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Abstract

As an important task in 3D building reconstruction, 3D roof reconstruction attracts increasing attention. Existing methods have
the issue of additional errors caused by multi-step processes, resulting in relatively high uncertainty and potentially affecting the
reconstruction accuracy. Deep learning-based methods to achieve the direct extraction of roof vertices and edges for reconstructing
3D roof structures tackle the issue of additional errors while leading to another problem: the reliance on large labeled datasets for
training. In this study, a fully rule-based method is proposed to achieve automatic 3D roof reconstruction. Roof vertices with their
edges parallel to the x-y plane are first extracted from the point clouds, and subsequently, the left roof edges connecting vertices
are inferred by using Delaunay triangulation. Finally, the 3D roof structure is reconstructed by using graph analysis based on the
information of roof vertices and edges. This method simplifies the process of 3D roof reconstruction, and the experiment results
demonstrate that the proposed method can effectively reconstruct 3D roof structures from point clouds.

1. Introduction

In many fields such as urban planning and geographic simu-
lation, 3D roof models play a crucial role as the foundation
of 3D building models (Wang et al., 2018). As introduced in
CityGML 2.0 (Gröger et al., 2012), the 3D roof information
is considered in 3D building models from the level of detail 2
(LoD2) in five LoDs from 0 to 4. The task of 3D roof recon-
struction from point clouds attracts much attention.

To address the task of 3D roof reconstruction from point clouds,
numerous model-driven and data-driven methods are proposed.
The flexibility of model-driven methods (Huang et al., 2013,
Jarza̧bek-Rychard and Borkowski, 2016) is limited by their
pre-defined roof primitives, resulting in the weak adaptation
of changing architectural styles. In contrast, data-driven meth-
ods (Cao et al., 2017, Huang et al., 2022, Peters et al., 2022) are
more flexible because they can achieve 3D roof reconstruction
without pre-defined knowledge. However, additional errors are
brought in and accumulated during the multi-step processes, in-
creasing the uncertainty and ultimately affecting the accuracy of
the reconstructed result. A solution to directly extract roof ver-
tices and edges for 3D roof reconstruction decreases the number
of steps and thus can reduce the accumulated errors. Some deep
learning-based methods following this strategy (Li et al., 2022)
have been proposed and achieved state-of-the-art performance
in the task of 3D roof reconstruction. However, their reliance
on large labeled training datasets affects their value in practical
applications.

To tackle the issues of accumulated errors in traditional data-
driven methods and the need for large labeled datasets in deep
learning-based methods, a new rule-based method for 3D roof
reconstruction based on roof vertex detection and edge predic-
tion is proposed in this study. This method detects roof lines
parallel to the x-y plane and roof vertices based on voxelization
and neighborhood analysis, and further predicts the remaining
roof lines and generates 3D roof structures by using Delaunay
triangulation and graph analysis. The main highlights of this
study are as follows.

1. The proposed method directly extracts roof vertices and
infers roof edges from the point clouds. Without the ad-
ditional roof plane segmentation and primitive extraction,
the processes of 3D roof reconstruction are simplified and
the potential errors accumulated during the multi-step pro-
cesses in existing methods can be reduced.

2. The proposed method is rule-based and the extraction of
roof vertices and edges is achieved without the need for
training data, reducing the costs of preparation work and
enhancing its applicability.

This paper is organized as follows. Section 2 reviews the re-
lated works of 3D roof reconstruction. In Section 3 the detailed
workflow of the proposed method is described. Section 4 in-
troduces the experiment settings, while Section 5 presents and
discusses the experimental result. In Section 6, the conclusion
of this study is presented and its further work is discussed.

