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Abstract 

The Chinese photogrammetry industry is currently experiencing a significant revolution driven by digital intelligence technologies. 

Traditional city-scale 3D modelling, typically reconstructed from oblique photogrammetry or laser points, is facing increasing 

limitations in refined expression, real-time rendering, machine recognition, data sharing, and interoperability due to its large data 

volume and mesh structure. These limitations make it difficult to meet the substantial demands of spatial analysis, simulation, and 

prediction. The concept of geographic entities, which are machine-recognizable spatial data structures, is anticipated to provide a 

competitive solution for these challenges. This work employs 3D scene modelling and geographic knowledge graphs to construct 

geographic entities with semantic relationships at city-scale, addressing the limitations encountered in the application of traditional 

mesh/point-based 3D models. A case study in Chongqing city centre demonstrates the feasibility and effectiveness of the proposed 

approach and its potential applications in simulation, prediction, early warning, and feedback for urban planning and smart city 

management. 

1. Introduction

Traditional 3D models at a city-scale are typically reconstructed 

from satellite images, oblique photos, or laser points. These 

photogrammetry and remote sensing techniques can accurately 

capture the geographic location and realistic texture of scenes, 

often embedding a measurable Triangulated Irregular Network 

(TIN) or point-based model (Döllner, 2020; Gruen, 2021). 

However, these data structures have limitations stemming from 

three aspects. Firstly, TIN or point models are in mesh structures, 

which restrict their usability in geospatial analysis. In addition, 

the format of mesh data hinders interoperability and the ability of 

machines to recognize it, limiting its potential applications in 

simulations and autonomous learning. Furthermore, these data 

structures pose challenges in reorganizing and lightweighting for 

real-time data rendering and sharing. 

The digital geographic entities are abstractions and virtual 

representations that humans use to describe and express 

geographical phenomena with specific spatial ranges, forms, 

processes, relationships, and related attributes in the geographical 

world (Zheng, 2024). In contrast to TIN or point-based models, 

the data structure of geographic entities is vector-based elements 

with attribute tables, making it effective for conveying 

professional information that includes geographic location, 

spatial codes, as well as various attributes and semantic 

relationships. Integrated with knowledge graphs, the geographic 

entities are machine recognizable and friendly to interact. 

Additionally, what also sets this apart is its substantial 

information load with moderate data volume compared to TIN or 

point-based data, making it competitive for data exchange and 

sharing. 

This research aims to construct 3D geographic entity 

representations at city-scale in an effective and cost-efficient 

manner, and to explore applications in simulation, prediction, 

early warning, and feedback of the entity-deployed 3D scenes. 

Recent studies have investigated the potential of large-scale 

construction of geographic entities. In the 1960s, the National 

Aeronautics and Space Administration (NASA) designed a 

virtual object from its physical counterpart, which are deemed as 

a pioneer idea of managing a physical object using digital 

representations (Dihan et al., 2024). The following decades saw 

rapid and large-scale investment in geographical digitization. In 

the 1990s, the Australian Surveying and Land Information Group 

(AUSLIG) built the Spatial Data Infrastructure Program (Nairn 

et al., 1999) to collect and transfer land related information. In 

1994, the Mapping Science Committee (MSC) of the U.S. 

established the National Spatial Data Infrastructure (NSDI) via 

deploying entity-oriented data models. In the 2000s, the U.K. 

deployed the Digital National Framework, assigning unique 

identification codes for all digital geographic entities for relevant 

applications (Murray, 2003). The European Union built the 

Spatial Information Infrastructure (INSPIRE) based on digital 

geographic entities (Tóth et al., 2007). In recent years, the 

construction of geographic entity data in China has been rapidly 

progressing, with several institutions now investigating and 

exploring at different scales (Zheng, 2024). The above research 

mainly focuses on data collection, processing, and management, 

while growing demand for applications is expected to be met with 

the increasing interest in digital technologies. The applications of 

geographic entities, including simulation, prediction, early 

warning, and feedback to the real world, encompass the entire life 

cycle of what the 3D scene representation aims to achieve. To 

deploy these applications, the relationships between entities, 

rather than the entities themselves, become essential. Knowledge 
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graphs are an emerging technology addressing relationships 

between entities and properties(Zhang et al., 2022). Through 

digital intelligence technologies, these graphs make semantic 

relationships machine-recognizable. In the realm of the 

geographic industry, geographic knowledge graphs benefit 

various geospatial applications. Several geographic knowledge 

graphs have been developed, including CSGKB (Zhang et al., 

2008), NCGKB (Li et al., 2017), CrowdGeoKG (Chen et al., 

2017), YAGO2 (Hoffart et al., 2013), and GeoKG (Wang et al., 

2019). These geographic knowledge graphs require more 

validations to demonstrate their adaptability and flexibility.  

