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Abstract 
 
The explosive development of shared bicycles has changed the way people travel. In parallel with the urbanization process, shared 
bicycles have emerged as a significant mode of transportation, especially for the first and last mile transit. With the aim of obtaining a 
comprehensive understanding of the spatiotemporal patterns underlying shared bicycle usage, this study takes Shenzhen, China as a 
case study. Drawing on the principles and techniques of complex network analysis, the research adopts a spatial grid framework, 
treating each grid as a node, the flow of shared bicycles as an edge, and the flow frequency as the corresponding weight. Subsequently, 
the spatiotemporal interaction networks of different periods of working days and weekends are constructed respectively, based on 
which the topological characteristics are analysed. The results show that the spatiotemporal interaction networks exhibit high regional 
connectivity and node interdependence, suggesting the presence of a small-world phenomenon. 
 
 

1. Introduction 

Shared bicycle is a new form of transportation and can accurately 
record users' riding information in real time, providing a large 
amount of effective mobility data. In recent years, with the rapid 
development of bike share as well as urbanization, shared 
bicycling has emerged as a preferred mode of transportation for 
short-distance travel among citizens (Griffin and Sener, 2016), 
especially for the first and last mile transit and short commutes. 
The interaction patterns generated shared bicycles traveled 
among spatial units during different time periods can be explored 
through constructing complex networks and mining the 
characteristics embedded in the networks, providing an available 
way to exploring human movement patterns in urban areas (Yao 
et al., 2019).  
 
Currently, a significant portion of research in this field focus on 
the analysis of stationary shared bicycles, which presents certain 
limitations such as suboptimal data quality resulting from data 
sampling deviations and information gaps (Wan, 2020). This is 
because the stationary shared bicycling requires borrow or return 
shared bicycles to a specific location. In contrast, the dockless 
shared bicycling system presents real-time display position with 
its own positioning system, which can be parked and placed 
everywhere (Chen et al., 2020, 2022; Orvin and Fatmi, 2021). In 
this study, we explore the spatiotemporal interaction patterns 
through building dockless shared bicycling networks, which is 
critical for modelling human mobility patterns, aiding urban 
planning, urban traffic management as well as promoting the 
urban sustainable development (Xu et al., 2019).  
 
Leveraging a dataset comprising over 20 million dockless shared 
bicycle orders from the City of Shenzhen, China, this study 
employs the patterns embedded in the spatiotemporal interaction 
network based on a number of indicators, such as the average 
degree of nodes, the average clustering coefficient, closeness 
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centrality, and betweenness centrality. The objective of the study 
is to obtain a comprehensive understanding of the spatiotemporal 
patterns underlying shared bicycle usage. 
 
The structure of this paper is organized as follows. Section 2 
introduces the study area and the data used in this study. Section 
3 presents the methodology adopted for analysing the 
spatiotemporal interaction patterns of shared bicycling networks. 
Section 4 analyses the results, and some conclusions are drawn 
in Section 5. 
 

2. Study Area and Data 

2.1 Study Area 

 
Figure 1. Overview of the study area 
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This study selected the City of Shenzhen, Guangdong Province, 
China as the research area, which is located between 
113°46´~114°37´ E and 22°27´~22°52´ N. As shown in Figure 1, 
Shenzhen is bounded by Daya Bay and Dapeng Bay to the east, 
the Pearl River estuary and Lingdingyang to the west, and shares 
borders with Hong Kong, Dongguan, and Huizhou. The research 
area encompasses a total land area of 1997.47 square kilometers 
and owns nine administrative districts, including Bao'an, 
Nanshan, Futian, Luohu, Yantian, Longhua, Longgang, Pingshan, 
Guangming, and Dapeng Districts.  
 