2. Related Works

The methods for 3D roof reconstruction are generally divided
into two types: model-driven and data-driven. Model-driven
methods start from pre-defined roof primitives and then recon-
struct 3D roofs by combining these pre-defined primitives and
optimizing their parameters. (Huang et al., 2013) defined a
library of roof primitives categorized into three groups con-
sisting of eleven types. Subsequently, generative modelling
was employed to reconstruct 3D roof models that fit the data.
(Jarza̧bek-Rychard and Borkowski, 2016) proposed a library of
building elementary structures with more flexible rules. This
library was combined with the roof topology graph to identify
topology and recognize pre-defined structures from the roof
point clouds with segmented plane information, and finally
achieved the 3D roof reconstruction. While model-driven meth-
ods exhibit robustness in reconstructing 3D roofs with complete
topology, their flexibility is limited by the pre-defined paramet-
ric knowledge.
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Data-driven methods generally follow the workflow of roof
plane segmentation, vector primitive tracing, and topology in-
ference between roof planes, edges, and vertices. Many meth-
ods have been proposed and utilized to support this work-
flow. For example, region growing (Liu et al., 2023) and ran-
dom sample consensus (RANSAC) (Canaz Sevgen and Karsli,
2020) for roof plane segmentation; convex-hull (Rhee and
Williams, 2023) and α-shape (Chen et al., 2017) for obtain-
ing vector primitives; and objective function and roof topo-
logy graph (Xiong et al., 2014) for final topology reconstruc-
tion. Without the requirement of pre-defined information, data-
driven methods have better flexibility and generalization com-
pared with model-driven methods. However, more steps and
rules in data-driven methods cause new issues and affect the
accuracy of reconstructed 3D roofs. The over- and under-
segmentation issue in the roof plane segmentation step de-
creases the roof structure accuracy and would ultimately affect
the practicality of the reconstruction result. This issue was also
mentioned in the model-driven method (Jarza̧bek-Rychard and
Borkowski, 2016) which included the roof plane segmentation
step. Meanwhile, the process of obtaining vector primitives by
boundary tracing or plane fitting relies on additional sub-steps
and constraints, thereby bringing additional errors and uncer-
tainty.

As mentioned in Section 1, the solution based on roof vertex
and edge extraction can simplify the workflow of data-driven
methods, thus mitigating the challenges associated with un-
certainty and error accumulation. In the research by (Li et
al., 2022), they proposed a two-stage deep neural network,
Point2Roof, to extract roof vertices and predict edges from the
roof point cloud. Their experiments on synthetic and real data-
sets demonstrate that Point2Roof successfully infers 3D roof
structures and achieves state-of-the-art performance. However,
the practicality and generalization of their deep learning-based
method are limited by the requirement for large training data-
sets and fine-tuning.

3. Methodology

The proposed method aims to directly detect vertices and pre-
dict edges of building roofs from point clouds. The workflow
consists of two major modules: (1) detection of roof vertices
and their corresponding roof lines parallel to the x-y plane and
(2) prediction of remaining roof edges and structure genera-
tion. Furthermore, the second module can be summarized as
two sub-modules: (2.1) creation of Delaunay triangulation with
segment constraints and obtaining basic cycles and (2.2) gen-
eration of 3D roof structures by obtaining roof faces through
merging cycles based on graph analysis.

These modules are described in detail in Section 3.1 and 3.2.
Meanwhile, this workflow is illustrated in Figure 1. The ”roof
structure line” mentioned in Figure 1-”Module 1” denotes the
roof lines parallel to x-y plane in this study and its example is
shown by the red lines in Figure 1(b).

3.1 Extraction of Structure Lines and Roof Vertices

The extraction of roof structure lines and roof vertices is
achieved by the method proposed in (Kong et al., 2023). This
method utilizes the point clouds of a single roof as the input
and does not require prior plane segmentation. First, the rota-
tion based on the dominant direction and voxelization are im-
plemented to regularize the point cloud data. Next, two rules

for identifying voxels on or not on roof structure lines are de-
signed and iteratively applied for each voxel, to achieve the
detection of candidate voxels of potential roof structure lines.
Subsequently, the roof structure lines of the input roof are de-
termined based on these candidate voxels by five rules for can-
didate line extraction, clustering, and merging. Ultimately, the
determined roof structure lines are segmented and their end-
points are extracted as the roof vertices.

The roof vertices and their corresponding structure line seg-
ments on the voxel coordinate system are saved and are utilized
as the input of Module 2, and an example of these results is
shown in Figure 1(b). Additionally, in the first step of this mod-
ule, the rotation information is saved and transmitted to the next
module, to re-rotate the generated structures to the geographic
coordinate system.

3.2 Prediction of Roof Edges and Structure Generation

Roof vertices V and their corresponding structure line segments
L from Section 3.1 provide a basic split of a roof’s point clouds.
However, how to correctly connect these segments to create
faces for structure generation remains an issue. Hence, this
module should extract the left roof edges and further determ-
ine roof faces to ultimately generate the 3D roof structure. All
these works in this module are divided into two sub-modules
as mentioned above, and the detailed workflow is introduced as
follows.