The proposed solution consists of two components. First, a 3D 

geographic entity representation is reconstructed via modelling 

techniques based on collected TIN/point-based data and other 

basic surveying and mapping products. Then, the GeoKG method 

is deployed to establish semantic relationships between entities. 

Through these two aspects, the limitations encountered in the 

application of traditional mesh/point-based 3D models are 

successfully addressed. 

Chongqing, one of four municipalities in China, is chosen as a 

case study for this work. It locates in southwest China and is a 

modern port city on the upper reaches of the Yangtze River. The 

city centre of Chongqing is at the confluence of the Yangtze 

River and Jialing River, making it a regional economic-active 

zone. The establishment of the smart Chongqing city centre 

demonstrates its potential applications in simulation, prediction, 

early warning, and feedback for urban planning and smart city 

management. 

2. Related Work

There are three aspects respectively related in TIN/point-based 

data collection and modelling, geographic entity construction, 

and geographic knowledge graphs establishment. Each plays a 

vital role in shaping the framework for advanced spatial analysis 

and interpretation, as the following sections explain.  

2.1 TIN/point-based Data Collection and Modelling 

TIN/point-based data collection and modelling are fundamental 

processes in generating detailed three-dimensional 

representations of objects and scenes. This involves the 

systematic capture, thorough processing, and meticulous analysis 

of data to accurately depict the physical environment in three 

dimensions. Aerial photography, where high-resolution images 

are captured from above the ground, and LiDAR acquisition, 

which utilizes laser pulses to measure distances to the Earth's 

surface, are widely employed techniques in this endeavour (Qin 

and Gruen, 2021). Subsequent processing steps involve refining 

the acquired data to construct surfaces and textures that closely 

resemble the real-world features. Despite the advancements in 

machine learning and artificial intelligence techniques, which are 

increasingly integrated into various aspects of 3D modelling, the 

data structure inherent to TIN/point remains primarily oriented 

towards reconstructing the geographic locations and textures of 

scenes. While these methods excel at capturing information, they 

present challenges in terms of interoperability and machine 

recognition due to the lack of topological relationships. As 

technology progresses, addressing these challenges will be 

crucial for enhancing the compatibility and automation of 3D 

models, thereby further advancing their applications across 

diverse fields such as urban planning, environmental monitoring, 

and virtual reality simulations. 

2.2 Geographic Entity Construction 

Geographic entity construction is a process that involves digitally 

abstracting and semantically representing the geographical world. 

Beyond mere geometry reconstruction, it extends to assigning 

semantic labels to diverse objects or regions within 3D models. 

This comprehensive approach enhances the interpretability and 

analytical capabilities of reconstructed environments. Guided by 

the Ministry of Natural Resources of the People's Republic of 

China, the National Geomatics Center of China (Zheng, 2024) 

has developed a systematic workflow for constructing basic 

geographic entity data products. This workflow encompasses 

transforming essential geographic information features, 

constructing attributes and identification codes, and representing 

combination and association relationships. This standardized 

methodology is presently undergoing nationwide implementation. 

However, despite its comprehensive framework, this 

methodology primarily relies on pre-existing large-scale 

surveying and mapping products. There exists a pressing need to 

validate its adaptability and efficacy in relatively local or regional 

contexts. Expanding its applicability to such areas would not only 

enhance the granularity of geographic entity data but also enrich 

the widespread relevance and effectiveness across diverse spatial 

scales and contexts. 

2.3 GeoKG: Geographic Knowledge Graph 

GeoKG (Wang et al., 2019), or Geographic Knowledge Graph, is 

a specialized form of knowledge graph focusing on representing 

geographic information and spatial relationships among entities 

in the physical world. Similar to other knowledge graphs, GeoKG 

organizes data in a structured format, facilitating efficient 

querying, reasoning, and analysis of geographic data. It encodes 

spatial relationships between geographic entities and includes 

semantic attributes associated with them, providing additional 

context and descriptive information. GeoKG typically displays a 

hierarchical structure, categorizing geographic entities into 

different levels based on their spatial properties and relationships. 

