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Abstract 

 

Automatic extraction of building footprints from aerial and space imageries has been found ever increasing importance in urban 

planning, disaster management, and environmental monitoring. However, achieving accurate building footprint extraction poses 

significant challenges due to diverse building characteristics and their similarities to their background elements. While conventional 

methods in building footprint extraction have mainly relied on image processing techniques, recent advancements in deep learning, 

particularly semantic segmentation algorithms like U-Net, have shown promise in addressing these challenges through machine 

learning. This study explores different depths of the U-Net model for building footprint extraction, aiming to identify the optimum 

architecture while investigating the semantic uncertainty of the building footprint extraction. Utilizing aerial imagery from cities 

including Berlin, Paris, Chicago, and Zurich, collected from Google Maps and OpenStreetMap (OSM) data, five U-Net models have 

been compared with varying depths. In addition, the impact of dataset sizes and learning rates on model performance has been 

investigated. Results confirmed that the U-Net-32-1024 model achieves the highest intersection over union (IoU), Accuracy, and F1-

score. Moreover, increasing the training dataset size leads to significant improvements in model performance with IoU, Accuracy 

and F1-score reaching their values of 73.73%, 88.65% and 88.53%. However, challenges remain in accurately delineating buildings 

in dense urban areas. Nonetheless, our findings demonstrated the effectiveness of U-Net models in building footprint extraction. 

 

 

1. Introduction 

Automatic extraction of building footprints from images is 

particularly valuable for urban planning (Sun, Zhang, Zhao, & 

Xin, 2018), disaster management (Tian, Cui, & Reinartz, 2013), 

and environmental monitoring (L. Li, Liang, Weng, & Zhu, 

2018). The spatial distribution of buildings plays a crucial role 

in numerous tasks such as urban settlement monitoring and 

demographic modelling. However, due to the diverse 

characteristics of buildings and their similarities and differences 

to their background elements, the development of accurate 

building footprints extraction methods presents a significant and 

challenging research focus, receiving increased attention. 

 

In recent decades, numerous studies on building extraction have 

relied on conventional image processing techniques such as 

shadow-based (Chen, Shang, & Wu, 2014), edge-based (Ziaei, 

Pradhan, & Mansor, 2014), and object-based methods (Norman 

et al., 2021). For instance, (Y. Dai, Gong, Li, & Feng, 2017) 

determined building footprints from image-derived point clouds 

in a two-stage solution including building segmentation and 

footprint extraction. In the first stage, vegetation points were 

first extracted using support vector machine (SVM) classifier 

based on five vegetation indices calculated from colour 

information. Then the traditional hierarchical stripping 

classification method was applied to classify and segment 

individual buildings. However, the primary issue with these 

algorithms lies in the necessity to craft numerous features for 

the correct classifier. This could potentially exhaust 

computational resources, thereby limiting their applicability at a 

large scale. 

 

Deep learning (DP) techniques have become one of the state-of-

the-art solutions for many segmentation problems and been in 

widespread use in various applications in remote sensing and 

photogrammetry for object detection, scene classification, and 

land cover mapping. Deep Convolutional Neural Network 

(CNN)-based semantic segmentation algorithms such as Fully 

Convolutional Networks (FCNs) (J. Dai, Li, He, & Sun, 2016), 

U-Net (Ronneberger, Fischer, & Brox, 2015), ResNet (K. He, 

Zhang, Ren, & Sun, 2016), and DenseNet (Huang, Liu, Van Der 

Maaten, & Weinberger, 2017) have been applied extensively to 

pixel-wise analysis tasks in remote sensing, covering tasks such 

as road extraction, building detection, urban land use 

classification, maritime semantic labelling, vehicle detection, 

damage mapping, weed mapping, and other land cover mapping 

activities. Several recent studies have utilized semantic 

segmentation methods specifically for building extraction from 

remote sensing images. 