The first sub-module ”Create constrained Delaunay triangula-
tion and find basic cycles” is used to connect all vertices by
found edges and obtain the candidate face group of triangles.
Delaunay triangulation is widely used in the field of surface
reconstruction (Miao et al., 2019, Luo et al., 2021). In this
study, it is employed to establish connections among roof ver-
tices for reconstructing roof surfaces. However, roof vertices V
are sparse and the Delaunay triangulation only based on them
might lead to erroneous connection. To avoid this issue, the pro-
posed method utilizes L to guide and constrain the triangulation
process, as it is a subset of roof edges. An example of this con-
strained Delaunay triangulation is shown in Figure 1(c), where
the red edges represent the segments L used for the constraints
and the blue edges result from the triangulation process. In this
way, the prediction of the remaining roof edges is achieved. Tri-
angles formed by all these edges are regarded as the candidate
roof faces. During this process, because L does not enclose the
area to be triangulated, the triangulation will be implemented
for the convex hull of V and L. This means that some unexpec-
ted triangles are also generated, where an example is shown in
Figure 2. To tackle this issue, the proposed method calculates
the α-shape of voxelized point clouds in 2D and utilizes it to as-
sist in cleaning unexpected triangles. The cleaning strategy is:
the triangles with intersection-area percentages between them-
selves and the α-shape polygon exceeding a specific threshold
are saved, while those not meeting this criterion are removed.
In this study, the threshold is set as 70%. The cleaned triangles
are saved and regarded as the basic cycles T used in the next
sub-module.

The second sub-module ”Merge cycles based on normals and
graph analysis” is implemented to find roof faces and ultimately
generate the 3D structure of a roof. Triangles (i.e., basic cycles
T ) obtained from the previous sub-module can compose a 3D
roof but this outcome cannot precisely represent a roof struc-
ture due to over-segmentation. Therefore, in this sub-module,
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Figure 1. Workflow of the proposed method.

Figure 2. Example of unexpected triangles created in
constrained Delaunay triangulation.

these basic cycles are further merged to obtain an accurate rep-
resentation of roof faces. In this study, this merging process is
achieved based on normals and can be summarized as the fol-
lowing four steps.

1. Calculate the normals of all triangles. The normals of
planes vary with different orientations of the planes, thus
can separate different roof faces. In this proposed method,
the normals of triangles are calculated by singular value
decomposition (SVD), which only relies on the vertex in-
formation of each triangle and does not require their order.
These calculated normals are denoted as N .

2. Cluster normals to obtain the candidate face groups. The
triangles that have similar normals are considered to be-
long to the same face. Following this principle, the can-
didate face groups are obtained by clustering these tri-
angles based on their normals. The density-based spa-
tial clustering (DBSCAN) algorithm is utilized to achieve
this clustering of N , where ε is set to 0.3 and the min-
imum number of objects to form a cluster (minPts) is set
to 1. The obtained candidate face groups are denoted as

G = {g = {t}|{t} ⊆ T}. For an example shown in Fig-
ure 1(d), there is a g = {t1, t2} for triangles 1 and 2.

3. Merge each candidate face group to generate the roof face.
The merging of triangles in a candidate face group g is
accomplished based on graph theory. g includes multiple
triangles, consisting of a series of vertices and edges. Con-
sequently, it can be conceptualized as an undirected graph
and denoted as g = {t} = {⟨Vg, Eg⟩}. In graph theory, a
”cycle” is defined as a non-empty path that starts and ends
at the same node, with no repeated nodes in between (Bac-
ciu et al., 2020). The cycle concept is similar to ”polygon”
in the geographic field and thus can be extended to that.
Hence, the challenge of merging a face group can be trans-
formed into the identification of the largest cycle in a face
graph, where the ”largest” means the cycle with the largest
area. In this step, all potential cycles in g are first founded
using a classic algorithm depth-first search (DFS). Sub-
sequently, the cycle with the maximum area is extracted as
the generated face f of g and f is appended to a set {f}g
for the next sub-step. Following this, the process is iterated
considering the scenario where g has the potential to cover
multiple faces with the same normal (i.e., g − {f}g ̸= ∅).
The iteration stops when g − {f}g is empty, indicating
that all vertices and edges in g have been considered. The
obtained face set {f}g represents the generated roof faces
from the corresponding candidate face group g. For an ex-
ample shown in Figure 1(d), the {f}g={t1,t2} corresponds
to one output face.

