
3D Data Integration in the Voxel Domain

Ben Gorte1,2, Sisi Zlatanova1, Morakot Pilouk3, Abdoulaye Diakite2, Jack Barton1

1GRID, School of Built Environment, UNSW Sydney, NSW, Australia – b.gorte, s.zlatanova, jack.barton @unsw.edu.au

2Voxelmates, Pty Ltd, Sydney, Australia – abdou, ben @voxelmates.com.au
3ESRI, Redlands, USA – mpilouk@esri.com

Keywords: Voxel Operators, 3D model, Digital Twin, Valid Data Model, Data Structure, 3D Reconstruction

Abstract

The interest in 3D data integration is growing as the concept of Spatial Digital Twins gains traction among local governments and
stakeholders. Spatial data is typically organized into standardised themes such as buildings, transport, and vegetation, or as ad hoc data
products in either 2D or 3D dimensions. However, integrating these data sets into a cohesive 3D model presents several challenges.
The foundational data sets may vary in terms of accuracy, resolution, representation, and actuality due to differences in creation
standards and procedures. Consequently, inconsistencies often arise within the 3D models, making them difficult to identify and rectify.
Many of these data integration issues can be traced back to the 3D vector representation. Vector 3D models exhibit significant
geometric diversity, which complicates the computational operations required for examining and validating the models. In this paper,
we propose a novel voxel-based approach for integrating 3D data. Voxels, analogous to pixels in 2D raster images, inherit several key
properties. We employ a dedicated voxel data structure and a set of operations tailored for this purpose. First, we voxelise vector
datasets, converting continuous geometric information into discrete voxel representations. Next, we merge voxel layers using a
specialized voxel overlay operation. The resulting 3D model adheres to most validity and integrity requirements. To highlight the
flexibility of our voxel data structure, we transformed it into point clouds for visualisation in ArcGIS Pro, enabling the addition of 3D
base maps and GIS layers. We then published these datasets to Scene Services, granting public access. This allows users to easily
explore the 3D scenes through a web browser, making complex geographic data more accessible. By leveraging voxels, our approach
facilitates efficient and accurate 3D data integration, making it a valuable contribution to the field.

1. Introduction

In the last years, it has become a prerequisite for municipalities
and institutions to have 3D models of their cities to support
Digital Twins. 3D models are integrated with sensor data for
environmental monitoring, traffic, mobility, or for urban
planning and development. Large areas have been maintained as
3D models in many cities in across the world (e.g. Döllner et al
2006). Simplified 3D models are also freely available through
geospatial vendors such as Google, Microsoft and ESRI.

However, most of these models are not readily applicable for the
intended application. Frequently, either a new 3D model has to
be created or an additional data have to be added to an existing
one. Depending on the application, the needed 3D models may
differ significantly. Some applications may require photo-
realistic models, others may need object-oriented models with
plenty of attributes or models with topologically correct
geometries. Such considerations often lead to creating a new 3D
model. Therefore, the topic of integrating data sets to create 3D
city models is becoming more appealing than ever.

Reconstruction of 3D models from point clouds, images and
existing data sets have been an extensive topic of investigations.
In this paper, we concentrate on creating 3D models from
available standard 2D and 3D data sets, which are produced and
maintained by the mapping agencies or data provides. Normally
such data sets are organised per theme: transportation, buildings,
terrain, vegetation, water bodies. They can be accessible via Web
services or a direct connection to databases or provided as files.
The file formats can be diverse as well: from semantically rich
models such as CityGML or IFC to the ones containing only
geometry such as .obj, .stl, .ply. Accuracy and resolution can
vary, i.e. buildings can be represented as 2D polygons or 3D
shapes in variety of LODs. Roads might be represented by their
centre lines with attribute for the width of lanes or as polygons.

The geometric representation can be raster or vector. For
example, the terrain is commonly maintained as raster data set,
although TIN representations can be found as well. Data can be
structured according to a national data standard, or vendor
specific schema. As results, the available data sets are very
diverse, and their fusion is always problematic.

Many papers have been published for creating 3D models from
different data sets either for whole cities (Erving et al 2009) or
parts of cities (e.g. Erving et al 2009, Billen et al 2015, Diakite at
al 2020, La Guardia et al 2022) or buildings (Diakite and
Zlatanova, 2016, Boguslawski et al 2022, Xie et al 2022). The
conclusions drawn from these experiments highlight the
multitude of challenges associated with the integration of 3D
vector data. One significant challenge arises from the diverse
nature of vector data types, including points, multipoints,
polygons, multipolygons, polyhedrons, and tetrahedrons. This
diversity increases the likelihood of undesirable issues such as
overlapping, intersections, inclusions, and discrepancies in
terrain representation.

