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Abstract 
 
This study highlights the efficacy of leveraging multi-source satellite remote sensing for precise and dependable forest change mapping. 
Forests play a crucial role as carbon reservoirs and are indispensable components of the global carbon and water cycle, providing 
essential ecosystem services. Despite their significance, forests face deforestation, diseases, and climate change threats. Recent satellite 
remote sensing technology advancements have facilitated accurate, persistent, and large-scale forest dynamics monitoring. New 
generation satellite LiDAR systems, such as GEDI and ICESat-2, offer frequent and global height information at high spatial 
resolutions. This research presents a processing framework for mapping forest changes by integrating SAR and optical features from 
Sentinel-1 and Sentinel-2 imagery with canopy heights derived from GEDI and ICESat-2 datasets. Multiple experiments and analyses 
were conducted in two study areas. The findings underscore the significant impact of incorporating canopy height information in 
enhancing the accuracy of forest change mapping, resulting in a 15% improvement in precision and a 13% enhancement in F1-score 
in the experimental setups. Furthermore, the developed model exhibits increased reliability and confidence in identifying correctly 
changed and unchanged areas while being less confident in incorrect predictions. 
 
 

1. Introduction 

Forests serve as vital carbon reservoirs integral to the global 
carbon and water cycle, offering essential ecosystem services. 
Despite their critical importance, forests are threatened by 
various factors such as deforestation, diseases, and climate 
change. Deforestation driven by agricultural expansion is the 
primary cause of forest loss and degradation, while mining, 
selective logging, fire, and road expansion are other drivers, all 
leading to a decline in forest biodiversity (Slagter et al., 2023; 
Vogt et al., 2019). Given the significant role of forests in global 
terrestrial carbon sink dynamics, accurate assessment of their 
changes is crucial for reducing uncertainties in carbon balance 
calculations. However, continuous monitoring of large forest 
areas is problematic due to the high costs. Remote sensing 
technology presents a solution by enabling timely and cost-
effective forest dynamics monitoring. 
 
Recent advances in remote sensing technology have enabled the 
accurate, persistent, and large-scale monitoring of forest changes. 
Notably, the free and open access data policy from satellite 
missions like the European Space Agency’s (ESA) Sentinel 
programme has fuelled significant research in Earth observation. 
The Sentinel-2 satellites, launched in 2015, carry multispectral 
optical sensors that provide high-resolution imagery (10-60 
metres) across the visible, Near-Infrared (NIR), and Shortwave 
Infrared (SWIR) spectrum. These observations offer valuable 
insights into forest ecosystems, biology, and species. However, 
cloud cover, particularly during rainy seasons, can hinder the 
effectiveness of optical data. Synthetic aperture radar (SAR) data 
can overcome this limitation by penetrating clouds. The Sentinel-
1 C-Band SAR sensor provides dual polarised VV-VH intensity 
images in Ground Range Detected (GRD) mode. This data 
ensures a consistent stream of dense time series data in high 
spatial detail, regardless of daylight or cloud cover conditions. 
One example of the effectiveness of Sentinel-1 data for forest 
monitoring is the near real-time Radar for Detecting 

Deforestation (RADD) alert system for detecting tropical forest 
disturbances (Reiche et al., 2021). 
 
In addition to optical and radar satellites, a new generation of 
satellite LiDAR instruments, like the GEDI (Global Ecosystem 
Dynamics Investigation) onboard the International Space Station 
(ISS) and ATLAS (Advanced Topographic Laser Altimeter 
System) onboard ICESat-2, have emerged since around 2019, 
enabling high-resolution, global-scale height measurements. The 
GEDI mission utilises a waveform LiDAR instrument to sample 
forest heights with 25-metre diameter footprints every 60 metres 
along its orbital paths. It transmits 14 nanoseconds (4.2 metres) 
pulses of 1064 nanometre laser energy and records the returning 
waveform at a one nanosecond rate (approximately 0.15 meters) 
(Dubayah et al., 2020). GEDI’s canopy height products have 
proven effective in various Earth observation applications such 
as aboveground biomass estimation (Tamiminia et al., 2024), 
crop classification (Di Tommaso et al., 2021), and wetland 
mapping (Adeli et al., 2023). However, it is important to note that 
GEDI has been temporarily deactivated since March 2023, with 
a planned reactivation by the end of 2024. 
 