4. By repeating the third step and merging all candidate face
groups, all roof faces {{f}g} are obtained and will be used
for the final generation of 3D roof structures.

Ultimately, the 3D structure of this roof can be generated by us-
ing the face information {{f}g} and the vertices Vf included in
{{f}g}. However, the vertices in this result are still in the voxel
coordinate system, as shown in the first row of Figure 1(e). To
output the geographic 3D roof structure, these vertices Vf in
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the voxel coordinate system are re-rotated to the geographic co-
ordinate system based on the rotation information calculated in
Section 3.1. An example of the generated geographic 3D roof
structure is shown in the second row of Figure 1(e).

4. Experiment Settings

To qualitatively and quantitatively evaluate the performance of
the proposed method, the experiment is conducted on the data-
set outlined in Section 4.1. The metrics for quantitative evalu-
ation are introduced in Section 4.2.

4.1 Experimental Dataset

A dataset including 50 roofs is created for the experiments.
Raw airborne laser scanning (ALS) point cloud data used in
this dataset is located in Trondheim, Norway, and was collec-
ted in 2018. Based on the data collection place, the dataset is
named as ”Trondheim” dataset in this study. The point dens-
ity of the raw point clouds is 12–20 points/m2. This data is
provided by the mapping authority of Trondheim Municipality.
The manually annotated 3D roof structures of these 50 roofs
are employed as the ground truth data. Multiple roof structure
types from primary (e.g. gabled and hipped) to complex (e.g.
T-shaped, L-shaped, and combined) are covered in the experi-
mental dataset, to ensure the comprehensive evaluation.

4.2 Evaluation Metrics

The following evaluation metrics are selected for the quantitat-
ive evaluation: vertex distance errors in x-, y- and z- dimensions
(vdx, vdy , vdz) for geometry accuracy evaluation and precision
(P ) and recall (R) for overall accuracy evaluation. The pre-
cision and recalls of detected vertices and predicted edges are
considered separately, and present as V P and V R for vertex
evaluation and EP and ER for edge evaluation.

The detailed calculation methods of these metrics follow (Li et
al., 2022) and (Kong et al., 2023). A true positive vertex in
these metrics is the detected vertex whose minimum distance to
ground truth vertices is smaller than a pre-defined threshold. In
this study, this threshold is set as 1 m. The true positive edges
are similarly defined with the same threshold.

5. Experimental Results

5.1 Qualitative Evaluation Results

The qualitative evaluation results on the Trondheim dataset are
shown in Figure 3. The colored points in Figure 3(a) and black
points in Figure 3(b) represent the roof point clouds. The black
points and edges in Figure 3(a) form the ground-truth 3D struc-
tures of these roofs. The red points in Figure 3(b) represent the
detected vertices by Section 3.1. The generated 3D roof struc-
tures by the proposed method in this study is shown in Fig-
ure 3(c).

Overall, the qualitative results shown in Figure 3 demonstrate
that the proposed method can effectively reconstruct 3D roof
structures from point clouds. The complete and accurate 3D
roof structures are successfully reconstructed by the proposed
method in the face of both primary roof types such as gabled
(R1) and hipped (R2) and complex roof types such as L-shaped
(R3) and T-shaped (R4), although the proposed method per-
forms not as perfect as the other cases in the face of a combined

case shown by R5. For R5, its main problems are missing a
triangle as shown by the purple box in Figure 3(c), and an ad-
ditional generated roof face as shown by the orange box in Fig-
ure 3(c). The former is caused by an un-detected vertex in the
module of roof vertex detection that is also illustrated by the
purple box in Figure 3(b), while the latter is because this unex-
pected triangle is in the α-shape of this roof’s point clouds. In
addition, some unexpected vertices are detected in R4 as shown
by the blue boxes in Figure 3(b). These vertices do not affect
the representation of the reconstructed roof structure and do not
bring additional sub-surface. However, they reduce the accur-
acy of the final reconstruction result.