2.2 Datasets 

The study incorporates two primary datasets, namely 
administrative boundary data and shared bicycle data. The 
administrative boundary data of the City of Shenzhen was 
sourced from the Shenzhen Geographic Information Public 
Service Platform (http://www.szgeoinfo.com.cn). The shared 
bicycle order data of the City of Shenzhen was obtained from the 

Shenzhen Municipal Government Data Open Platform 
(https://opendata.sz.gov.cn). The shared bicycle order data 
specifically pertains to the dockless shared bicycle orders in 
Shenzhen, ranging from March 30 to April 13, 2021, constituting 
a two-week duration. Using the data API provided by the 
platform, a web crawler was developed to collect the dockless 
shared bicycle order data, yielding a vast dataset of 
approximately 20.22 million entries. The acquired shared bicycle 
order data encompasses various attributes including user ID, 
company ID, timestamps of the start and end of the journey, and 
the latitude and longitude coordinates for both the starting point 
(denoted as 'O') and the endpoint (denoted as 'D'). 
 

3. Methodology 

Figure 2 illustrates an overview of the methods and processes 
employed in this work, including research data and preprocessing, 
spatial and temporal partition, spatiotemporal interaction 
networks construction, and analysis of network characteristics. 

 

Figure 2. The overall study workflow  

 
3.1 Spatial and Temporal Partition 

In order to enhance the reliability and accuracy as well as remove 
the redundancy of the data, a series of pre-processing steps were 
employed. The details are as follows. 
 
(1). Coordinate conversion: The original coordinate system of 
administrative boundary data is BD09, which is commonly used 
in Baidu map. In order to facilitate the follow-up experimental 
research, we unified the coordinate system as the WGS84 
coordinate system for the administrative boundary data. 
 
(2). Data cleaning: The Euclidean distance of shared bike orders 
in the plane was computed using the Transbigdata toolkit  
(https://transbigdata.readthedocs.io) in Python language, based 
on which the orders exhibiting abnormal riding distance greater 
than three kilometres were removed from the dataset (Xie, 2021). 
In addition, the data with blank values in the fields such as 
timestamps and coordinates, and the data points outside the study 
area were also removed.  
 
Through the above pre-processing steps, approximately 8% of 
the shared bicycle order data was eliminated. The remaining valid 

data were used for the study to provide the basis for subsequent 
experiments. 
 
3.1.1 Spatial Partition: As the construction of spatiotemporal 
interaction networks of shared bicycling highly relies on the size 
of spatial units. The variations in spatial unit sizes can 
significantly influence the topological characteristics of the 
composed networks. In this paper, we determined the size of 
spatial units through calculating the cycling distance of shared 
bicycles and using the probability density distribution of the 
cycling distance as an indicator. The Haversine  distance based 
on the spherical model was used to calculate the riding distance 
of the shared bicycle, since it is based on the spherical cosine 
function transformation, effectively addressing discrepancies in 
distance calculation for points situated closer together and 
ensuring heightened accuracy in computations (Maria et al., 
2020). The Haversine distance is computed as follows. 
 

ℎ푎푣 �
푑
푟

� = ℎ푎푣(휑� − 휑�) +

cos(휑�) cos(휑�) ℎ푎푣(휆� − 휆�) (1)
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ℎ푎푣(휃) = 푠푖푛� �
휃
2

� =
1 − cos(휃)

2
(2) 

 
In the formula, hav is the Haversine function, 푑  denotes the 
riding distance of shared bicycles, 휑�  and 휑�  represent the 
latitude of the starting point and the end point of the shared 
bicycle order, 휆� and  휆� represent the longitude of the starting 
point and the end point of the shared bicycle order, and 푟 denotes 
the radius of the earth. 
 
Once the size of spatial units was determined, a spatial grid 
partition was conducted through partitioning the research area 
into a number of equal-size grids. 
 
3.1.2 Temporal Partition: The determination of time periods in 
this study was determined by referring to the transportation 
policy issued by the Traffic Police Department of Shenzhen 
Local Public Security Bureau in 2023 (http://szjj.sz.gov.cn). The 
study mainly divided the time into five periods, i.e., weekday 
morning peak (7am-9am), weekday daytime off-peak (9am-
5:30pm), weekday evening peak (5:30pm-7:30pm), weekday 
nighttime off-peak (7:30pm-7am), and weekends (all-day period), 
which are shown in Table 1. 
 