ICESat-2, on the other hand, carries the Advanced Topographic 
Laser Altimeter System (ATLAS), which uses a green laser (532-
nanometre wavelength) that transmits short 1.5 nanoseconds 
(approximately 0.4 metre) pulses at a 10 kHz frequency, resulting 
in along-track sampling of 0.7 metres (Neumann et al., 2019). 
The footprint diameter for each ATLAS laser pulse is estimated 
to be around 11 metres on the ground (Neumann et al., 2019). 
While ICESat-2’s primary mission focuses on ice sheet 
monitoring, its potential for forest height estimation has been 
demonstrated in several studies (Feng et al., 2023; Liu et al., 
2021; Milenković et al., 2022). 
 
Unlike SAR intensity product (GRD) and optical imagery, which 
provide radiometric and physical features that may not directly 
translate to forest height changes, LiDAR satellite missions offer 
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a crucial geometrical feature: surface height measurement. This 
direct measurement allows for a more accurate assessment of 
changes in forest volume, making it a valuable tool for forest 
change monitoring. 
 
This study has two primary objectives. First, we aim to 
demonstrate the effectiveness of multi-source satellite data for 
forest change monitoring. We achieve this by developing a 
framework that fuses three types of remotely sensed data, each 
offering unique characteristics and features. These data sources 
include spectral features from Sentinel-2 imagery (optical 
wavelength domain), backscattering features derived from 
Sentinel-1’s dual-polarised VV-VH C-band observations (SAR), 
and canopy height measurements acquired by GEDI and ATLAS 
laser scanners. Second, we investigated the impact of 
incorporating canopy height information into the feature set 
derived from optical and SAR data. Specifically, we analysed the 
effect of including height features on the model’s accuracy and 
assessed its influence on uncertainty. 
 

2. Method 

2.1 Data Processing 

We extracted features from three domains: SAR, optical, and 
height, using data from four satellite sources: Sentinel-1, 
Sentinel-2, GEDI, and ATLAS. 
 
2.1.1 Features from Sentinel-1 SAR data: We used 
Sentinel-1 dual-polarisation C-band data to extract SAR-related 
features. The Google Earth Engine (GEE) platform provides 
10×10m resampled GRD data, and the terrain correction thermal 
noise removal has already been performed in GEE.  
 
We extracted three prevalent features: Span, Ratio, and Radar 
Vegetation Index (RVI). Span (VV+VH), denoting the total 
backscatter coefficient, indicates the aggregate energy returned 
to the radar across VH and VV polarisation channels. Ratio 
highlights the backscattering power changes between two 
polarisations and is shown to be sensitive to vegetation dynamics 
and useful for biomass estimation. The dual-polarised RVI (
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), as an alternate representation of the full-

polarised version (Kim and Zyl, 2009), aims to highlight 
vegetation density and is shown to be highly correlated with the 
Normalised Difference Vegetation Index (NDVI), while 
benefiting from not being affected by cloud cover (Mandal et al., 
2020). 
 

2.1.2 Features from Sentinel-2 Multispectral data: We 
derived three features highly sensitive to vegetation density and 
changes using Sentinel-2’s Red (R), NIR, and SWIR bands: 
Normalised Difference Vegetation Index (NDVI), Soil-Adjusted 
Vegetation Index (SAVI), and Normalized Burn Ratio (NBR). 
NDVI is highly sensitive to chlorophyll content, greenness, and 
health conditions in vegetation. SAVI, a modified version of 
NDVI, presents improved separability between vegetation and 
bare soil by adding soil adjustment factor (L) to the main 
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between the SWIR and NIR reflectance, is sensitive to vegetation 
loss and is, specifically, indicative of burned or severely 
disrupted zones. 
 
2.1.3 Canopy Height: We leveraged canopy height products 
from two datasets: GEDI’s Level 2A (L2A) and ICESat-2 
ATLAS ATL08. The GEDI L2A product provides detailed 
elevation and height metrics at the footprint level. These metrics 
are extracted from the received waveform, including terrain 
height, canopy height, and various relative height (RH) values 
(Dubayah et al., 2020). The RH values are provided at 1% 
intervals, from 0% to 100% per footprint, each representing the 
percentile of energy return height relative to the ground. To 
ensure data quality, we employed L2A’s “quality_flag” report to 
filter out unreliable or degraded GEDI data points. 
 
