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Abstract 
 
The interest in 3D data integration is growing as the concept of Spatial Digital Twins gains traction among local governments and 
stakeholders. Spatial data is typically organized into standardised themes such as buildings, transport, and vegetation, or as ad hoc data 
products in either 2D or 3D dimensions. However, integrating these data sets into a cohesive 3D model presents several challenges. 
The foundational data sets may vary in terms of accuracy, resolution, representation, and actuality due to differences in creation 
standards and procedures. Consequently, inconsistencies often arise within the 3D models, making them difficult to identify and rectify. 
Many of these data integration issues can be traced back to the 3D vector representation. Vector 3D models exhibit significant 
geometric diversity, which complicates the computational operations required for examining and validating the models. In this paper, 
we propose a novel voxel-based approach for integrating 3D data. Voxels, analogous to pixels in 2D raster images, inherit several key 
properties. We employ a dedicated voxel data structure and a set of operations tailored for this purpose. First, we voxelise vector 
datasets, converting continuous geometric information into discrete voxel representations. Next, we merge voxel layers using a 
specialized voxel overlay operation. The resulting 3D model adheres to most validity and integrity requirements. To highlight the 
flexibility of our voxel data structure, we transformed it into point clouds for visualisation in ArcGIS Pro, enabling the addition of 3D 
base maps and GIS layers. We then published these datasets to Scene Services, granting public access. This allows users to easily 
explore the 3D scenes through a web browser, making complex geographic data more accessible. By leveraging voxels, our approach 
facilitates efficient and accurate 3D data integration, making it a valuable contribution to the field. 
 
 

1. Introduction  

In the last years, it has become a prerequisite for municipalities 
and institutions to have 3D models of their cities to support 
Digital Twins. 3D models are integrated with sensor data for 
environmental monitoring, traffic, mobility, or for urban 
planning and development. Large areas have been maintained as 
3D models in many cities in across the world (e.g. Döllner et al 
2006). Simplified 3D models are also freely available through 
geospatial vendors such as Google, Microsoft and ESRI.  
 
However, most of these models are not readily applicable for the 
intended application. Frequently, either a new 3D model has to 
be created or an additional data have to be added to an existing 
one. Depending on the application, the needed 3D models may 
differ significantly. Some applications may require photo-
realistic models, others may need object-oriented models with 
plenty of attributes or models with topologically correct 
geometries. Such considerations often lead to creating a new 3D 
model. Therefore, the topic of integrating data sets to create 3D 
city models is becoming more appealing than ever.    
 
Reconstruction of 3D models from point clouds, images and 
existing data sets have been an extensive topic of investigations. 
In this paper, we concentrate on creating 3D models from 
available standard 2D and 3D data sets, which are produced and 
maintained by the mapping agencies or data provides. Normally 
such data sets are organised per theme: transportation, buildings, 
terrain, vegetation, water bodies. They can be accessible via Web 
services or a direct connection to databases or provided as files. 
The file formats can be diverse as well: from semantically rich 
models such as CityGML or IFC to the ones containing only 
geometry such as .obj, .stl, .ply. Accuracy and resolution can 
vary, i.e. buildings can be represented as 2D polygons or 3D 
shapes in variety of LODs. Roads might be represented by their 
centre lines with attribute for the width of lanes or as polygons. 

The geometric representation can be raster or vector. For 
example, the terrain is commonly maintained as raster data set, 
although TIN representations can be found as well. Data can be 
structured according to a national data standard, or vendor 
specific schema. As results, the available data sets are very 
diverse, and their fusion is always problematic.       
 