 

In this paper we focus on the comparison between different 

depths of U-Net model and try to identify the best possible 

architecture for the U-Net model. At first, five models including 

U-Net-16-512, U-Net-32-512, U-Net-16-1024, U-Net-32-1024 

and U-Net-64-1024 were created. Then the dataset was divided 

into train, validation and test. Two different learning rates 

(0.001 and 0.0001) were tested and the one with better 

convergence speed was selected. Then, all the models were 

trained using half of the training data and the best network was 

selected. Finally, the selected network was trained again using 

all the data to see how data quantity affects the network. 
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Section 2 reports on some major previous researches that have 

been undertaken regarding to the use of U-Net and other models 

to extract building footprints. In section 3, the dataset that has 

been used in this research is explained. Section 4 explains the 

research methodology. Section 5 presents the results of the 

networks and compares these results to previous research and 

section 6 concludes the paper and suggests some future research 

directions. 

 

2.  Related work 

 

(Pasquali, Iannelli, & Dell’Acqua, 2019) focused on the 

architecture of the U-Net to develop a suitable version, capable 

of competing with the accuracy levels of past SpaceNet 

competition winners using only one model and one type of data. 

In their paper U-Nets architectures that had the maximum depth 

of 512 were studied. It was shown that suitable modifications of 

the architecture and effective use of data augmentation would 

lead to a novel network configuration that can be trained in a 

relatively short time and can achieve comparable performance 

to the existing state-of-the-art solutions, with simpler 

processing. (H. He et al., 2022) published a city-scale dataset 

and then performed an extensive comparative study on the 

dataset with the existing deep learning methods such as 

DeepLabV3+, HRNet, FCN and U-Net. (Q. Li, Shi, Huang, & 

Zhu, 2020) proposed the implementation of feature pairwise 

conditional random field (FPCRF) as a graph model to preserve 

sharp boundaries and fine-grained segmentation. Experiments 

were conducted on four different datasets including Planetscope 

satellite imagery of the cities of Munich, Paris, Rome, and 

Zurich; ISPRS benchmark data from the city of Potsdam; Dstl 

Kaggle dataset; and Inria Aerial Image Labelling data of Austin, 

Chicago, Kitsap County, Western Tyrol, and Vienna. It was 

found that the proposed end-to-end building footprint extraction 

framework with the FPCRF as the graph model can further 

improve the accuracy of building footprint generation using 

CNN.(Kaiser et al., 2017) adapted a state-of-the-art CNN 

architecture for semantic segmentation of buildings and roads in 

aerial images and compared its performance when using 

different training data sets, ranging from manually labelled, 

pixel-accurate ground truth of the same city to automatic 

training data derived from OpenStreetMap (OSM) data from 

distant locations. Their results demonstrated that (i) the sheer 

volume of training data can compensate for lower accuracy (ii)- 

the large varieties present in very large training sets spanning 

multiple different cities do improve the classifier ability to 

generalize to new and unseen locations (iii)- even if high-

quality training data is unavailable, the large volume of training 

data improves classification accuracy and (iv)- large-scale 

training data allows substitution of the large majority of the 

manually annotated high-quality data. In order to extract 

building footprints, (Zhu, Liao, Hu, Mei, & Li, 2020) proposed 

a solution called Multiple Attending Path neural network 

(MAP-Net). MAP-Net introduced a multi-parallel path 

architecture, attention mechanism, and pyramid spatial pooling 

to address challenges in extracting building footprints. 

Experimental results showed significant improvements (up to 

0.93% F1-score and up to 1.53% IoU score) compared to 

HRNetv2 model without increasing computational complexity 

across various datasets. (Bittner, Adam, Cui, Körner, & 

Reinartz, 2018) proposed Fused-FCN4s architecture to combine 

spectral and height information from different data sources to 

generate a full-resolution binary building mask. The proposed 

network consisted of three parallel networks merged at a late 

stage to propagate detailed information and produce accurate 

building outlines. Inputs included RGB, panchromatic, and 

normalized digital surface model (nDSM) images. 