This hierarchical arrangement aids in navigating and exploring 

the geographic knowledge graph effectively. By offering a 

comprehensive and multi-faceted representation of the 

geographic world, GeoKG serves various purposes, including 

geographic information retrieval, spatial reasoning, route 

planning, urban planning, disaster management, environmental 

monitoring, and geographic knowledge discovery.  

3. Methodology

As shown in Figure 1, the proposed methodology encompasses 

the entire work flow of reconstructing the 3D geographic entity 

representation of scenes. The process involves four key steps: 

Figure 1. The work flow of 3D geographic entity representation. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-155-2024 | © Author(s) 2024. CC BY 4.0 License.

 
156



Data Source Stage: Data Collection. This encompasses gathering 

various types of data, including aerial photographs, laser points, 

and data from POS (Position and Orientation System) and IMU 

(Inertial Measurement Unit). Aerial photos provide visual 

information about the scenes from various angles, while laser 

points offer precise positioning data. POS and IMU provide 

orientation and location information for aerial photos. 

Georeferenced and Measurable Model Stage: 3D Modeling. This 

stage involves creating 3D models using the collected data. Two 

primary components of 3D modeling are mesh data and point 

clouds. Mesh data involves creating surfaces and geo-position 

from dense matched DSM (Digital Surface Model), while point 

clouds represent objects or scenes as a collection of 3D points. 

Object-Based Model Stage: Geographic Entity Construction. In 

this step, geographic entities are constructed based on the 

collected data. As shown in Figure 2, this includes individual 

entities, combined entities formed by aggregating multiple 

individual entities, code assignment for identification, metadata 

for additional descriptive information, and establishment of 

relationships between entities. 

Figure 2. Geographic entity construction for object-based 

model. 

Knowledge-Based Model Stage: GeoKG Construction. This 

involves creating a structured representation of geographic 

knowledge. As shown in Figure 3, this includes constructing the 

state, location, time, and attribute information of individual 

entities and combined entities within the knowledge graph. 

Additionally, relationships between entities are captured by 

constructing location relations, time relations, and attribute 

relations. By using description logic (Lifschitz, 2007), each entity 

can be expressed as:  

Where: 

Figure 3. GeoKG construction for knowledge-based model. 

In GeoKG models, the Location, Time, Attribute, State, Change, 

and Relation are respectively expressed as follows: 

Where in (5): 

Where in (6): 

In the proposed methodology, each step contributes to building a 

comprehensive understanding of the geographic environment. 

Data collection provides the raw information needed for 

modeling, while 3D modeling transforms this data into visual 

representations. Geographic entity construction adds semantic 

meaning to the data, allowing for more nuanced analysis. Finally, 

GeoKG construction facilitates advanced spatial reasoning and 

knowledge discovery by organizing geographic information into 

a structured graph format. By following these steps, analysts can 

gain valuable insights into the spatial relationships and attributes 

of the geographic world. 
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4. Case Study and Discussion

4.1 Study Area 

Based on the aforementioned methodology, this paper selects a 

specific study area within Chongqing as a typical case for 

practical application. As shown in Figure 4, This area embodies 

Chongqing's strategic positioning at the national level and 

benefits from top-level design and policy support at both national 

and provincial (municipal) levels. Furthermore, the area is 

characterized by its picturesque setting amidst mountains and 

rivers, featuring scattered spaces, a blend of traditional and 

modern architectural elements, and an abundance of 

geographical and cultural attributes (Figure 5). These 

characteristics provide an ideal environment for the exploration 

and implementation of city-scale 3D geographic entity 

representation, encompassing land, water, terrain, and urban 

levels. 

Figure 4. Study area: The Chongqing city centre. 

Figure 5. The real scene of Chongqing city centre. 

4.2 Mesh Data Modelling 

The construction of mesh models involves following key steps. 

Initially, a series of high-resolution images or LiDAR scans of 

the target area are captured from different perspectives. These 

data sources are then processed to create a dense point cloud 

representing the surface geometry of the scene. Next, the point 

cloud data is used to generate a mesh, which consists of a network 

of interconnected vertices, edges, and faces that approximate the 

surface of the objects in the scene. Once the mesh is generated, it 

is refined and optimized by smoothing out irregularities, 

removing noise or outliers, and filling in missing data. Finally, 

textures and colours are applied to the mesh by projecting the 

original images onto the mesh or using texture mapping 

techniques to apply predefined textures (Figure 6).  