Many papers have been published for creating 3D models from 
different data sets either for whole cities (Erving et al 2009) or 
parts of cities (e.g. Erving et al 2009, Billen et al 2015, Diakite at 
al 2020, La Guardia et al 2022) or buildings (Diakite and 
Zlatanova, 2016, Boguslawski et al 2022, Xie et al 2022). The 
conclusions drawn from these experiments highlight the 
multitude of challenges associated with the integration of 3D 
vector data. One significant challenge arises from the diverse 
nature of vector data types, including points, multipoints, 
polygons, multipolygons, polyhedrons, and tetrahedrons. This 
diversity increases the likelihood of undesirable issues such as 
overlapping, intersections, inclusions, and discrepancies in 
terrain representation.  
 
Researchers have been actively exploring various approaches to 
address these challenges, including techniques for accurate 3D 
reconstruction (Yan et al., 2019) and methods for detecting and 
rectifying errors in 3D City Models (Ledoux and Meijers, 2011; 
Wagner et al., 2012). Additionally, efforts have been made to 
mitigate the variety of vector data types by using standardised 
database management data types (Li et al., 2019). Despite these 
endeavours, many errors remain difficult to rectify, posing 
ongoing challenges for effective 3D vector data integration.  
 
In this paper we present our experiments on 3D data integration 
in the voxel domain. Voxels are equivalents to pixels in 2D raster 
models. Voxels have numerous advantages to vector 
representation. They create a 3D gridded space, each voxel has 
only one value, the data management is quite intuitive, and many 
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(neighbourhood) operations can be defined. Voxels have been 
used extensively for processing point clouds or for modelling of 
continues phenomena such as geology, marine, etc., but have 
been rarely applied for 3D city modelling or analysis, except for 
indoor environments to compute navigation paths or for 
evacuation. (Xu et al 2018, Fichtner et al 2018, Staats et al 
2018,Gorte et al 2019, Zhao et al 2022, Aleksandrov et al 2023) 
 
In this paper we illustrate that some of the above-mentioned 
errors and inconsistencies can be easily avoided if the 3D data 
integration is performed in the voxel domain.   
 
The paper is structured as follows: Initially, we delve into the data 
model and the operational methods utilized in our experiments. 
Subsequent sections are dedicated to the integration of four key 
datasets: terrain, roads, buildings, and trees, with a 
comprehensive explanation of the processing techniques for each 
dataset and their integration methodology. The final section 
showcases how the data is imported into ArcGIS Pro, enabling 
users to explore and enhance the 3D scene by incorporating base 
maps and additional GIS layers. Furthermore, we discuss how 
this data can be made publicly accessible through publishing on 
scene services via the ArcGIS Enterprise or ArcGIS Online 
platforms. The paper concludes by evaluating the benefits and 
limitations of employing voxels for 3D data integration, as well 
as their applicability in city modelling. 
 

2. Voxel data structure  

As mentioned above, voxels create a regular grid or a 3D array, 
in which each object is composed by a set of voxels and therefore 
can be seen as a solid. This allows to unify and simplify the 
representation of the objects, but also requires attention when 
voxelising data sets that are based on B-reps representations 
(points, lines, surfaces, and polyhedrons) (Gorte and Zlatanova 
2016, Nourian et al 2019, Aleksandrov et al 2021). Fine-
resolution voxels are beneficial when aiming at accuracy, but the 
size of the 3D raster can grow exponentially when large parts of 
cities are considered. The performance can be easily affected and 
even the computer memory might become insufficient. 
Therefore, data structures need to be devised to allow voxel 
storage on a disk.  
 
Octrees are commonly used as a data structure to maintain the 3D 
regular grid, especially when many voxels have identical values 
as in cities (e.g. air voxels). In this paper we rely on a data 
structure as presented by Gorte 2023. Here, we will summarise 
how it works without detailing the considerations and 
justifications. It is an optimised octree data structure, which 
allows further reduction of the octree footprint. The data structure 
is organised in an SQLite and several generic operations are 
developed to work with the data structure. 
  