Researchers have been actively exploring various approaches to
address these challenges, including techniques for accurate 3D
reconstruction (Yan et al., 2019) and methods for detecting and
rectifying errors in 3D City Models (Ledoux and Meijers, 2011;
Wagner et al., 2012). Additionally, efforts have been made to
mitigate the variety of vector data types by using standardised
database management data types (Li et al., 2019). Despite these
endeavours, many errors remain difficult to rectify, posing
ongoing challenges for effective 3D vector data integration.

In this paper we present our experiments on 3D data integration
in the voxel domain. Voxels are equivalents to pixels in 2D raster
models. Voxels have numerous advantages to vector
representation. They create a 3D gridded space, each voxel has
only one value, the data management is quite intuitive, and many

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-133-2024 | © Author(s) 2024. CC BY 4.0 License.

133

(neighbourhood) operations can be defined. Voxels have been
used extensively for processing point clouds or for modelling of
continues phenomena such as geology, marine, etc., but have
been rarely applied for 3D city modelling or analysis, except for
indoor environments to compute navigation paths or for
evacuation. (Xu et al 2018, Fichtner et al 2018, Staats et al
2018,Gorte et al 2019, Zhao et al 2022, Aleksandrov et al 2023)

In this paper we illustrate that some of the above-mentioned
errors and inconsistencies can be easily avoided if the 3D data
integration is performed in the voxel domain.

The paper is structured as follows: Initially, we delve into the data
model and the operational methods utilized in our experiments.
Subsequent sections are dedicated to the integration of four key
datasets: terrain, roads, buildings, and trees, with a
comprehensive explanation of the processing techniques for each
dataset and their integration methodology. The final section
showcases how the data is imported into ArcGIS Pro, enabling
users to explore and enhance the 3D scene by incorporating base
maps and additional GIS layers. Furthermore, we discuss how
this data can be made publicly accessible through publishing on
scene services via the ArcGIS Enterprise or ArcGIS Online
platforms. The paper concludes by evaluating the benefits and
limitations of employing voxels for 3D data integration, as well
as their applicability in city modelling.

2. Voxel data structure

As mentioned above, voxels create a regular grid or a 3D array,
in which each object is composed by a set of voxels and therefore
can be seen as a solid. This allows to unify and simplify the
representation of the objects, but also requires attention when
voxelising data sets that are based on B-reps representations
(points, lines, surfaces, and polyhedrons) (Gorte and Zlatanova
2016, Nourian et al 2019, Aleksandrov et al 2021). Fine-
resolution voxels are beneficial when aiming at accuracy, but the
size of the 3D raster can grow exponentially when large parts of
cities are considered. The performance can be easily affected and
even the computer memory might become insufficient.
Therefore, data structures need to be devised to allow voxel
storage on a disk.

Octrees are commonly used as a data structure to maintain the 3D
regular grid, especially when many voxels have identical values
as in cities (e.g. air voxels). In this paper we rely on a data
structure as presented by Gorte 2023. Here, we will summarise
how it works without detailing the considerations and
justifications. It is an optimised octree data structure, which
allows further reduction of the octree footprint. The data structure
is organised in an SQLite and several generic operations are
developed to work with the data structure.

2.1 Voxel scene and layer

In voxel domain, we assume all objects are volumetric. All
voxels, including those inside and between solid objects, are
semantically relevant. A geo-reference is assumed, which relates
‘real world’ coordinates (X, Y, Z) (in metres) to integer grid
coordinates (x, y, z), e.g. (X, Y, Z) = (X0, Y0, Z0) + R ∗ (x, y, z).
R is the resolution, or grid spacing, which is equal in X,Y,Z-
directions. The range of (x, y, z) is between (0, 0, 0) and (xmax,
ymax, zmax), which defines the size of the particular voxel scene.

A 3D raster can represent different spatial objects (thematic
classes) or characteristics of one object. Examples of thematic
classes are voxels values such as 1-buildings, 2-trees, 3-roads, 4-

roofs, 5-doors, 6-windows. Building IDs (Figure 1, top) or
temperature values are examples of characteristics of one object.
In this paper such 3D raster will be called ‘layer’. Several
integrated layers are called ‘scene’ (Figure 1, bottom). Scene
size, geo-reference and resolution are the same for all layers a
specific scene.

a) A scene: integration of four layers

b) A building layer (each colour corresponds to a different

building ID).
Figure 1: Example of a) 3D voxel scene and b) ‘building’ layer

The 3D raster is automatically extended into a multi-resolution
voxel pyramid, following octree mechanism. This gives access to
a series of resolutions, such as 0.2m, 0.4m, 0.8m, 1.6m etc. At
the bottom of the pyramid, where the resolution is finest, the level
(L) is 0; resolutions get coarser as the level goes up. The
coordinates of voxels are the same over all levels and can be
represented as (x, y, z, L). Each coordinate is converted to a key
via a Key-formula, which is then linked to the voxel value (V):