The ATLAS ATL08 dataset contains terrain height estimates, 
canopy height estimates, and RH metrics describing the canopy’s 
vertical structure. Specifically, it provides three key canopy 
height metrics: “h_max_canopy” (maximum RH to the ground), 
“h_canopy” (98th percentile height), and “canopy_h_metrics” 
(percentiles from 10% to 95% relative to the interpolated ground 
surface with 5% intervals) (Neuenschwander et al., 2022). 
 
We chose the RH98 metric (98th percentile) to represent canopy 
height in the GEDI data. Similarly, for ICESat-2 data, we utilised 
the “h_canopy” product, which is equivalent to the 98th 
percentile height (RH98). Several studies recommend the 98th 
percentile canopy height due to its reliability and less noisy 
canopy height estimation compared to the very top of the canopy 
(RH100) (Liu et al., 2021; Qi et al., 2023). 
 
2.2 Modelling 

We utilised a supervised machine learning approach to map 
forest changes using two series of data collected before and after 
the changes occurred. Random Forest (RF), known for its 
robustness, simplicity, and low sensitivity to hyperparameter 
tuning, is widely employed for modelling remote sensing data in 
various regression and classification applications. In addition to 
these attributes, RF can provide decision-making probabilities, 

 
Figure 1: First study area located in Mexico: a) Before the changes, and b) After the changes. Slanted and near vertical patterns demonstrate 

height measurements by GEDI and ATLAS LiDARs, respectively. 
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estimated based on the votes from the multiple decision trees 
embedded and trained within the model. 
 
We employed an RF Regression model to address the sparsity of 
GEDI and ATLAS canopy height data. This model created wall-
to-wall canopy height layers with a 10m resolution. The model is 
trained using the canopy height data and corresponding pixel 
values in Sentinel-1 VV, VH intensity, and Sentinel-2 spectral 
bands. It then estimates the canopy height for other pixels in each 
scene. Subsequently, other feature layers described in the 
previous section were derived from the acquired Sentinel-1 and 
Sentinel-2 layers. The generated features from two data series 
were subtracted, and finally, the differentiated feature layers were 
used as input variables for the RF Classifier to classify pixels into 
changed and unchanged categories. 
 

3. Data 

We investigated deforestation in Mexico and Brazil, which have 
experienced significant disturbances recently. Specifically, we 
focused on the changes that occurred between 2020 and 2021. 
Satellite data collected in 2019 (pre-disturbance) and 2022 (post-
disturbance) were used to identify deforested areas. 
 
The ESA Worldcover Map 2020 (Zanaga et al., 2022) was used 
to mask non-forest areas. We refined an initial reference map 
from the RADD forest disturbance alert system (Reiche et al., 
2021) by visually inspecting monthly high-resolution image 
mosaics (4.8 m spatial resolution) from Planet Imagery. 
Furthermore, disturbances occurring outside the 2020-2021 
period were excluded. 
 
The Sentinel-1, Sentinel-2, and GEDI L2A data were acquired 
and processed through Google Earth Engine (GEE) Python API, 
while the ATLAS ATL08 data were acquired from the NASA 
EarthData platform. 
 
Figures 1 and 2 present Sentinel-2 RGB composite images of the 
study areas before and after the disturbances. GEDI and ATLAS 
footprints are overlaid on these images to illustrate surface height 
variations and scene changes. Near vertical patterns represent 
ATLAS footprints, while the slanted lines correspond to GEDI 
data. The surface relative height in the first area ranges from 0 to 
30 metres, while the second area exhibits a maximum height of 
approximately 60 metres. 

 
Figure 2: The second study area is in Brazil: a) Before and b) 

After the changes. Slanted and near-vertical patterns 
demonstrate height measurements by GEDI and ATLAS 

LiDARs, respectively. 
 

4. Results and Discussion 

As detailed in Section 2.1, this study utilises three types of data 
for forest change mapping: SAR backscatter (Sentinel-1), 
Multispectral (Sentinel-2), and LiDAR canopy height data 
(GEDI L2A and ICESat-2 ATL08). While the first two data 
sources consist of gridded image arrays, the canopy height data 
is in point cloud format distributed across different parts of the 
study areas. 
 

