wide range, but the changing area is centrally distributed, and 

there are a lot of non-artificial object changes and data noise 

interference. 

Scene 2 is a construction site for a high-speed rail simple supported 

girder bridge, and we use four periods of time series laser point cloud 

data collected in April 2022, June 2022, January 2023, and July 2023 

for the experiments, with a scene range of approximately 510 m × 100 

m. The construction of the bridge adopts a hanging basket to assist in

the prefabricated component assembly method, and the construction is

advanced from different abutments to the sides. The construction scene

is distributed in a band, with scattered change areas, wide periods,

complex change types, and some non-artificial objects change

interference and data noise interference.

Before conducting the experiment, we manually observed the 

changes in the construction scenes and used them as the true values to 

verify the findings of this study by comparing them with these true 

values. There are 7 change objects in Scene 1, including 4 types of 

changes as shown in Fig. 6. In Scene 2, the changes are different in 

different periods, mainly concentrated in the piers, bridge bodies, 

cranes, tower cranes, and hanging baskets, including 5 semantic 

changes. In order to clearly observe the multi-temporal changes on the 

construction site, we select a group of sites to display as shown in Fig. 

7.  

Figure 6. Scene 1: Comparison of the two periods at the construction 

site. (a) Period-1 point cloud, (b) Period-2 point cloud. Among them, 

①–④ are local detailed images: ①–③ are buildings disappeared and

new buildings appeared at the original site, ④ is the changes of

bridges. (1) is the grew of bridges, (2) is the rotated tower cranes, and

(3) is the disappearance of construction elements.

4.2. Experimental results and evaluation 

4.2.1 Change objects extraction: The change objects in the scene are 

extracted using the clustering method, and the final geometric change 

detection results are shown in Fig. 8, which can accurately detect all 

the man-made objects in the scene. In Scene 1, there are 7 changes in 

man-made objects, which can be extracted accurately and completely, 

and the two factory buildings in the lower right corner of the scene are 

similar to each other, which can also be distinguished and extracted. 

In Scene 2, the changes for different periods can be extracted 

completely as shown in Fig. 8. However, because the hanging basket 

and the bridge are nested distributed, the clustering algorithm cannot 

segment them correctly, and they need to be separated manually in the 

later stage of the study. 

4.2.2 Semantic change process description: Extracting change 

objects are not sufficient to elaborate changes in the construction site. 

In order to continuously track the state of the change objects, the site 

needs to be analyzed in conjunction with the change semantics of the 

change objects. 

Figure 8. The results of two scenes change detection experiment. 

Scene 1 man-made objects change results are shown in ① while ② 

displays Scene 2 man-made objects change results. The latter 

includes point cloud change results for the 02 Period-01 Period, 03 

Period-02 Period, and 04 Period-03 Period, denoted by (a–c). 
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We experimentally determined the change type for each object in 

the scenes (Fig. 9, Fig. 10), which allows us to accurately determine 

the object change type to monitor the situation in the construction 

project and observe the construction area. In Scene 1 shown in Fig. 9, 

during the observing period, the stage construction of the suspension 

bridge abutments was completed. The auxiliary construction steel 

frames were removed and dismantled two plants, by constructing a 

new plant in an area with more frequent construction activities 

according to the need for personnel housing was reduced.

Figure 7. Scene 2: Comparison of construction site point clouds in four periods. (a)–(d) are the time-series point clouds of Periods 01, 02, 03, 

and 04. The different states of regions ①–④ in the four periods (identified by boxes and arrows connecting them, and the change type is 

identified by the colors). ① is a new pier grew in the period (a–c), and the bridge grew, the hanging baskets moved and the tower cranes rotated 

in the period (c–d); ② is the bridge grew in the period (a–d); and ③ is the cranes disappeared in the in the period (a–b) and no change in the 

period (b-d); ④ is the hanging baskets moved towards both ends. 

In Scene 2 as shown in Fig. 10, during the construction period, 

work was carried out on the bridge, focusing on the main road and 

extending it to both sides. The construction involved building piers 

by casting a steel frame structure, with priority given to repairing the 

piers before mending the bridge body. Both tasks were synchronized 

to ensure a smooth workflow. The construction proceeded 

methodically, but the pace and timing of completion remain 

uncertain. Accurate tracking of construction progress necessitates 

further quantification of the scope and scale of changes. 

Figure 9. Analysis of change types in the construction scenes of 

suspension bridges (change types are identified by colors). 