 (x, y, z, L) ←→ key (K) → value (V) (1)

2.2 Octree data structure

Here we present the ’physical’ storage all the voxels of a multi-
resolution voxel pyramid. We store only a subset of the pyramid
in an octree data structure. In contrast to vector data types, voxels
cannot be deleted or added. They can be only queried, or their
values can be changed. This means that only two functions are
needed OTget and OTupdate to manage the octree:

 OTget (key) -> value; (2)

OTupdate (key, value).

The octree does not store all voxels. A special rule is applied,
which allows to compress further repetitive voxel values of lower
levels. For example, if at level L1 only two (out of eight) voxels
are explicitly stored with values Va and Vb, then the other six are
assumed to be V, and the values V, Va and Vb are the values for
the corresponding cells at L2. This means that if a voxel (x,y,z,L)
is present in the octree database, then so is its value (V).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-133-2024 | © Author(s) 2024. CC BY 4.0 License.

134

Otherwise, we have to go up the levels until we find a cell that
contain (x,y,z) and take the value from there. More details can be
found in Gorte 2023.

The octree is created during the voxelisation. The voxels are
generated by converting points, lines, surfaces and polyhedrons
to voxels at the lower octree level. The higher levels are
generated automatically by aggreging voxels at low levels with
same value and shifting the values to higher levels.

Several additional functions are available to support the
management of the octree, which are OTfetch (K), OTstore (K,V)
and OTremove (K). OTfetch extract voxels with values; OTstore
replaces a voxel value with a new value or adds a voxel with
value and OTremove, deletes a voxel from the octree.
Conceptually the voxel is not deleted but it becomes ‘empty’.

In addition to the functions to manage the octree, there are four
generic operators, which are intended to help performing spatial
operations.

Func (octree in, octree out, function M (x), function A (a)). Func
performs mapping from the voxel values of an input dataset into
the corresponding voxels of an output dataset. Func is also useful
to select voxels on the basis of value (or a set of values, an
interval, etc.) by specifying a mapping that yields 1 or 0 when
voxels do/do not meet that criterion. A typical example could be
a query ‘give all roof types of the buildings’. If the input data set
contains all buildings with their IDs, then the roof type can be
provided by the function M (x). This is to say each ID has
assigned a specific roof type. The aggregation type for the output
octree is provided by function A (a). In the case of buildings and
roofs it is majority voting.

OTover (octree Xin, octree Yin, octree out, function O (x,y),
function A(a)). The operation OTover is similar to Func, but it
takes two input datasets instead of one, and produces an output
by applying a function with two parameters. An example of this
function is integration of terrain layer and roads layer and
indicating the overlapping voxels. Given the voxels in both data
layers have two values: first data set has ’air1’ and ’terrain’
values and the second ’air2’ and ’road’ values, the function
O(x,y) adds the values of the voxels as follows:
‘air2’+’terrain’=’terrain’,
’air1’+’road’=’road’.
’road’+’terrain’=’road’,
’air1’+’air2’=’air’.

Function A plays the same role as in Func; it establishes the
octree building approach.

OTfilter (octree in, octree out, kernelA, function F(k,n))
performs 3D neighbourhood operations. kernelA is a 3D array of
coefficients, which can be used as a kernel in convolution
operators. The function F(k,n)) perform the actual computations.
An example of this function would be ‘Derive the outer walls of
building’, assuming that these have not been stored as individual
objects. The input octree has two values ‘building’ and ‘air’, the
kernelA=3x3x3 and the function F (k,n) considers a
neighbourhood n equal to the kernel size, computes the values
and assigns ’wall’ for specific kernel values. For example, in case
of buildings with flat roofs, ‘wall’ is assigned when the value is
less than 18.

OTprofile. Similar to Function OTprofile traverses the two-
dimensional footprint of a voxel dataset, collects the column at
each (x,y) position and passes in as an array of voxels into a user-

specified profile-analysis function P(p). The analysis function
yields a new (or modified) column, which is to be stored in an
output octree dataset. This allows, for example, to encode the
highest voxels of buildings into a dedicated roof value. If the
bottom layer of each building is known to be flat, the operation
can construct floors inside buildings by turning building voxels
at pre-defined heights (e.g. multiples of 2.8m) above the lowest
building voxel into 'floor' voxels. This function is also used
during the voxelisation of solids to fill out voxels between a
footprint and a roofing surface, given that the connection between
them is only vertical.