2.1 Voxel scene and layer 

In voxel domain, we assume all objects are volumetric. All 
voxels, including those inside and between solid objects, are 
semantically relevant. A geo-reference is assumed, which relates 
‘real world’ coordinates (X, Y, Z) (in metres) to integer grid 
coordinates (x, y, z), e.g. (X, Y, Z) = (X0, Y0, Z0) + R ∗ (x, y, z). 
R is the resolution, or grid spacing, which is equal in X,Y,Z-
directions. The range of (x, y, z) is between (0, 0, 0) and (xmax, 
ymax, zmax), which defines the size of the particular voxel scene. 
 
A 3D raster can represent different spatial objects (thematic 
classes) or characteristics of one object. Examples of thematic 
classes are voxels values such as 1-buildings, 2-trees, 3-roads, 4-

roofs, 5-doors, 6-windows. Building IDs (Figure 1, top) or 
temperature values are examples of characteristics of one object. 
In this paper such 3D raster will be called ‘layer’. Several 
integrated layers are called ‘scene’ (Figure 1, bottom). Scene 
size, geo-reference and resolution are the same for all layers a 
specific scene. 
 

 
a) A scene: integration of four layers 

 

 
b) A building layer (each colour corresponds to a different 

building ID). 
Figure 1: Example of a) 3D voxel scene and b) ‘building’ layer 

 
The 3D raster is automatically extended into a multi-resolution 
voxel pyramid, following octree mechanism. This gives access to 
a series of resolutions, such as 0.2m, 0.4m, 0.8m, 1.6m etc. At 
the bottom of the pyramid, where the resolution is finest, the level 
(L) is 0; resolutions get coarser as the level goes up. The 
coordinates of voxels are the same over all levels and can be 
represented as (x, y, z, L). Each coordinate is converted to a key 
via a Key-formula, which is then linked to the voxel value (V): 
  

                    (x, y, z, L) ←→ key (K) → value (V)             (1) 
 
2.2 Octree data structure 

Here we present the ’physical’ storage all the voxels of a multi-
resolution voxel pyramid. We store only a subset of the pyramid 
in an octree data structure. In contrast to vector data types, voxels 
cannot be deleted or added. They can be only queried, or their 
values can be changed. This means that only two functions are 
needed OTget and OTupdate to manage the octree:  
 
                                OTget (key) -> value;                             (2) 

OTupdate (key,  value). 
 
The octree does not store all voxels. A special rule is applied, 
which allows to compress further repetitive voxel values of lower 
levels. For example, if at level L1 only two (out of eight) voxels 
are explicitly stored with values Va and Vb, then the other six are 
assumed to be V, and the values V, Va and Vb are the values for 
the corresponding cells at L2. This means that if a voxel (x,y,z,L) 
is present in the octree database, then so is its value (V). 
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Otherwise, we have to go up the levels until we find a cell that 
contain (x,y,z) and take the value from there. More details can be 
found in Gorte 2023. 
 
The octree is created during the voxelisation. The voxels are 
generated by converting points, lines, surfaces and polyhedrons 
to voxels at the lower octree level. The higher levels are 
generated automatically by aggreging voxels at low levels with 
same value and shifting the values to higher levels.  
 
Several additional functions are available to support the 
management of the octree, which are OTfetch (K), OTstore (K,V) 
and OTremove (K). OTfetch extract voxels with values; OTstore 
replaces a voxel value with a new value or adds a voxel with 
value and OTremove, deletes a voxel from the octree. 
Conceptually the voxel is not deleted but it becomes ‘empty’.  
 
In addition to the functions to manage the octree, there are four 
generic operators, which are intended to help performing spatial 
operations.   
 
Func (octree in, octree out, function M (x), function A (a)). Func 
performs mapping from the voxel values of an input dataset into 
the corresponding voxels of an output dataset. Func is also useful 
to select voxels on the basis of value (or a set of values, an 
interval, etc.) by specifying a mapping that yields 1 or 0 when 
voxels do/do not meet that criterion. A typical example could be 
a query ‘give all roof types of the buildings’. If the input data set 
contains all buildings with their IDs, then the roof type can be 
provided by the function M (x). This is to say each ID has 
assigned a specific roof type. The aggregation type for the output 
octree is provided by function A (a). In the case of buildings and 
roofs it is majority voting. 
 