 

 

3. Dataset 

 

The image dataset utilized in this study was obtained from 

Google Maps, while the building masks were acquired from 

OSM data. It comprises aerial imagery from Berlin, Paris, 

Chicago, and Zurich. Figure 1 illustrates the study area and 

Figure 2 displays the aerial images and their corresponding 

masks for the Berlin region. 

 

Figure 1. Study areas (Berlin in red, Paris in blue, Zurich in 

green and Chicago in purple) 

 

 

(a) 

 

(b) 

Figure 2. Image (a) and its corresponding buildings mask (b) for 

city of Berlin 
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In Table 1 some metadata of the employed data including data 

coverage area and ground sample distance (GSD) of the images 

for each of the study areas are explained. 

 

City 
Data coverage area 

(Square kilometre)  
GSD (Cm) 

Chicago  11.1 

Paris  9.8 

Zurich  10.1 

Berlin  9.1 

Table 1. Image dataset for the study areas 

The same data has been used in (Kaiser et al., 2017) and 

therefore we have compared the results from their FCN model 

with our U-Net model. As with any opensource data like OSM 

there are bound to be errors in the dataset. They tackled this 

problem by introducing 4 hypotheses which are: (i)-The sheer 

volume of training data can possibly compensate for the lower 

accuracy (if used with an appropriate, robust learning method). 

(ii)- The large variety present in very large training sets (e.g., 

spanning multiple different cities) could potentially improve the 

classifier’s ability to generalise to new, unseen locations. (iii)- 

Even if high-quality training data is available, the large volume 

of additional training data could potentially improve the 

classification. (iv)- If low-accuracy, large-scale training data 

helps, then it may also allow one to substitute a large portion of 

the manually annotated high-quality data. Given that we are 

using the same dataset as they, we include these hypotheses in 

our study as well. The images in the dataset were divided into 

512 by 512 tiles. This size was selected through experiments to 

ensure sufficient geographical context within each tile without 

having excessive load on the graphics processing unit (GPU). In 

Table 2 the number of tiles for each of the cities of the study 

areas is shown. 

 

City Number of 512 by 512 tiles 

Chicago 13470 

Paris 22500 

Zurich 10920 

Berlin 4000 

Table 2. Number of tiles for each city 

 

4. Methodology 

The conceptual model of the study is illustrated in Figure 3. In 

part A, first we acquired the data for cities of Berlin, Paris, 

Chicago and Zurich. In part B, we tested three different ratios 

for dividing the data to training, validation and test data and two 

different learning rates to find the best possible ratios and 

learning rates. In part C, we developed five different U-Net 

models with various depths and train them using half the data. 

Then, we selected the best model and then trained it with all the 

data in part D. Finally in part E, we evaluated the final model. 

 

4.1 Different employed U-Net architectures 

In the field of automatic buildings detection, various models 

have been used such as convolutional neural networks (CNN), 

fully convolutional networks (FCN), U-Net and Region-based 

Convolutional Neural Network (RCNN) (Girshick, 2015) 

where, RCNN is a model used primarily for object detection 

tasks. The main advantage of RCNN is its ability to localize 

objects accurately by generating region proposals and then 

classifying and refining those proposals. However, RCNN has 

limitations in terms of speed and efficiency due to its multi-step 

processes. This research focuses on the U-Net model. U-Net is a 

CNN architecture designed for semantic segmentation of 

images. The U-Net model has a structure that collects 

information through an encoder and then retrieves spatial 

information through a decoder. In addition, U-Net uses skip 

connections that transfer information directly between layers, 

helping to preserve fine details during scaling operations and 

preventing possible data loss. U-Net also shows acceptable 

performance with a small amount of training data which makes 

it a suitable option for building detection tasks in aerial images. 