OTras (octree in, 3D raster out, boundB, resL, dataT). OTras
reads an octree dataset into a 3D array, which is effectively an
octree-to-raster conversion. OTras handles additional
parameters, allowing to specify a bounding box (BoundB), a
resolution level (ResL), and an output data type (byte, short, int)
(dataT). The resulting 3D array can then be manipulated directly
in the memory.

3. Use case and data sets

This experiment is performed on the data sets available for the
project Liveable City Digital Twin for the City of Liverpool,
Australia (Diakite et al 2022). The data sets were obtained from
NSW Spatial Services, Liverpool council and the company
GeoScape. As can be observed in Table 1, most of the data set
are provided in ESRI shape (.shp) or Geodatabase (.gdb) file
format with various attributes.

Many of the data sets are 3D but there are also some 2D such as
roads, vegetation and water bodies. The DTM is available as 2D
raster with 1x1m resolution and height attribute. Buildings are
available as LOD2, but without semantic distinction between
walls and roof. The vegetation data set contains X,Y,Z
coordinates of the footprint of individual trees and a height
attribute.

Table 1: Data sets within the Liveable City Digital Twin,
Liverpool (Diakite et al, 2022)

Diakite et al 2022 presented a workflow for 3D integration and
importing the data in 3DCityDB (Kutzner et al 2020). All data
sets were processed accordingly, including the creation of 3D
constrained Triangular Irregular Network (TIN) for the terrain,
considering the corresponding surface objects and the footprints
of buildings and trees. The followed procedure resembles the
steps presented in Yan et al 2019.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-133-2024 | © Author(s) 2024. CC BY 4.0 License.

135

4. 3D data integration process

Four data sets, i.e. terrain, buildings, trees, and roads, are used in
the voxelisation experiment. The voxel resolution is 0.2m and the
selected test site is 280x300x128m (1400x1500x640 voxels).
The applied voxelisation procedures for surfaces and solids are
presented in Gorte and Zlatanova 2016. The voxelisation of lines
is performed in two steps with the help of 2D raster (see road
centrelines below).

After the voxelisation octree has five levels: L0 - 0.2m voxel
resolution, L1 - 0.4m, L2 - 0.8m, L3 - 1.60 and L4 - 3.2m cell
resolution. To visualise the resulting voxel layers, the function
OTres is always used. To create triangles for rendering, a
dedicated function creates cubes (and triangles) to represent
voxels and prepare .obj files. This function also takes into
consideration only visible sides of the cubes, i.e. the internal
cubes are not rendered. We have used MeshLab for visualisation
of the .obj files.

4.1 Terrain

As mentioned above, the input data set is raster of 1m. It is
resampled to 0.2m using bilinear interpolation (instead of
triangulation), which is a 2D raster operation. Then for each point
(x,y) of the raster the value z is stored and the key is computed
for each pixel. Consequently, the function OTstore builds the
octree. At this point the voxels represent only a terrain surface.
Using the function OTprofile, the terrain voxels are ’extended’ to
go to -2m from the lowest point of the Digital Terrain Model
(DTM). Figure 2 illustrates the resulting DTM.

Figure 2: Voxel DTM (20cm voxel resolution)

4.2 Roads

The data set, which contains the centrelines (MultilineStringZ)
and the number of lanes as an attribute, is used. There is one
MultiLineStringZ for each centreline. The (X,Y)-s of the centre
lines are exactly 1m apart. The steps are as follows:

• the MultiLineStrings are rasterised into a 20cm roads raster

(2D), forming 8-connected raster lines, using the segments-IDs
as pixel values.

• width of roads is chosen according to the lane count of each
segment. One line is considered approximately 2m. Pixels in
the (x,y) raster that are near to the roads become road, and
receive the ID of the nearest road as the pixel value. This is
done by 2D distance transform: roads raster is input and the
output are two rasters A and B, in which each non-road pixel
receives (A) the distance to the nearest road and (B) the ID of
the nearest road. A second 2D distance transform provides

again two raster A and B, but the B is the value of the nearest
road pixel (which is the z-coordinate).

• the lane count allows to select how many pixels of both sides
of the line should become road. Line count is 1,2 and 3 in this
case, it is selected that 1 lane corresponds to 10 voxels, 2 to 15
and 3 to 20 voxels. Then a raster road map is generated. Z value
of the new road voxels can be added in two ways: 1) rasterise
the segments into another 2D raster, by interpolating Z between
consecutive vector points in the MultiLineStringZ or 2) overlay
the rasterized (X,Y)’s with the 20cm grid DTM. In this paper,
the second approach is used. Function OTover integrates the
two layers of roads and terrain, following the overlay principle
as described above, i.e. ‘road’+’terrain’=’road’ (Figure 3). In
this case the roads are considered surfaces and have a thickness
of one voxel.