Time periods Description 

Weekday morning peak 7am-9am 

Weekday daytime off-peak - 9am-5:30pm 

Weekday evening peak 5:30pm-7:30pm 

Weekday nighttime off-peak 7:30pm-7am 

Weekends all-day period 

Table 1. Time periods and description 

 
3.2 Spatiotemporal Interaction Networks Construction 

The complex network theory was adopted for spatiotemporal 
interaction networks construction, since it can illustrate the 
spatiotemporal interaction patterns among different spatial units 
through regarding the spatial units and their interaction as nodes 
and edges, respectively in the bike-sharing system in a 
comprehensive way. The Spatiotemporal interaction networks of 
shared bicycles can be regarded as an edge-weighted graph 
network 퐺 = (푁, 퐸, 푊) (Wu et al., 2020; Gomez-Gardenes et al., 
2013; Liu et al., 2021), where three basic elements including 
node (N), edge (E), and edge weight (W) are required. As the 
partitioned spatial units refer to the equal-size grids, the centroids 
of the partitioned spatial units were used as nodes, the flows of 
shared bicycles were used as edges, and number of shared bicycle 
rides were used as weight to construct the spatiotemporal 
interaction network of shared bicycles in different time periods. 
The details of building the interactive network of shared bicycle 
spacetime are as follows. 
 
3.2.1 Spatial Correlation: We employed the sjoin function in 
the Geopandas library (https://geopandas.org) to generate the 
origin and destination vector points based on latitude and 
longitude from the pre-processed bicycle data. The spatial 
associations were established between the OD points and the 
partitioned spatial unit dataset for the City of Shenzhen. This 
ensured that OD points were attached with the corresponding 
spatial unit ID. The grid IDs corresponding to the start point and 
end point were assigned to the shared bicycle order data, resulting 
in the bicycle order data enriched with spatial unit information. 
 

3.2.2 Spatiotemporal Interaction Matrix Construction: The 
starting point O, the ending point D, and the weights expressed 
in terms of the frequency of shared bicycle rides were extracted 
in different time periods in order to compose the spatiotemporal 
travel matrix. The network or igraph algorithms in Python 
language were used to model the spatiotemporal travel matrix for 
the following analysis. 
 
3.3 Network Characteristics Analysis 

In order to analyse the characteristics of the spatiotemporal 
interaction networks, the following indicators were involved for 
complex network analysis in this study (Xu et al., 2023). 
 
(1). Node (N): The centroids of starting unit and ending unit 
places of bicycle sharing rides.  
 
(2). Edge (E): The connection between the starting node and the 
end node of the shared bicycle ride. 
 
(3). Average degree (D(avg)): The number of edges connected to 
a node in the network is called the Degree of the node. The 
average degree of all nodes in a network is called the average 
degree of the network. 
 

퐷(���) =
∑ 퐸�

�
���
푁

(3) 

 
The D(avg) represents the average degree of the node i in the 
spatiotemporal interaction network and Ei represents the number 
of edges of the node i. 
 
(4). Average strength (S(avg)): The average weighted degree of 
nodes is the average strength, which is computed as follows. 
 

푆(���) =
∑ 푊�

�
���

푁
(4) 

 
The S(avg) represents the average strength of the spatial interaction 
network node i and Wi represents the weight of the edge of node 
i. 
 
(5). Network diameter (Diameter): The maximum distance 
between any two connected nodes in the spatiotemporal 
interaction network represents the network diameter, which is 
calculated as follows. 
 

퐷푖푎푚푒푡푒푟 = 푚푎푥���푑(�,�) (5) 
 
The d(i,j) represents the distance between node i and node j. 
 
(6). Average path length: The average value of all distances 
between two nodes refers to average path length, which can 
reflect the degree of separation between nodes and can be 
computed using Equation 6. The higher the value is, the more 
dispersed the network nodes are. 
 

퐴푣푒푟푎푔푒 푝푎푡ℎ 푙푒푛푔푡ℎ =
2

푁(푁 − 1) � 푑(�,�)
���

(6) 

 
(7). Average clustering coefficient (ACC): The ratio of the 
number of connections around the node to the number of possible 
connections of the node is defined as the clustering coefficient Ci, 
which is used to measure the degree of aggregation of nodes. The 
ACC can be computed using Equation (7) and (8).  
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퐶� =
2퐸�

퐷�(퐷� − 1)
(7) 

 

〈퐶〉 =
1
푁

� 퐶�

�

���

(8) 

 
In spatiotemporal interaction networks, a higher ACC indicates 
that the spatial units are more closely connected to each other. 
Otherwise, the spatial units in the network are more dispersed. 
 