Therefore, in this research we have focused on the U-Net 

architecture to extract building footprints. The overall 

architecture of U-Net model is illustrated in Figure 4. The 

architectute for U-Net in the original paper (Ronneberger et al., 

2015) started at depth level 64 and then continued to bridge 

layer 1024. After that, the decoding path went back to depth 64 

and then the binary output was obtained4. We added the layer 

16 and 32 to the original architecture, and the final depth was 

set to 1024 in our implemented architecture, while depth of 512 

could also be used as a bridge layer. If layer 512 was to be 

considered as the bridge layer, then green path should be 

Figure 3. Conceptual model of the study of different U-Net a and their comparison with different models 
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followed. If layer 1024 was to be considered as the bridge layer, 

then purple path should be followed. So with all these changes, 

five  new models with different depths were created. In Table 3 

The created models and their start and bridge layers are shown. 

 

As shown in Figure 4, in the encoding path, at each depth, the 

network begins by taking the input and passing it through a 3 by 

3 convolutional layer (conv (3×3)). following this, Rectified 

Linear Unit (ReLU) activation function is applied. This process 

is repeated once more to reach the final output before applying a 

2 by 2 Max pooling operation, which reduces the image 

dimensions by half. Then, the number of convolutional layers is 

doubled, allowing for more features to be extracted in deeper 

layers. Upon reaching either the depth of 512 or 1024, the 

decoding path initiates. Initially, a Conv2DTranspose layer is 

applied to the starting layer, doubling its dimensions but halving 

the number of filters. Subsequently, the resulting layer is 

concatenated with the output from the encoding path, a pivotal 

step facilitating the retrieval of localized information crucial for 

accurate semantic segmentation in U-Net. These steps are 

repeated until the image reaches its original dimensions. Finally, 

a 1 by 1 convolutional layer is employed to generate a binary 

output, extracting building footprints. 

 

Model Start layer Bridge layer 

U-Net-16-512 16 512 

U-Net-32-512 32 512 

U-Net-16-1024 16 1024 

U-Net-32-1024 32 1024 

U-Net-64-1024 64 1024 

Table 3. Employed models and their depths 

4.2 Semantic segmentation uncertainty assessment 

For the building footprint extraction semantic uncertainty 

assessment, the employed measures calculated from the error 

matrix are explained below. 

 

TP represents the true positive, which indicates the correct 

prediction of the positive class identifying that the real value on 

the ground is building and the model has recognized the 

building correctly. FP refers to a false positive that occurs when 

the model predicts a negative class as positive. It means that the 

real value on the ground is not building, but the model has 

recognized it as building. 

 

FN stands for false negative, where the model classifies the 

positive class into the negative class. In other words, the real 

value on the ground was the building, however, the model did 

not recognize the building. TN stands for the true negative, 

where the model correctly predicted the negative class at the 

output where the true value on the ground was no building and 

the model correctly predicted no building. 

 

The semantic segmentation uncertainty measures for the 

building footprint extraction that were used in this study are 

Accuracy, Intersection over Union (IoU), Overall accuracy, 

Precision, Recall and F1-Score. The formulas for these 

measures are as follow (H. He et al., 2022): 

 

   (1) 

 

 

   (2) 

 

  (3) 

 

 

   (4) 

 

 (5) 

 

  (6) 

 

4.3 Dividing the data for training, validation and testing 

The dataset comprises a total of 50,890 tiles, which needed to 

be divided into three groups for training, validation, and testing 

purposes. The initial phase of the study involved determining 

the most effective approach to divide the data into these groups. 

Initially, tiles without buildings were excluded from the dataset 

to alleviate computational burdens on the GPU, resulting in a 

reduction to 44,525 tiles. Subsequently, the data was divided 

into three sets using ratios of 7:1:2, 8:1:1, and 9:0.5:0.5 for 

training, validation, and testing, respectively. These ratios were 

Figure 4. Different U-Net architectures employed 
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selected based on precedents established in previous studies 

such as (Schuegraf & Bittner, 2019) and (Bittner, Cui, & 

Reinartz, 2017). Table 4 represents the number of train, 

validation and test data for each ratio employed in this study. 