OTover (octree Xin, octree Yin, octree out, function O (x,y), 
function A(a)). The operation OTover is similar to Func, but it 
takes two input datasets instead of one, and produces an output 
by applying a function with two parameters. An example of this 
function is integration of terrain layer and roads layer and 
indicating the overlapping voxels. Given the voxels in both data 
layers have two values: first data set has ’air1’ and ’terrain’ 
values and the second ’air2’ and ’road’ values, the function 
O(x,y) adds the values of the voxels as follows: 
‘air2’+’terrain’=’terrain’,  
’air1’+’road’=’road’.  
’road’+’terrain’=’road’,  
’air1’+’air2’=’air’.  
 
Function A plays the same role as in Func; it establishes the 
octree building approach. 
 
OTfilter (octree in, octree out, kernelA, function F(k,n)) 
performs 3D neighbourhood operations. kernelA is a 3D array of 
coefficients, which can be used as a kernel in convolution 
operators. The function F(k,n)) perform the actual computations. 
An example of this function would be ‘Derive the outer walls of 
building’, assuming that these have not been stored as individual 
objects. The input octree has two values ‘building’ and ‘air’, the 
kernelA=3x3x3 and the function F (k,n) considers a 
neighbourhood n equal to the kernel size, computes the values 
and assigns ’wall’ for specific kernel values. For example, in case 
of buildings with flat roofs, ‘wall’ is assigned when the value is 
less than 18. 
 
OTprofile. Similar to Function OTprofile traverses the two-
dimensional footprint of a voxel dataset, collects the column at 
each (x,y) position and passes in as an array of voxels into a user-

specified profile-analysis function P(p). The analysis function 
yields a new (or modified) column, which is to be stored in an 
output octree dataset. This allows, for example, to encode the 
highest voxels of buildings into a dedicated roof value. If the 
bottom layer of each building is known to be flat, the operation 
can construct floors inside buildings by turning building voxels 
at pre-defined heights (e.g. multiples of 2.8m) above the lowest 
building voxel into 'floor' voxels. This function is also used 
during the voxelisation of solids to fill out voxels between a 
footprint and a roofing surface, given that the connection between 
them is only vertical.   
 
OTras (octree in, 3D raster out, boundB, resL, dataT). OTras 
reads an octree dataset into a 3D array, which is effectively an 
octree-to-raster conversion. OTras handles additional 
parameters, allowing to specify a bounding box (BoundB), a 
resolution level (ResL), and an output data type (byte, short, int) 
(dataT). The resulting 3D array can then be manipulated directly 
in the memory.  

3. Use case and data sets 

This experiment is performed on the data sets available for the 
project Liveable City Digital Twin for the City of Liverpool, 
Australia (Diakite et al 2022). The data sets were obtained from 
NSW Spatial Services, Liverpool council and the company 
GeoScape. As can be observed in Table 1, most of the data set 
are provided in ESRI shape (.shp) or Geodatabase (.gdb) file 
format with various attributes.  
 
Many of the data sets are 3D but there are also some 2D such as 
roads, vegetation and water bodies. The DTM is available as 2D 
raster with 1x1m resolution and height attribute. Buildings are 
available as LOD2, but without semantic distinction between 
walls and roof. The vegetation data set contains X,Y,Z 
coordinates of the footprint of individual trees and a height 
attribute.   
 