Figure 3: Roads integrated in the DTM (20cm voxel resolution).
Grey shading represents different road IDs.

4.3 Trees

Trees are represented with their 3D coordinates and a height
attribute. However, we do not use the original Z-coordinate.
The tree points are ‘projected’ on the DTM and the resulting z
is considered. Then the 3D shapes of the trees are generated
with the help of five parameters as in Figure 4.

Figure 4: Tree parameters to compute a 3D shape of a tree.

Tree types of trees are created with respect to the height of the
tree as follows (Figure 4): trees up to 10 m (r1=0.5, r2=6, h1=2,
h2=5 , h3=3) trees with height 10m to 20m (r1=1, r2=10, h1=2,
h2=8, h3=10 and trees between 20m and 30m (r1=1, r2=10,
h1=3, h2=5, h3=15). These values are randomly selected without
considering species or other biological characteristics. They
indeed can be related to the types of species. Figure 5 displays
the resulting trees integrated with the DTM and the roads.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-133-2024 | © Author(s) 2024. CC BY 4.0 License.

136

Figure 5: Trees and roads integrated in the DTM (20cm voxel
resolution)

Figure 6: 'Non-overlapping' trees (20 cm voxel resolution).
Colours are automatically generated and correspond to tree IDs

The rule that mixed voxels are not allowed is valid also for tree.
When the trees are created the voxels in the tree layer are checked
by the function OTover whether they are already ‘occupied’ by
another tree. If this is the case the newly created tree is created
only on the ‘free’ of trees voxels. Figure 6 illustrates the results
of this rule. Only the first created tree has a complete crown. All
neighbouring trees are somewhat wrapped around it.

Figure 7: Final integrated 3D scene in L1 (40cm voxel
resolution)

4.4 Buildings

Buildings are represented in the input vector database as water-
tight solids, i.e. triangulated objects. The function OTtri (not
explained here) voxelises triangle by triangle, in such a way that
every (x,y,) in the footprint of a triangle is represented by a voxel.
Another more intuitive explanation could be that if a triangle
edge ‘intersects’ a voxel that the voxel is assigned value
‘building’. The z-value of each voxel is interpolated from the z-
values of triangle points. This is independent of the orientation
(steep or flat) of the triangle. As this operation is performed in
x,y, vertical triangles are omitted, i.e. the result is roofs and
footprints. Every column in the voxel space that is a building has

non-zero value at two z-positions, at the bottom and the top of
building. OTprofile is applied to fill 'building' values to all voxels
between footprints and roofs.

The buildings are recorded in a ‘building’ layer, which is the
overlayed with the DTM. Like the overlay between terrain and
roads, ‘building’ value is leading and takes over when mixed
voxels are detected. The function used in OTover (Figure 8). The
mixed voxels can be all voxels’ values in the existing scene:
DTM trees, air and roads. In the selected data sets mixed voxels
were not detect between buildings and roads.

a) resulting DTM after overlay with buildings

b) overlay between buildings and trees

Figure 8: The results of voxel overlay between a) DTM and
buildings and b) buildings and trees. In both cases the function
OTover assigns ‘building’ value to mixed voxels. (20cm voxel
resolution).

Figure 8 illustrates the voxels of L0 in the octree. As mentioned
previously when creating the octree, all levels are automatically
created and available for examination or analysis. The rougher
levels result in a much smaller 3D raster and might be considered
for performing analysis on very large territories, e.g. urban heat
island, climate analysis etc. These levels can be also used as
LODs for visualisations to speed up the navigation and
exploration of the voxel scenes. Figure 9 illustrates the roughest
levels L3 and L4, which have significantly low number of
vertices compared to L1 (Figure 7), which has 2,798,125 vertices.

a) L3- voxel resolution 1.60m (177,483 vertices)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-133-2024 | © Author(s) 2024. CC BY 4.0 License.

137

b) octree L4, voxel resolution 3.20m (45,215 vertices)

Figure 9: Examples of the roughest levels L3 and L4, which

corresponds to cells 1,60m (a) and 3.20m (b)

5. Large voxel data sets

The octree data structure has been specifically designed for
processing very large dataset (Gorte 2023). Processing large
voxel models has always been challenging. Either the voxel scene
does not fit in the computer memory or when it (just) fits the
processing has been time consuming. It is also well known that
accessing voxels by searching in a file is slower than by
addressing an array in memory. The developed octree data
structure allows to process large data sets with a very good
performance.