 
Figure 3: Extrapolated height images: a) First area, b) Second area. The top, middle, and bottom images represent extrapolated 

images from time-1, time-2, and their difference, respectively. 
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As can be seen from Figure 1 and Figure 2, the height 
measurements are sparsely distributed across each scene, and 
many of the 10×10m pixels lack height measurements. To 
address this issue, we extrapolated height measurements by 
creating a Random Forest Regression model. This model uses the 
Sentinel-2 spectral bands and Sentinel-1 VV and VH intensity 
images as input variables to estimate the canopy height of each 
pixel. We utilised 200 tree estimators with a model depth 10 for 
all scenes. The modelling results are presented in Table 1, 
showing that the mean absolute errors of the models range 
between 2 to 5 metres. 
 

Study region Time-1 (m) Time-2 (m) 
Area-1 2.766 2.316 
Area-2 5.118 4.776 

Table 1: Mean absolute error of canopy height extrapolation 
modelling. 

 
Finally, each scene’s wall-to-wall 10m resolution canopy height 
image is demonstrated in Figure 3. The generated images reveal 
noticeable height changes in both scenes, with most changes 
appearing negative (indicating a decrease in height), while some 

areas show slight increases or growth. These generated height 
maps serve as a feature layer for change detection modelling 
alongside other features derived from SAR and optical imagery. 
 
Seven feature layers were extracted from four remotely sensed 
datasets used in this study. These include three indices (NDVI, 
SAVI, and NBR) from the Sentinel-2 multispectral imagery, 
three features (Span, Ratio, and RVI) from the Sentinel-1 dual-
polarised GRD data, and the canopy height measurements from 
LiDAR, for each period. 
 
We employed a Random Forest Classifier with 200 estimators 
and a depth of 10 to identify change and no-change areas. This 
model was trained on feature layers derived by subtracting 
corresponding layers from time 1 and time 2 for each data source. 
 
Figures 4b and 5b present the generated change maps for the first 
and second areas. These maps depict the results of two modelling 
scenarios: one using only features derived from SAR and 
multispectral data, and another incorporating the canopy height 
feature layer. Overall, both scenarios agreed well with the 
reference maps, correctly identifying major changes. However, 

 
Figure 4: Change maps of the first study area (Up: using only SAR and optical features. Bottom: incorporating canopy height 

into the image features): a) Ground truth, b) Estimated change map, c) Spatial distribution of false positive (FP) and false 
negative (FN) pixels, d) Model uncertainty. 

 

 

 
Figure 5: Change maps of the first study area (Up: using only SAR and optical features. Bottom: incorporating canopy height 

into the image features): a) Ground truth, b) Estimated change map, c) Spatial distribution of false positive (FP) and false 
negative (FN) pixels, d) Model uncertainty. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-163-2024 | © Author(s) 2024. CC BY 4.0 License.

 
166



 

the first scenario (without height data) exhibited a higher 
prevalence of false detections and errors (Figures 4c and 5c). 
Notably, including the height feature layer improved detection 
precision (user’s accuracy) in the first area from 0.66 to 0.7 and 
in the second area from 0.40 to 0.55 (Table 2). Furthermore, the 
F-score for change detection increased by 0.03 and 0.13 in the 
two areas when height information was included, further 
emphasising its effectiveness in forest change mapping. 
 
We analysed the model’s uncertainty in detecting changes to 
assess its performance further. This involved estimating the 
probability of the predicted label for each pixel during the testing 
phase. A higher uncertainty score (calculated using the formula 
2(1-p̂i), where p̂i ∈ℝ[0.5, 1] is the model’s label prediction 
probability for the ith pixel) indicates lower model confidence in 
the prediction. As illustrated in Figures 4d and 5d, the model 
without the height feature layer exhibited lower sensitivity to 
prediction uncertainty. In contrast, including the height layer 
improved the model’s confidence in correctly identifying 
changes while assigning higher uncertainty to incorrect 
predictions. For example, in Figure 5d, the base model shows 
similar confidence levels for correctly and incorrectly predicted 
changes in the central area. However, when height information 
was included, the model’s uncertainty decreased for correctly 
predicted changes and increased for incorrectly predicted 
changes. 
 