 
Ratio Train Validation Test 

7:1:2 31168 4452 8905 

8:1:1 35621 4452 4452 

9:0.5:0.5 40073 2226 2226 

Table 4. Number of train, validation and test data for each 

employed ratio 

To determine the optimum ratio, we selected the U-Net-32-512 

model as the test network due to its relatively shorter training 

time compared to other models and promising results reported 

by (Pasquali et al., 2019). To expedite the process, only one-

third of the data for each ratio was used as input for model 

training. Figure 5 illustrates the train loss of the model. 

 

 

Figure 5. Train loss of model with different ratios for the 

employed data 

In Table 5, the resulted IoU and the train time are shown. 

 

Ratio 
Total train time 

(h) 

IoU for test data 

(%) 

7:1:2 25.6 66.57 

8:1:1 30.5 67.84 

9:0.5:0.5 30.6 67.86 

Table 5. IoU for different ratios 

Although the models converged in all of the undertaken 

scenarios, it was observed that IoU increased by more than 1% 

when transitioning from the 7:1:2 ratio to the 8:1:1 ratio. 

However, there was not a substantial increase in IoU from the 

8:1:1 ratio to the 9:0.5:0.5 ratio. In addition, the 9:0.5:0.5 ratio 

would result in a very small dataset for testing and validation. 

Hence, the 8:1:1 ratio was selected as the most suitable choice 

for dividing the dataset. 

 

4.4 Selection of the learning rate 

The learning rate is a critical hyperparameter in deep learning 

that significantly influences the training process, convergence 

behaviour, and overall performance of the model. Proper tuning 

and selection of the learning rate are essential for achieving 

optimum results in training deep neural networks. Many 

different types of learning rates have been used in a number of 

studies. In (Woo, Park, Lee, & Kweon, 2018), the learning rates 

started from 0.1 and dropped every 30 epochs. In (Xie, 

Girshick, Dollár, Tu, & He, 2017) the learning rates started 

from 0.1 and then divided by 10 at the 150th epoch and then 

again divided by 10 at the 225th epoch. In (H. He et al., 2022) 

the learning rate was set to 0.0001 for the whole training time. 

In our study we selected two different learning rates including 

0.001 and 0.0001, respectively. Then we trained the U-Net-32-

512 model with both of these learning rates. The resulted 

accuracy and loss are shown in Figures 6 and 7. 

 

 

Figure 6. Accuracy for different learning rates (lr) 

 

 

Figure 7. Loss for different learning rates 

It was seen in Figures 6 and 7 that using both the learning rates, 

the model would converge and reach a good accuracy value. 

However, the convergence speed was higher with learning rate 

set to 0.0001. So, it was selected as the learning rate to train all 

the models. 

 

4.5 Training the models 

The hardware configuration for training the models comprised a 

Nvidia RTX 4070ti GPU, alongside an Intel Core i9 13700k 

Central Processing Unit (CPU). Although the system boasted 

128 Gigabytes of DDR4 RAM, the neural networks were 

designed to access data directly from the hard drive, limiting 

RAM usage to only 10 Gigabytes at peak. Binary Cross Entropy 

was employed as the loss function, and Adam as the optimizer 

for all the models. The models were trained for 150 epochs, 

with a batch size of 8. However, for the U-Net-64-1024 model, 
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the batch size had to be reduced to 6 due to insufficient GPU 

capacity. 

5. Results 

First the models were trained using just half the data to check 

how well the U-Net models perform with a limited data. Table 6 

represents the results of the first training. 