 
 

Table 1: Data sets within the Liveable City Digital Twin, 
Liverpool (Diakite et al, 2022) 

 
Diakite et al 2022 presented a workflow for 3D integration and 
importing the data in 3DCityDB (Kutzner et al 2020). All data 
sets were processed accordingly, including the creation of 3D 
constrained Triangular Irregular Network (TIN) for the terrain, 
considering the corresponding surface objects and the footprints 
of buildings and trees. The followed procedure resembles the 
steps presented in Yan et al 2019. 
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4. 3D data integration process 

Four data sets, i.e. terrain, buildings, trees, and roads, are used in 
the voxelisation experiment. The voxel resolution is 0.2m and the 
selected test site is 280x300x128m (1400x1500x640 voxels). 
The applied voxelisation procedures for surfaces and solids are 
presented in Gorte and Zlatanova 2016. The voxelisation of lines 
is performed in two steps with the help of 2D raster (see road 
centrelines below). 
 
After the voxelisation  octree has five levels: L0 - 0.2m voxel 
resolution, L1 - 0.4m, L2 - 0.8m, L3 - 1.60 and L4 - 3.2m cell 
resolution. To visualise the resulting voxel layers, the function 
OTres is always used. To create triangles for rendering, a 
dedicated function creates cubes (and triangles) to represent 
voxels and prepare .obj files. This function also takes into 
consideration only visible sides of the cubes, i.e. the internal 
cubes are not rendered. We have used MeshLab for visualisation 
of the .obj files.   
 
4.1 Terrain 

As mentioned above, the input data set is raster of 1m. It is 
resampled to 0.2m using bilinear interpolation (instead of 
triangulation), which is a 2D raster operation. Then for each point 
(x,y) of the raster the value z is stored and the key is computed 
for each pixel. Consequently, the function OTstore builds the 
octree. At this point the voxels represent only a terrain surface. 
Using the function OTprofile, the terrain voxels are ’extended’ to 
go to -2m from the lowest point of the Digital Terrain Model 
(DTM). Figure 2 illustrates the resulting DTM.  
 

 
 

Figure 2: Voxel DTM (20cm voxel resolution) 
 
4.2 Roads 

The data set, which contains the centrelines (MultilineStringZ) 
and the number of lanes as an attribute, is used. There is one 
MultiLineStringZ for each centreline. The (X,Y)-s of the centre 
lines are exactly 1m apart. The steps are as follows: 
  
• the MultiLineStrings are rasterised into a 20cm roads raster 

(2D), forming 8-connected raster lines, using the segments-IDs 
as pixel values. 

• width of roads is chosen according to the lane count of each 
segment. One line is considered approximately 2m. Pixels in 
the (x,y) raster that are near to the roads become road, and 
receive the ID of the nearest road as the pixel value. This is 
done by 2D distance transform: roads raster is input and the 
output are two rasters A and B, in which each non-road pixel 
receives (A) the distance to the nearest road and (B) the ID of 
the nearest road. A second 2D distance transform provides 

again two raster A and B, but the B is the value of the nearest 
road pixel (which is the z-coordinate).  

• the lane count allows to select how many pixels of both sides 
of the line should become road. Line count is 1,2 and 3 in this 
case, it is selected that 1 lane corresponds to 10 voxels, 2 to 15 
and 3 to 20 voxels. Then a raster road map is generated. Z value 
of the new road voxels can be added in two ways: 1) rasterise 
the segments into another 2D raster, by interpolating Z between 
consecutive vector points in the MultiLineStringZ or 2) overlay 
the rasterized (X,Y)’s with the 20cm grid DTM. In this paper, 
the second approach is used. Function OTover integrates the 
two layers of roads and terrain, following the overlay principle 
as described above, i.e. ‘road’+’terrain’=’road’ (Figure 3). In 
this case the roads are considered surfaces and have a thickness 
of one voxel.  

 

 
 

Figure 3: Roads integrated in the DTM (20cm voxel resolution). 
Grey shading represents different road IDs. 
 

4.3 Trees 

Trees are represented with their 3D coordinates and a height 
attribute. However, we do not use the original Z-coordinate. 
The tree points are ‘projected’ on the DTM and the resulting z 
is considered. Then the 3D shapes of the trees are generated 
with the help of five parameters as in Figure 4.  