Study 
Region 

Method Precision Recall F-1 

#1 S1, S2 0.66 0.94 0.78 
#1 S1, S2, H 0.70 0.94 0.81 
#2 S1, S2 0.40 0.88 0.55 
#2 S1, S2, H 0.55 0.89 0.68 

Table 2. Change detection results (S1, S2, and H represent 
features from Sentinel-1, Sentinel-2, and canopy heights from 

GEDI and ATLAS, respectively). 
 
To evaluate change detection based solely on the predicted 
change probability (p̂c), we analysed Precision-Recall curves for 
each scenario (Figure 6). The impact of including the height layer 
is demonstrated in both study areas, as evidenced by an increase 
in the area under the curve (AUC) from 0.9042 to 0.9278 for the 
first study area and from 0.7245 to 0.8479 for the second study 
area. These results highlight the enhancement in the model’s 
confidence in accurately detecting changes. 
 
A more precise model uncertainty estimation can offer valuable 
insights for developing advanced modelling approaches. These 
approaches could include human-in-the-loop active learning for 
manually labelling pixels with low prediction confidence or 
pseudo-label propagation based on semi-supervised methods 
(Hosseiny et al., 2023). 
 
Figure 7 illustrates the distributions of extracted features for 
changed and unchanged areas. Notably, the discriminability 
between distributions is less evident in features derived from 
SAR data. This might be attributed to the complex backscattering 
behaviour of forests, particularly related to volume, which dual-
polarised intensity data cannot fully capture. However, the 
distance between the medians of unchanged and changed pixels 
is most distinctive in the SAR Span layer. This could be 
explained by transforming volume or dihedral backscattering in 
forested areas to surface scattering after disturbance, 
significantly reducing backscattering power for VV and VH 
polarisations. 
 

 

 
Figure 6: Precision-Recall curve for detecting change pixels 

(Left: using only SAR and optical features. Right: incorporating 
canopy height into the image features): a) First study area, b) 

Second study area. 
 

 
Figure 7: Feature distributions:  a) First study area, b) Second 

study area (note that the height values are normalised between -
1 and 1 to have the same scale as the other features). 

 
Spectral features from Sentinel-2 show better discrimination, 
with no-change areas exhibiting a concentrated distribution. 
NDVI and SAVI are both sensitive to surface greenness. NBR, 
which utilises shortwave infrared reflectivity, offers further 
sensitivity to disturbances like forest fires or changes in general 
vegetation health. Since these spectral indices rely on the 
physical characteristics of the observed media, capturing data 
under similar conditions and vegetation cycles is likely to yield 
similar results in unchanged areas. However, as observed, the 
distribution of changed pixels is wider. 
 
The height layer also displays a wide standard deviation for 
changed pixels, reflecting the complexity of forest changes. 
However, compared to SAR and optical features that provide 
insights about surface appearance and physical characteristics, 
the height feature directly compares changes in the vertical 
direction. This feature provides more distinctiveness between the 
medians of unchanged and changed pixel distributions. 
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5. Conclusion 

This study investigated the effectiveness of multi-source satellite 
remote sensing for forest change mapping, focusing on the 
impact of incorporating canopy height information. We 
presented a processing framework that integrates features derived 
from Sentinel-1 (SAR), Sentinel-2 (optical), and GEDI/ICESat-2 
(canopy height) data. Experiments were conducted in two study 
areas in Mexico and Brazil, which experienced severe 
disturbances and deforestation during 2020-2021. The results 
demonstrated that incorporating canopy height features improves 
forest change mapping accuracy. Compared to models relying 
solely on SAR and optical data, our approach achieved a 15% 
and 13% improvement in precision and F1 scores, respectively. 
Notably, the canopy height layer discriminates better between 
changed and unchanged pixels than other feature layers. 
 
Additionally, analyses of the model’s prediction confidence 
revealed a considerable increase in confidence for correctly 
classified pixels and a decrease for incorrect predictions. These 
findings highlight the value of multi-source satellite remote 
sensing for forest change monitoring. Combining data from 
different sensors provided a more comprehensive picture of 
forest dynamics, leading to more accurate change detection. 
Specifically, canopy height measurements emerged as a key 
factor in boosting model accuracy. The potential reactivation of 
the GEDI instrument by the end of 2024, along with continued 
data collection from optical and SAR sensors, offers a promising 
avenue for establishing a more accurate and frequent forest 
monitoring and change detection system. 
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