Figure 10. Illustrates the analysis of changes in construction scenes 

for simply supported girder bridges. (a–c) Point cloud variations of 

Period-02 versus Period-01, Period-03 versus Period-02, and Period-

04 versus Period-03. 

4.3 Geometric change extent quantization 

Knowing the semantics of the changes in the construction site is 
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not enough to fully grasp the progress of construction, only through 

the precise quantification of numerical indicators to monitor the 

progress accurately.  

As shown in Fig. 11, in Scene 1, from June 2022 to May 2023, 

there were two new plants (a) built at the suspension bridge 

construction site, with an area of 9919.75 𝑚3  and 3522.38  𝑚3

respectively. Two plants (b) with an area of 2248.74  𝑚3  and

1533.54 𝑚3 were dismantled. The volume of the dismantled plant (c)

was 46023.51  𝑚3  smaller than that of the original. In addition to

testing the site environment, the construction progress can also be 

monitored. The construction of the cable tower (d) completed its 

construction phase, the steel frame was removed, and the cable tower 

grew by 5.18 𝑚 compared with the previous period. 

Figure 11. Quantitative analysis of change. (a) appeared (b) 

disappeared (c) disappeared and appeared (d) grew. 

In Scene 2, according to the analysis of temporal changes in the 

site (see in Fig. 12), the foundation of bridge pier (b) was constructed, 

and the heights rose by 17.75 𝑚, 11.89 𝑚, and 4.85 𝑚 during the 

observation period. The bridge body (c) was continuously constructed 

to both sides; the left sides of the bridge body were built into 3.46 𝑚, 

4.37 m, and 9.53 m, and the right sides of the bridge body were built 

into 3.35 𝑚, 3.62 𝑚, 6.62 𝑚. Construction equipment (d) was on site 

in April 2022 and disappeared in the next period. Roughly quantifying 

the positional changes in the two hanging baskets(a), the left basket 

advanced by 3.16 𝑚 , 4.44 𝑚 , and 4.18 𝑚  during the observation 

period, and the right basket advanced by 3.58 𝑚, 3.79 𝑚, and 5.94 𝑚. 

Upon careful observation, there were subtle changes in the posture of 

the hanging baskets, so we calculated the specific posture and position 

changes as shown in Table 3. 

Figure 12. Quantitative analysis of different changes (1). (a) Cradle 

moved, (b) Abutment grew, (c) bridge grew, (d) Crane disappeared 

Posture changes Positional changes 

Left 

cradle 
Yaw pitch roll x-axis y-axis z-axis

02-01 1.78 4.47 −0.63 −2.44 −3.53 6.24 

03-02 −2.01 −2.87 −5.40 −4.90 0.77 −0.51

04-03 −0.29 −3.84 −1.95 −3.43 −1.08 −4.16

Right cradle 

02-01 −2.29 0.17 0.92 1.68 5.54 −0.37

03-02 0.00 0.34 −0.34 3.66 1.30 0.98 

04-03 −0.06 −0.40 0.23 5.56 2.19 −0.82

Table 3. Changes in attitude and position of the cradle. 

Overall, this Section delivers a thorough account of our 

accomplishments. It covers man-made change objects extracting, 

semantic analysis of the change process, and precise geometric 

change calculating on the time-series point cloud data collected from 

the construction site. The section explains the dynamic changes 

within the construction area by conducting on-site observations. This 

allows for precise monitoring of construction progress and quality, as 

well as the inspection of safety hazards and potential risks at the 

construction site, which ultimately enhances automation in the 

dynamic monitoring of construction. 

5. Conclusion

This study designs a change detection framework that detects 

object changes at construction sites using octree change detection. 

The approach comprises three primary parts. The first part entails 

accurately and robustly determining man-made change objects. The 

second part defines the semantics of the change process for the 

changed objects and considers the potential changes that may occur 

at construction sites. The third section entails a quantitative 

calculation of the extent of geometric change. 

Two construction scenes are investigated, in which factors such as 

noise and natural change are eliminated, detection is focused on 

artificial objects. In our change detection workflow, the change 

process semantics and geometric change extent is considered in 

addition to extracting change objects. We present a registration 

approach designed for artificial objects that quickly recuperates object 

poses and thoroughly describes scene changes. However, as 

previously stated, manual observation remains necessary for the 

semantic labeling of altered objects. Implementing target detection 

can be an avenue to attain complete automation and explore 

immediate change detection on identical objects. This direction points 

to future research. 
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