 
Figure 4: Tree parameters to compute a 3D shape of a tree. 

 
Tree types of trees are created with respect to the height of the 
tree as follows (Figure 4): trees up to 10 m (r1=0.5, r2=6, h1=2, 
h2=5 , h3=3) trees with height 10m to 20m (r1=1, r2=10, h1=2, 
h2=8, h3=10 and trees between 20m and 30m (r1=1, r2=10, 
h1=3, h2=5, h3=15). These values are randomly selected without 
considering species or other biological characteristics. They 
indeed can be related to the types of species. Figure 5 displays 
the resulting trees integrated with the DTM and the roads.  
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Figure 5: Trees and roads integrated in the DTM (20cm voxel 
resolution) 

 

 
 

Figure 6: 'Non-overlapping' trees (20 cm voxel resolution). 
Colours are automatically generated and correspond to tree IDs 

 
The rule that mixed voxels are not allowed is valid also for tree. 
When the trees are created the voxels in the tree layer are checked 
by the function OTover whether they are already ‘occupied’ by 
another tree.  If this is the case the newly created tree is created 
only on the ‘free’ of trees voxels. Figure 6 illustrates the results 
of this rule. Only the first created tree has a complete crown. All 
neighbouring trees are somewhat wrapped around it. 
 

 
 

Figure 7: Final integrated 3D scene in L1 (40cm voxel 
resolution) 

 
4.4 Buildings 

Buildings are represented in the input vector database as water-
tight solids, i.e. triangulated objects. The function OTtri (not 
explained here) voxelises triangle by triangle, in such a way that 
every (x,y,) in the footprint of a triangle is represented by a voxel. 
Another more intuitive explanation could be that if a triangle 
edge ‘intersects’ a voxel that the voxel is assigned value 
‘building’. The z-value of each voxel is interpolated from the z-
values of triangle points. This is independent of the orientation 
(steep or flat) of the triangle. As this operation is performed in 
x,y, vertical triangles are omitted, i.e. the result is roofs and 
footprints. Every column in the voxel space that is a building has 

non-zero value at two z-positions, at the bottom and the top of 
building. OTprofile is applied to fill 'building' values to all voxels 
between footprints and roofs.  
 
The buildings are recorded in a ‘building’ layer, which is the 
overlayed with the DTM. Like the overlay between terrain and 
roads, ‘building’ value is leading and takes over when mixed 
voxels are detected. The function used in OTover (Figure 8).  The 
mixed voxels can be all voxels’ values in the existing scene: 
DTM trees, air and roads. In the selected data sets mixed voxels 
were not detect between buildings and roads.  
 

 
a) resulting DTM after overlay with buildings 

 

 
b) overlay between buildings and trees 

 
Figure 8: The results of voxel overlay between a) DTM and 
buildings and b) buildings and trees. In both cases the function 
OTover assigns ‘building’ value to mixed voxels. (20cm voxel 
resolution).  
 
Figure 8 illustrates the voxels of L0 in the octree. As mentioned 
previously when creating the octree, all levels are automatically 
created and available for examination or analysis. The rougher 
levels result in a much smaller 3D raster and might be considered 
for performing analysis on very large territories, e.g. urban heat 
island, climate analysis etc. These levels can be also used as 
LODs for visualisations to speed up the navigation and 
exploration of the voxel scenes. Figure 9 illustrates the roughest 
levels L3 and L4, which have significantly low number of 
vertices compared to L1 (Figure 7), which has 2,798,125 vertices. 
 

 
a)  L3- voxel resolution 1.60m (177,483 vertices)  
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b) octree L4, voxel resolution 3.20m (45,215 vertices) 

 
Figure 9: Examples of the roughest levels L3 and L4, which 

corresponds to cells 1,60m (a) and 3.20m (b) 
 

5.  Large voxel data sets 

The octree data structure has been specifically designed for 
processing very large dataset (Gorte 2023). Processing large 
voxel models has always been challenging. Either the voxel scene 
does not fit in the computer memory or when it (just) fits the 
processing has been time consuming. It is also well known that 
accessing voxels by searching in a file is slower than by 
addressing an array in memory. The developed octree data 
structure allows to process large data sets with a very good 
performance.  