 

Model  
Recall 
(%) 

Overall 
Accuracy 
(%) 

Precision 
(%) 

F1-
Score 
(%) 

IoU 
(%) 

Accuracy 
(%) 

U-Net-
16-512 

85.61 68.74 87.10 81.45 67.48 87.78 

U-Net-
32-512 

88.26 69.19 88.54 81.88 66.57 87.91 

U-Net-
16-1024 

89.28 69.37 86.17 81.90 68.63 88.25 

U-Net-
32-1024 

87.65 69.33 86.50 81.94 68.99 88.31 

U-Net-
64-1024 

89.88 69.24 86.84 81.91 67.74 87.95 

Table 6. The results of different models employed 

Due to the fact that the U-Net-32-1024 had the highest IoU, 

accuracy and F1-score among all the models, it was selected as 

the best model. U-Net-32-512 had the highest Precision and U-

Net-64-1024, which was the model identical to the original 

model of U-Net, had the highest Recall. Precision can be 

defined as the number of true positive predictions divided by the 

total number of positive predictions made by the model. Having 

a high Precision is desirable in applications that have a cost for 

false positive. It can be concluded that the U-Net-32-512 model 

classified lower pixels as buildings but with a better accuracy 

than that of all the other models. 

 

Recall can be defined as the number of true positive predictions 

divided by the total number of actual positive instances in the 

dataset. Having a high Recall is desirable in applications where 

the cost of false positive is low. The U-Net-64-1024 had the 

highest Recall which means that the model predicted the biggest 

number of building pixels. 

 

Another parameter which is important in this study is the 

training time of the models which is represented in Table 7. 

 

Model Time per epoch (s) Total train time (h) 

U-Net-16-512 740 30.8 

U-Net-32-512 1535 64 

U-Net-16-1024 802 33.4 

U-Net-32-1024 1720 71.7 

U-Net-64-1024 3983 166 

Table 7. Time of training of the models 

It was seen that even though U-Net-64-1024 had the longest 

training time among all the models, it was not the best model by 

the evaluated measures. 

 

After the initial training, the U-Net-32-1024 was then trained 

using all the images in the dataset. The model was evaluated 

again using the measures and the results are as shown in Table 

8. 

Model 
Recall 
(%) 

Overall 
Accuracy 

(%) 

Precision 
(%) 

F1-
Score 
(%) 

IoU 

(%) 

Accuracy 

(%) 

U-Net-32-
1024 

89.08 74.25 87.99 88.53 73.73 88.65 

Table 8. Evaluated measures (train with entire dataset) 

All the measures indicated better performance by the increase in 

training data size especially the value of IoU which increased by 

more than 4% from 68.99% to 73.73%. F1-score increased from 

81.94% to 88.53% and the accuracy increased from 88.31% to 

88.65%. 

 

In Figures 8. and 9., some examples of model outputs are 

visualised. 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 8. Example of building footprint extraction results in the 

densely populated areas in Berlin: (a) Test image, (b) Test label, 

(c) U-Net-16-512, (d) U-Net-32-512, (e) U-Net-16-1024, (f) U-

Net-32-1024, (g) U-Net-64-1024, (h) U-Net-32-1024 (trained 

with all the data) 

It was found that in places that buildings are far apart, the U-Net 

model performs surprisingly well as shown in Figure 9. 

However, in regions where buildings are densely located, the 

model has a problem in distinguishing buildings from other 

objects like roads or cars as shown in Figure 8. The same data 

was used in the study that was conducted by Kaiser, Wegner et 

al. (2017). In their study they developed a FCN model to extract 

buildings and roads simultaneously. 

 

In Table 9., F1-score measure for the FCN model is compared 

to our U-Net models. F1-score for buildings using the FCN 

model at average was 82.74%, however, we were able to achive 

F1-score of 81.94% with just half the data. Furthermore, when 
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the network used all the dataset, we were able to achieve F1-

score of  88.53% and surpass the FCN model. 