Figure 6. Mesh data modelling of Chongqing city centre. 

4.3 Geographic Entity Construction 

The geographic entity can be utilized to construct a digital twin 

of Chongqing city centre. This process involves collecting and 

organizing constructed mesh models, fundamental geographic 

information feature data at a scale of 1:2000, along with Digital 

Orthophoto Map (DOM) and other relevant natural resource 

survey and thematic data. Following this, data undergoes 

preprocessing steps such as format conversion, coordinate 

system transformation, and integrity checks. Subsequently, data 

conversion occurs, establishing a 3D geographic entity data layer 

with attribute fields and creating a mapping table for feature 

conversion. Connections and fusion between adjacent production 

units are facilitated, integrating both current and historical data. 

Classification codes, spatial identification codes, and unique 

identification codes are assigned to basic geographic entities, 

followed by the construction of semantic relationships based on 

geographic entity data (Figure 7). Metadata production is 

undertaken to document the dataset, and quality inspection 

procedures are implemented to ensure data integrity and accuracy. 

Figure 7. Geographic entity construction. 

4.4 Geographic Knowledge Graph Construction 

By utilizing GeoKG method, each geographic entity consists of 

a series of states, changes, and relations. As a case, the entity 

Raffles in Chongqing city centre can be expressed as in Figure 8. 
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Figure 8. Raffles: A case of entity expression. 

Thus, in this case, the definition of the entity Raffles in 

description logic (DL) can be expressed as follows: 

4.5 Application: Knowledge Feedback of Smart City 

Simulation for Water Level Analysis 

Our application focuses on the simulation of water levels using 

knowledge-based 3D models. We simulate various water levels 

under different scenarios. As depicted in Figure 9, the water level 

changes of the Yangtze River are simulated, allowing us to 

predict potential flood extents and assess flood risk. The water 

level of the Yangtze River could influence many buildings, such 

as Raffles City, Baixiang Street, and Chaotianmen Dock. By 

visualizing the simulated water levels in 3D, stakeholders can 

better understand the potential impacts of flooding and make 

informed decisions regarding flood risk management strategies, 

emergency response planning, and infrastructure development.  

Figure 9(a). Simulation of water level at 170m. 

Figure 9(b). Simulation of water level at 185m. 

Figure 9(c). Simulation of water level at 190m. 

Such simulations can provide decision-makers with feedback, 

including real-time monitoring and early flood warnings. The 

early warning application calculates the range and distance that 

flooding may affect based on the trend of the water level changes, 

providing advance notice to the relevant areas' personnel to take 

precautionary measures. For instance, places like Hongyadong, 

Baixiang Street, and Raffles are prone to flooding due to their 

relatively low elevation. As depicted in Figure 10, the distance of 

the flood from a certain building (e.g., Hongyadong, Baixiang 

Street, or Raffles) is calculated based on water level changes. The 

simulations within 3D models provide decision-makers with 

distance-based early warning statistics in various directions.  

Figure 10(a). Distance (range) of the flood from the geographic 

entities with water level at 170m. 
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Figure 10(b). Distance (range) of the flood from the geographic 

entities with water level at 185m. 

Figure 10(c). Distance (range) of the flood from the geographic 

entities with water level at 190m. 

Figure 11 displays the monitoring calendar generated from 

knowledge-based 3D models. The highest water level recorded 

each day is crucial for smart city disaster management.  

Figure 11. Monitoring calendar of highest water level. 

5. Conclusions and Outlook

The utilization of geographic entities and knowledge graphs, 

featuring machine-recognizable spatial data structures, offers a 

promising solution for effective smart city disaster management. 

Leveraging these digital technologies, we have developed 

geographic entities with semantic relationships on a city-wide 

scale, overcoming the limitations associated with traditional 

mesh/point-based 3D models. Illustrated by a case study 

conducted in Chongqing city centre, this approach demonstrates 

its potential in various aspects of smart city management, 

including simulation, prediction, early warning, and feedback. 

This article initiates a preliminary exploration of a technical 

framework for scenario-based early warning simulation in 

mountainous urban planning, encompassing dynamic inundation 

early warning simulations in typical areas. Besides this 

application, future applications will cover multiple areas, 

including traffic management, public safety, infrastructure 

management, and citizen services. We anticipate these 

technologies will advance the contributions of the 

photogrammetry and remote sensing industry to the broader 

community. 
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