The same procedure as explained above has been completed for 
an area of 3200x3200x140m (16000x16000x704 voxels). Figure 
10 displays the 3D model.  
 

 
 

Figure 10: 3Draster model of Liverpool on an area of 3200 x 
3200 x 140m 

 
6. Import to ArcGIS Platform 

ArcGIS platform was chosen to demonstrate the versatility of the 
integrated voxel dataset due to its world-wide adoption in GIS 
community. Primarily, ArcGIS Voxel Layer seemed to be a 3D 
layer type suitable for the purpose. However, supported data 
formats for importing into a Voxel Layer are still limited at the 
time of this experiment. Therefore, a workflow based on point 
clouds was developed for the purpose. We generated point clouds 
from our integrated voxel data into the .las format using Web 
Mercator coordinate system. ArcGIS Pro can directly import .las 
file into 3D scene. Its internal spatial index and on-the-fly 
resampling allow 3D rendering with high frame rate (Figure 11).  
 

 
 

Figure 11: Integrated voxel data imported as a point cloud layer 
into ArcGIS Pro 

 
2D and 3D base maps can be added to the 3D scene where 
transparency can be set allowing overlaying and comparison of 
the data (Figure 12 and Figure 13) 
 

 
 

Figure 12: Integrated voxel data with OpenStreet 3D base map 
in transparent in ArcGIS Pro. 

 

 
 

Figure 13: Full extent of the integrated voxel data with 
Openstreet 3D base map in ArcGIS Pro. 

 

 
 

Figure 14: 3D scene of the integrated voxel data visualised in a 
web browser. A weather effect (rain) was added. 
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To make the 3D scene with the integrated voxel data available 
for public access, it can be simply published as a scene service to 
either ArcGIS Enterprise or ArcGIS Online. The publisher can 
decide whether the scene service is available to authenticated 
users or accessible publicly (Figure 14). 
 

7. Discussion 

It should be noted that the two most important aspects that must 
be considered in the data integration process are: connectivity of 
objects and resolving mixed voxels. As stated previously, voxel 
objects are considered volumetric. However, many objects may 
have parts that are smaller than the selected voxel resolution or 
are represented as lines and surfaces in vector data sets. In such 
cases the objects can get enlarged to preserve the connectivity. 
Applying different connectivity strategies 6 (faces), 18 (faces and 
edges) or 26 (faces, edges, and vertices) might play a critical role 
in some voxelisation algorithms (Nourian et al 2016).  
 
‘Mixed’ are voxels which have obtained two or three values from 
different layers after the overlay. In the example above, we had 
mixed voxels from DTM and buildings, DTM and roads, and 
buildings and trees. These mixed voxels were easily resolved 
using intuitive sematic rules, but in many cases additional 
investigation might be needed. A typical example is mixed 
voxels, detected after overlaying building and roads. Where is the 
overlay coming from: the voxel resolution or then incorrect initial 
data sets?   
 
Similar cases can appear during the voxelisation within one voxel 
layer. The tree layer above illustrates many intersecting trees. 
The strategy to have one value per voxel was achieved by 
keeping the value of the ‘first-in’ tree. This simplified approach 
might be not ideal for trees, which normally can penetrate each 
other, but is still plausible. A more sophisticated trees overlay 
would be needed when the volume of the individual tree crowns 
must be considered, e.g. for simulations (Xu et al 2022). 
Intersections within one layer between other objects like 
building, would require an inspection of the original data sets or 
refining the voxel size. 
 