 

 

(a) 

 

(b) 

 

(c) 
 

(d) 

 

(e) 

 

(f) 

 

(g) 
 

(h) 

Figure 9. Example of building footprint extraction results in a 

sparsely populated areas of Zurich: (a) Test image, (b) Test 

label, (c) U-Net-16-512, (d) U-Net-32-512, (e) U-Net-16-1024, 

(f) U-Net-32-1024, (g) U-Net-64-1024, (h) U-Net-32-1024 

(trained with all the data) 

 

Model 
F1-score 

(%) 

FCN 82.74 

U-Net-32-1024 (trained with half the data) 81.94 

U-Net-32-1024 (trained with all the data) 88.53 

Table 9. F1-score for U-Net model compared to FCN 

 

6. Conclusion and Future Directions 

Deep learning networks have revolutionized many fields 

including the extraction of building footprints from aerial 

images. The importance of deep learning networks in this task 

stems from their ability to automatically learn complex patterns 

and features from large amounts of data, making them highly 

effective in extracting precise and accurate building footprints. 

The scalability of deep learning approaches is another 

significant advantage. Deep learning networks can be trained on 

vast amounts of data, allowing them to learn complex patterns 

and generalize well to unseen regions or datasets. Having 

mentioned these, one of the most important questions is, what is 

the best model for extracting building footprints? Numerous 

models such as FCN, HRNet, and DeepLab have been designed 

and tested in multiple instances. The U-Net model has emerged 

as a cornerstone in various image segmentation tasks. Its 

importance lies in its unique architecture and design, which 

enable highly accurate and precise segmentation results, 

particularly in scenarios where detailed delineation of object 

boundaries is critical. A key advantage of the U-Net model is its 

ability to handle limited annotated data effectively. This is 

particularly important in tasks like building footprint extraction, 

where obtaining large annotated datasets can be challenging and 

costly. Furthermore, the U-Net model is highly versatile and 

adaptable to different domains and modalities. This versatility 

underscores the broad applicability and importance of the U-Net 

model across diverse fields and applications. Therefore, the 

focus of this research was on the U-Net model. 

 

This study delved into the architecture of the U-Net model, 

undertaking a comparison of various U-Net models to address 

some questions and challenges like (i)-what is the best U-Net 

architecture for building extraction in arial images? (ii)-what 

effect does the size of data on the semantic segmentation 

uncertainty of model? and (iii)- does U-Net model outperform 

previous models such as FCN? 

 

The dataset used consisted of aerial images acquired from 

Google Maps, with corresponding building footprint masks 

obtained from OSM data. Initially, the data was divided into 

three groups including training, validation, and testing using 

three different ratios (7:2:1, 8:1:1 and 9:0.5:0.5). Subsequently, 

the U-Net-32-512 model was trained with each dataset, 

revealing the 8:1:1 ratio as the most effective one. Following 

this, two distinct learning rates, one equals to 0.001 and the 

other equals to 0.0001, were experimented and the value of 

0.0001 was selected as the optimum learning rate for all the 

models. Five different models, featuring diverse starting and 

bridge layers, were developed and initially trained using only 

half of the data. 

 

The top-performed model, U-Net-32-1024, was then selected 

and further trained with the entire dataset. Remarkably, even 

with half the data, this model exhibited notable performance 

with F1-score of 81.94%, nearly matching the accuracy of the 

FCN model with F1-score of 82.74% for building footprints. 

When trained on the complete dataset, it significantly 

outperformed the FCN model and achieved F1-score of 88.53%. 

However, challenges pertaining to hardware limitations were 

encountered, necessitating a reduction in batch size to maintain 

training efficiency. 

 

Furthermore, it was observed that while the U-Net model 

excelled when buildings were widely spaced, like in rural areas, 

its performance deteriorated in dense urban areas. This suggests 

that in such environments, alternative networks like ResNet or 

DenseNet may yield superior results. It should be noted that this 

research focused on the semantic segmentation uncertainty 

assessment of U-Net model. Thus, for future research, the 

geometric uncertainty can be evaluated. In addition, 

investigating U-Net performance compared to models such as 

ResNet can be investigated in future research. 
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