The same procedure as explained above has been completed for
an area of 3200x3200x140m (16000x16000x704 voxels). Figure
10 displays the 3D model.

Figure 10: 3Draster model of Liverpool on an area of 3200 x
3200 x 140m

6. Import to ArcGIS Platform

ArcGIS platform was chosen to demonstrate the versatility of the
integrated voxel dataset due to its world-wide adoption in GIS
community. Primarily, ArcGIS Voxel Layer seemed to be a 3D
layer type suitable for the purpose. However, supported data
formats for importing into a Voxel Layer are still limited at the
time of this experiment. Therefore, a workflow based on point
clouds was developed for the purpose. We generated point clouds
from our integrated voxel data into the .las format using Web
Mercator coordinate system. ArcGIS Pro can directly import .las
file into 3D scene. Its internal spatial index and on-the-fly
resampling allow 3D rendering with high frame rate (Figure 11).

Figure 11: Integrated voxel data imported as a point cloud layer
into ArcGIS Pro

2D and 3D base maps can be added to the 3D scene where
transparency can be set allowing overlaying and comparison of
the data (Figure 12 and Figure 13)

Figure 12: Integrated voxel data with OpenStreet 3D base map
in transparent in ArcGIS Pro.

Figure 13: Full extent of the integrated voxel data with
Openstreet 3D base map in ArcGIS Pro.

Figure 14: 3D scene of the integrated voxel data visualised in a
web browser. A weather effect (rain) was added.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-133-2024 | © Author(s) 2024. CC BY 4.0 License.

138

To make the 3D scene with the integrated voxel data available
for public access, it can be simply published as a scene service to
either ArcGIS Enterprise or ArcGIS Online. The publisher can
decide whether the scene service is available to authenticated
users or accessible publicly (Figure 14).

7. Discussion

It should be noted that the two most important aspects that must
be considered in the data integration process are: connectivity of
objects and resolving mixed voxels. As stated previously, voxel
objects are considered volumetric. However, many objects may
have parts that are smaller than the selected voxel resolution or
are represented as lines and surfaces in vector data sets. In such
cases the objects can get enlarged to preserve the connectivity.
Applying different connectivity strategies 6 (faces), 18 (faces and
edges) or 26 (faces, edges, and vertices) might play a critical role
in some voxelisation algorithms (Nourian et al 2016).

‘Mixed’ are voxels which have obtained two or three values from
different layers after the overlay. In the example above, we had
mixed voxels from DTM and buildings, DTM and roads, and
buildings and trees. These mixed voxels were easily resolved
using intuitive sematic rules, but in many cases additional
investigation might be needed. A typical example is mixed
voxels, detected after overlaying building and roads. Where is the
overlay coming from: the voxel resolution or then incorrect initial
data sets?

Similar cases can appear during the voxelisation within one voxel
layer. The tree layer above illustrates many intersecting trees.
The strategy to have one value per voxel was achieved by
keeping the value of the ‘first-in’ tree. This simplified approach
might be not ideal for trees, which normally can penetrate each
other, but is still plausible. A more sophisticated trees overlay
would be needed when the volume of the individual tree crowns
must be considered, e.g. for simulations (Xu et al 2022).
Intersections within one layer between other objects like
building, would require an inspection of the original data sets or
refining the voxel size.

A completely different situation appears, when the overlay
creates ‘cavities’ between objects, i.e. the voxels between two
objects have a value ‘air’. Most illustrative example is a building
footprint that doesn’t touch the DTM, i.e. the building (could be
also a tree or a road) ‘flies’ above the DTM. These issues would
also require specific procedures: filling the cavity either with
‘building’ or ‘DTM’ values. Which value would be used will
depend largely on the accuracy of the data sets. If the building
data set is considered more accurate, the cavity could be filled
with ‘DTM’ values. The ‘filling’ procedures can readily be
performed with the operator OTprofile.

As already mentioned, the accuracy of the data sets may
significantly influence the data integration process. In our case
we assumed the buildings are more accurate than the DTM and
therefore the DTM have been reshaped. It might happen that
DTM is the more reliable data set and the footprints of the
building must be modified to fit the DTM. Note, the z coordinate
of trees was not considered in this experiment. But the tree data
set might be more correct (if each tree location is surveyed) and
the z-coordinate should be preserved.

We will continue to work on the octree data structure and the
concept of layers. In this paper the layers contain only one theme
(building, transportation, etc). Having the IDs as a value for the
voxels allows to maintain a rich set attributes in separate tables.