A completely different situation appears, when the overlay 
creates ‘cavities’ between objects, i.e. the voxels between two 
objects have a value ‘air’. Most illustrative example is a building 
footprint that doesn’t touch the DTM, i.e. the building (could be 
also a tree or a road) ‘flies’ above the DTM. These issues would 
also require specific procedures: filling the cavity either with 
‘building’ or ‘DTM’ values. Which value would be used will 
depend largely on the accuracy of the data sets. If the building 
data set is considered more accurate, the cavity could be filled 
with ‘DTM’ values. The ‘filling’ procedures can readily be 
performed with the operator OTprofile.  
 
As already mentioned, the accuracy of the data sets may 
significantly influence the data integration process. In our case 
we assumed the buildings are more accurate than the DTM and 
therefore the DTM have been reshaped. It might happen that 
DTM is the more reliable data set and the footprints of the 
building must be modified to fit the DTM. Note, the z coordinate 
of trees was not considered in this experiment. But the tree data 
set might be more correct (if each tree location is surveyed) and 
the z-coordinate should be preserved.  

 
We will continue to work on the octree data structure and the 
concept of layers. In this paper the layers contain only one theme 
(building, transportation, etc). Having the IDs as a value for the 
voxels allows to maintain a rich set attributes in separate tables. 

However, many objects contain other objects. Buildings consists 
of rooms and corridors. Rooms contain furniture, windows, and 
doors. If attributes need to be stored per each nested object, it 
seems unavoidable to create dedicated layers for doors, windows, 
etc. A 3D scene of a building with its interior will be created by 
overlay of all layers: rooms, walls, doors, windows, furniture, etc. 
This might bring some advantages as to selectively creating 
building indoors with, e.g. only floor, only rooms and doors, or 
only windows. But it will lead to a repetition of voxel storage 
because each voxel will be represented in several layers under a 
different classification. Further investigations and 
conceptualisations are needed in this direction.  
 
Another interesting aspect that needs further research is the 
multiresolution voxel pyramid. We have mentioned that the 
levels are created automatically and can be used for visualisation 
and analysis. However, it has not been tested whether a direct 
voxelisation with e.g. 0.80, 1.60 and 3.20m resolution would 
yield the same results as the automatic octree generation. 
Furthermore, the current procedure does not ensure connectivity 
of individual objects. There is no strategy yet how to keep 
(semantically) important objects. For example, whether it is 
possible and how to preserve indoor walls, when going to L3 
(1,60m) and L4 (3.20m).  
 
We believe a voxel 3D data integration has a lot of potential. Our 
demonstration showcases a simple workflow for importing and 
visualising voxel data within ArcGIS Pro's 3D environment, 
followed by seamless publication for online access and 
interactive viewing via web browsers. Such integration may 
unlock diverse options, including environmental analysis, 
temperature and air quality monitoring, hazard dispersion 
simulations, and comprehensive analysis of both underground 
and above-ground features such as CO2 storage, geothermal 
heating, and construction projects. 
 
The vector databases can be kept as they are, and the 3D voxel 
scenes can be created for computations, simulations, and 
predictions in specific spatial Digital Twins. Another approach 
would be to retain the voxel layers alongside the vector datasets, 
thereby extending the utility of voxel data across broader 
applications.  

8. Conclusion 

In this paper we have presented an approach for voxel-based 3D 
data integration. The data sets are voxelised, processed to create 
3D layers, organised in an octree data structure and finally the 
layers are overlayed in a 3D scene. Once the data are voxelised, 
only a few operations are needed to integrate them to a valid 3D 
model in which each voxel has only one value. All data are in one 
environment represent by the very simple data type (voxel), 
which allows to perform robust matrix operations, instead of 
vector geometric computations. Intersections and inclusions can 
then be resolved investigating the semantics and devising rules 
for assigning correct values. The voxels are organised in an 
octree data structure with five levels of different resolution, 
which opens opportunities for visualisation of large voxel data 
sets. Approaches for fast rendering will be investigated in near 
future.  
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