(8). Closeness centrality: The closeness centrality of a node is 
the average distances from the node to all other nodes and 
represents the propagation efficiency of the connection, which 
reflects the proximity of a node to other nodes. It can be 
calculated as follows. 
 

퐶푙표푠푒푛푒푠푠� =
푁

∑ 푑(�,�)�
(9) 

 
(9). Betweenness centrality (Betweennessi): It refers to the 
number of times a node appears on the shortest path, reflecting 
the degree of control and dependence of the node on other nodes, 
which can be calculated as follows:  
 

퐵푒푡푤푒푒푛푛푒푠푠� = �
휎��(�)

휎�������

(10) 

 
The 휎푚푛(푖) denotes the number of the shortest paths of node m and 
node n passing through node i in the spatiotemporal interaction 
network and 휎푚푛 denotes the sum of the number of shortest paths 
from node m to node n. 
 

4. Results and Analysis 

4.1 Partitioned Spatial Units 

The optimal value for spatial unit partition was determined 
through investigating the probability density distribution of 
riding distance, as shown in Figure 3. The distance of each shared 
bicycle ride was calculated according to Equation (1).  
 

 
Figure 3. The probability density distribution of riding distances 

 
The histogram in Figure 3 demonstrates the frequency of riding 
shared bicycles in different distance intervals. Overall, there are 
relatively more short-distance rides on shared bicycles, with the 
highest relative frequency of riding distances around 700 meters. 

In other words, the majority of shared bicycles have riding 
distances near 700 meters. The average riding distance of 
bicycles was computed as 999.2 meters. The riding distance of 
half of the orders are more than 855 meters, three-quarters of 
them are more than 500 meters, and the vast majority are more 
than 250 meters. In order to make the start point and end point 
occurring in different spatial units to explore the spatiotemporal 
interaction patterns, we initially selected 250 meters and 500 
meters as the partition length of spatial units. Through dividing 
the research area with 500m × 500m grid and 250m × 250m grid 
in ArcGIS, it revealed that the division did not show great 
difference. In order to reduce redundancy, 500 meters was finally 
selected as the length for dividing the spatial unites in Shenzhen. 
A total of 8,298 spatial units were finally obtained.  
 
4.2 Spatiotemporal Interaction Networks 

According to the principles of network construction elaborated in 
Section 3.2, five spatiotemporal interaction networks were 
constructed in five difference time periods using the bicycle 
sharing data in Shenzhen. The constructed spatiotemporal 
interaction networks are shown in Figure 4. 
 

 
Figure 4. The spatiotemporal interaction networks of bicycle 

sharing in the City of Shenzhen, China. (a) The admin boundary 
map;(b) Weekday morning peak; (c) Weekday daytime off-

peak;(d) Weekday evening peak; (e) Weekday nighttime off-
peak; (f) Weekends 

 
The yellow color in the figure represents the weight, namely the 
number of shared bicycle rides. The darker the color, the more 
frequently the rides in those areas. It shows that the frequency of 
shared bicycle flow in all time periods are the highest in Longhua 
District. For instance, during the evening rush hours on weekdays, 
the flow frequency of shared bicycles is the highest, indicating 
the number of citizens using shared bicycles during this period is 
the largest. Comparing with Guangming, Bao'an, Nanshan, 
Futian and Luohu districts, there are fewer bike-sharing rides in 
Pingshan, Yantian and Dapeng districts. As indicated by the 
announcement of the Shenzhen Municipal Transportation Bureau 
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(http://jtys.sz.gov.cn), the number of shared bicycles in Dapeng, 
Yantian and Pingshan districts was 3,600, 6,600 and 15,300 
respectively by the end of 2023, which were less than other 
districts. The potential reason behind such phenomenon is that 
Dapeng, Yantian and Pingshan are relatively far from downtown 
and most tourism industries and high-tech industries locate there, 
and the bike companies don’t deploy many bikes and there are 
fewer shared bicycles provided for citizens and tourists in order 
to keep costs and benefits balance. On the weekends, most of the 
riding activities take place in Guangming, Bao 'an, Nanshan, 
Luohu and Longhua districts.  
 