However, many objects contain other objects. Buildings consists
of rooms and corridors. Rooms contain furniture, windows, and
doors. If attributes need to be stored per each nested object, it
seems unavoidable to create dedicated layers for doors, windows,
etc. A 3D scene of a building with its interior will be created by
overlay of all layers: rooms, walls, doors, windows, furniture, etc.
This might bring some advantages as to selectively creating
building indoors with, e.g. only floor, only rooms and doors, or
only windows. But it will lead to a repetition of voxel storage
because each voxel will be represented in several layers under a
different classification. Further investigations and
conceptualisations are needed in this direction.

Another interesting aspect that needs further research is the
multiresolution voxel pyramid. We have mentioned that the
levels are created automatically and can be used for visualisation
and analysis. However, it has not been tested whether a direct
voxelisation with e.g. 0.80, 1.60 and 3.20m resolution would
yield the same results as the automatic octree generation.
Furthermore, the current procedure does not ensure connectivity
of individual objects. There is no strategy yet how to keep
(semantically) important objects. For example, whether it is
possible and how to preserve indoor walls, when going to L3
(1,60m) and L4 (3.20m).

We believe a voxel 3D data integration has a lot of potential. Our
demonstration showcases a simple workflow for importing and
visualising voxel data within ArcGIS Pro's 3D environment,
followed by seamless publication for online access and
interactive viewing via web browsers. Such integration may
unlock diverse options, including environmental analysis,
temperature and air quality monitoring, hazard dispersion
simulations, and comprehensive analysis of both underground
and above-ground features such as CO2 storage, geothermal
heating, and construction projects.

The vector databases can be kept as they are, and the 3D voxel
scenes can be created for computations, simulations, and
predictions in specific spatial Digital Twins. Another approach
would be to retain the voxel layers alongside the vector datasets,
thereby extending the utility of voxel data across broader
applications.

8. Conclusion

In this paper we have presented an approach for voxel-based 3D
data integration. The data sets are voxelised, processed to create
3D layers, organised in an octree data structure and finally the
layers are overlayed in a 3D scene. Once the data are voxelised,
only a few operations are needed to integrate them to a valid 3D
model in which each voxel has only one value. All data are in one
environment represent by the very simple data type (voxel),
which allows to perform robust matrix operations, instead of
vector geometric computations. Intersections and inclusions can
then be resolved investigating the semantics and devising rules
for assigning correct values. The voxels are organised in an
octree data structure with five levels of different resolution,
which opens opportunities for visualisation of large voxel data
sets. Approaches for fast rendering will be investigated in near
future.

References

Aleksandrov, M., A. Diakité, J. Yan, W. Li, and S. Zlatanova,
2019, System architecture for management of BIM, 3D GIS and
sensor data, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf.
Sci., IV-4/W9, 3–10, 2019.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-133-2024 | © Author(s) 2024. CC BY 4.0 License.

139

Aleksandrov, M., S. Zlatanova, and D. J. Heslop, 2021,
Voxelisation Algorithms and Data Structures: A Review,
Sensors, 2021 21(24), 8241

Aleksandrov, M., S. Zlatanova, D. J. Heslop and A. Diakite,
2023, BIM-based connectivity graph and voxels classification for
pedestrian-hazard interaction, Journal of Spatial Science, DOI:
10.1080/14498596.2023.2281923

Billen, R., A-F. Cutting-Decelle, C. Métral, G. Falquet, S.
Zlatanova, and O. Marina, 2015, Challenges of Semantic 3D City
Models: A Contribution of the COST Research Action TU0801,
3D Printing: Breakthroughs in Research and Practice, Chapter
16, pp. 296 – 305

Boguslawski, P., S. Zlatanova, D. Gotlib, M. Wyszomirski, M.
Gnat, P. Grzempowski, 2022, 3D building interior modelling for
navigation in emergency response applications, International
Journal of Applied Earth Observation and Geoinformation, Vol
114, November 2022, 103066

Diakite, A.A, L. Ng, J. Barton, M. Rigby, K. Williams, S. Barr,
and S. Zlatanova, 2022, Liveable City Digital Twin: a pilot
project for the city of Liverpool (NSW, Australia), ISPRS Ann.
Photogramm. Remote Sens. Spatial Inf. Sci., X-4/W2-2022, 45–
52

Diakité, A. A., and S. Zlatanova, 2016, Valid Space Description
in BIM for 3D Indoor Navigation, International Journal of 3-D
Information Modeling, Vol 5(3), pp 1-17

Döllner, J., Kolbe, T. H., Liecke, F., Sgouros, T. and Teichmann,
K., 2006. The Virtual 3D City Model of Berlin - Managing,
Integrating and Communicating Complex Urban Information,
25th International Symposium on Urban Data Management
UDMS 2006 in Aalborg, Denmark, p12.

Erving, A., P. Rönnholm, M. Nuikka, 2009, Data integration
from different sources to create 3D virtual model, Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XXXVIII-5/W1, 55,
p7.

Fichtner, F. W., A.A. Diakité, S. Zlatanova and R. Voûte, 2018,
Semantic enrichment of octree structured point clouds for multi-
story 3D pathfinding, Transactions in GIS, 22(1), pp. 233-248

Gorte, B., 2023, Analysis of very large voxel data sets,
International Journal of Applied Earth Observation and
Geoinformation, Vol. 119, May 2023, 103316

Gorte, B., S. Zlatanova, 2016, Rasterization and voxelization of
2-d and 3-d space partitioning, Int. Arch. Photogramm. Remote
Sens. Spatial Inf. Sci., XLI-B4, 283-288

Gorte, B., S. Zlatanova, F. Fadli, 2019, Navigation in indoor
voxel models. ISPRS Annals of Photogrammetry, Remote
Sensing & Spatial Information Sciences IV-2/W5, 279-283

La Guardia, M., Koeva, M., D’Ippolito, F., and Karam, S., 2022
3D data integration for we-based open source WebGL interactive
visualisation, Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci., XLVIII-4/W4-2022, 89–94.

Ledoux, H., M. Meijers, 2011, Topologically consistent 3D city
models obtained by extrusion, International Journal of
Geographical Information Science, Vol 25(4), pp 557-574

Li, W., S. Zlatanova, J. Yan, A. Diakite, M. Aleksandrov, 2019,
A geo-database solution for the management and analysis of
building model with multi-source data fusion. Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W20, 55–63

Nourian, P., R. Gonzales, S. Zlatanova, K. Arroyo Ohori, A.V.
Vo, 2016, Voxelization Algorithms for Geospatial Applications,
MethodsX, Vol. 3, pp. 69-86,

Staats, B.R., A.A. Diakité, R.L. Voûte and S. Zlatanova, 2018,
Detection of doors in a voxel model, derived from a point cloud
and its scanner trajectory, to improve the segmentation of the
walkable space, 2018, International Journal of Urban Sciences,
pp.369-390

Wagner, D., M. Wewetzer, J. Bogdahn, N. Alam, M. Pries and
V. Coors, 2012, Geometric-Semantical Consistency Validation
of CityGML Models, in LNGC: Progress and New Trends in 3D
Geoinformation Sciences, pp 171-192

Xie, R., S. Zlatanova, J. Lee, M. Aleksandrov, 2023, A motion-
based conceptual space model to support 3D evacuation
simulation in indoor environments, ISPRS Int. J. Geo-Inf. 2023,
12(12), 494

Xie, R., S. Zlatanova and J. Lee, 2022, 3D indoor environments
in pedestrian evacuation simulations, Automation in
Construction, 144 (12), 104593

Xu, H., C. C. Wang, X. Shen, and S. Zlatanova, 2022 Evaluating
the performance of high level-of-detail tree models in
microclimate simulation, ISPRS Ann. Photogramm. Remote
Sens. Spatial Inf. Sci., X-4/W3-2022, 277–284

Xu, W., L. Liu, S. Zlatanova, W. Penard and Q. Xiong, 2018, A
pedestrian tracking algorithm using grid-based indoor model,
Automation in Construction, vol. 92. August 2018, pp. 173-187

Yan, J., S. Zlatanova, M. Aleksandrov, A. Diakite. C. Pettit,
2019, Integration of 3D Objects and Terrain for 3D Modelling
Supporting the Digital Twin. ISPRS Annals of Photogrammetry,
Remote Sens and Spatial Inf. Sci. 2019 IV-4/W8, 147–15

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P.,
Donaubauer, A., Adolphi, T., Kolbe, T. H., 2018. 3DCityDB - a
3D geodatabase solution for the management, analysis, and
visualization of semantic 3D city models based on CityGML.
Open Geospatial Data, Software and Standards, 3(1), 1–26.

Zhao, J., Q. Xu, S. Zlatanova, L. Liu, C. Ye and T. Feng, 2022,
Weighted octree-based 3D indoor pathfinding for multiple
locomotion types, International Journal of Applied Earth
Observation and Geoinformation, 112 (8), 102900

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-133-2024 | © Author(s) 2024. CC BY 4.0 License.

140

	3D Data Integration in the Voxel Domain
	1. Introduction
	2. Voxel data structure
	2.1 Voxel scene and layer
	2.2 Octree data structure

	3. Use case and data sets
	4. 3D data integration process
	4.1 Terrain
	4.2 Roads
	4.3 Trees
	4.4 Buildings

	5. Large voxel data sets
	6. Import to ArcGIS Platform
	7. Discussion
	8. Conclusion
	References