4.3 Network Characteristics  

Based on the constructed spatiotemporal interaction networks of 
shared bicycles in each period, we computed nine indicators for 
exploring the network characteristics, including the number of 
nodes, the number of edges, the average degree of nodes, the 
average strength of nodes, network diameter, average path length, 
average clustering coefficient, closeness centrality and 
betweenness centrality. The calculation results are shown in 
Table 2.  
 

 

Weekdays 
 Weekends 

all-day period 
Morning peak 
(7am-9am) 

Daytime 
off-peak  
(9am-5:30pm) 

Evening peak 
(5:30pm-
7:30pm) 

Nighttime  
off-peak  
(7:30pm-7am) 

N 3467 3594 3588 3574 3802 
E 98019 96711 108573 101948 147507 
D(avg) 56.54 53.82 60.52 57.48 77.59 
S(avg) 1152.59 932.35 1014.42 863.49 1831.23 
Diameter 32 30 28 31 28 
Average path length 9.93 9.72 9.64 9.72 9.22 
Average clustering coefficient 0.43 0.46 0.45 0.46 0.50 
Closeness centrality 0.097 0.098 0.103 0.105 0.116 
Betweenness centrality 20933.75 22733.19 20875.09 21491.36 20985.65 

Table 2. The statistics of network attributes during the study periods 
 
As shown in Table 2, the number of nodes (N) and the number of 
edges (E) of the spatiotemporal interaction network increased 
significantly during the peak hours of the weekday evening, 
indicating that people ride shared bikes more frequently during 
weekday evening hours. This is possibly because weekday 
evening peak hours are at the end of the workday and peak time, 
riders have enough time for shared bike use. Moreover, the 
prevalence of traffic congestion during the evening peak hour 
highly motivates individuals to opt for shared bicycles as their 
preferred mode of transportation. 
 
In terms of network diameter and average path length, the value 
of the morning peak of weekdays are significantly higher than 
those of other time periods, illustrating that people use shared 
bicycles to ride far away from other time periods during the 
morning peak of the working day, and the origin and destination 
of the ride are relatively scattered, while other periods of cycling 
are more concentrated. Since the values of the average path 
length in the spatiotemporal interaction networks are around 10 
among the large number of nodes, it is likely that people usually 
take part in local activities around by shared bicycles, which can 
be called "small world" phenomenon. 
 
The highest average clustering coefficient and closeness 
centrality are both found on weekends, suggesting that 
community activities are more closely connected and 
concentrated on weekends than weekdays. In terms of 
betweenness centrality, the values of betweenness centrality were 
relatively high for all time periods, which suggests that the 
spatiotemporal interaction networks hold a high degree of 
regional connectivity dependency among the spatial units. 
 

5. Conclusion 

This study facilitates the construction of spatiotemporal 
interaction network using dockless bike-sharing data based on the 
complex network theory, enabling the investigation of patterns 
using nine indicators, including the number of nodes, the number 
of edges, average degree of nodes, average strength of nodes, 
network diameter, average path length, average clustering 
coefficient, closeness centrality and betweenness centrality. A 
case study conducted in Shenzhen City, China, reveals that 
Longhua District emerges as the most frequent area for bike-
sharing usage. The travel distance tends to be longer during 
weekday mornings, while the travel distances in other time 
periods are relatively shorter, which shows homogeneous usage 
patterns in space. On weekends, travel distances tend to be 
shorter and more clustered, particularly in the Guangming, 
Bao'an, Nanshan, Luohu, and Longhua districts. The 
spatiotemporal interaction network illustrates a high level of 
regional interconnectedness and reliance, showcasing the small-
world phenomenon. These findings offer insights for urban 
transport authorities, bike-sharing companies, and residents to 
enhance urban mobility. 
 
Despite the findings obtained in this study, there exists certain 
space for improvement. The analysis was based on two-week 
bike-sharing order data due to the challenge of accessing long-
term data, leading to potentially incomplete insights. In the future, 
more spatiotemporal dynamics of dockless bike-sharing system 
can be investigated for comparison given more data can be 
collected from either traffic management departments or bike-
sharing providers. 
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