5.2 Quantitative Evaluation Results

Type Geometry (m) Overall (%)
vdx vdy vdz P R

vertex (V ) 0.22 0.25 0.15 64.81 85.66
edge (E) - - - 45.16 66.41

Table 1. Quantitative evaluation results on the Trondheim dataset

The quantitative evaluation results on the Trondheim dataset are
shown in Table 1. As shown in the first row of Table 1, for
roof vertex detection, the proposed method achieves 0.22 m of
vdx, 0.25 m of vdy , and 0.15 m of vdz for geometry accuracy;
and 64.81% of V P and 85.66% of V R for overall accuracy
evaluation. These results indicate that the proposed method can
effectively and accurately extract roof vertices. For roof edge
prediction whose results are shown in the second row of Table 1,
the proposed method achieves 45.16% of EP and 66.41% of
ER.

While the proposed method performs well on the reconstruc-
tion of 3D roof structures, compared to the overall evaluation
results of vertex detection, those of edge prediction are lower
by 19.65% on precision and 19.25% on recall. This implies
that the proposed method exhibits worse performance in edge
prediction. This gap is primarily caused by error accumulation
and amplification from vertex detection to edge prediction, as a
wrongly detected vertex has the potential to affect at least two
edges. This issue is illustrated by the purple boxes of R5 in Fig-
ure 3, where a roof vertex that is not detected finally leads to a
missing triangle in the reconstruction result and further results
in the incorrect prediction of its two related edges. Addition-
ally, the relatively low precision of vertex detection implies that
additional vertices that are not correct or along the roof edge
might be detected. The roof lines corresponding to these ver-
tices lead to additional and incorrect constraints of Delaunay
triangulation, while the triangulation process is the foundation
of other edges’ prediction. The inference of the 3D roof struc-
ture thus is impacted ultimately. The potential solution to this
issue is improving the edge prediction process by optimization
algorithms. By designing an objective function to minimize the
distance between the raw point clouds and the reconstructed 3D
roof structures, the wrongly detected vertices with their corres-
ponding roof lines can be removed and the missing vertices can
be identified and added, and finally achieve the more accurate
edge prediction.

Nevertheless, when further analysing the value distribution of
EP and ER by their histograms as shown in Figure 4 and 5, we
can find that the proposed method achieves quite good results of
EP and ER on most roofs. The percentages of reconstructed
roof structures whose EP and ER are over 50% achieve 52%
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Figure 3. Qualitative evaluation results on the Trondheim dataset.

Figure 4. Histogram of EP .

Figure 5. Histogram of ER.

and 76%, respectively. This analysis result indicates that, al-
though the proposed method appears to perform less optimally
in edge prediction compared to vertex detection on the overall
evaluation, it is still capable of achieving acceptable edge pre-
diction performance in most cases.

6. Conclusion

In this study, a new rule-based method for 3D roof structure
reconstruction based on point cloud data is proposed. In the
proposed method, instead of following the traditional workflow
for this task, including roof plane segmentation, primitive ex-
traction, and topology analysis, a more straightforward strategy
is applied. This new strategy only includes two modules for
roof vertex detection and edge prediction (structure genera-
tion). Vertex rules are first defined and implemented to de-
tect roof vertices and extract their corresponding roof structure
lines. With the constraints of these structure lines, constrained
Delaunay triangulation is created and the candidate face groups
are found based on the rules of normals. The final 3D roof struc-
tures are ultimately generated after merging the faces in each
group through graph analysis. Having fewer number of mod-
ules reduces the potential for accumulated errors. The charac-
teristic of the proposed method, which does not require a train-
ing process or data, further ensures its practicability and gener-
alization. The qualitative and quantitative experimental results
on the Trondheim dataset demonstrate the effectiveness of the
proposed method. However, this method still faces some chal-
lenges. The errors from mis-detected or un-detected vertices
are still accumulated to the next step of edge prediction and fi-
nally reduce the accuracy of reconstructed 3D roof structures.
Additionally, the triangles for structure generation are still not
clean enough, which leads to some additional faces being re-
constructed. The potential solution to these issues is adding
a sub-module to review the consistency of created constrained
Delaunay triangulation of a roof and its corresponding point
clouds. Furthermore, the issue of mis-detected vertices can also
be managed through polygon simplification.

In the future, besides further improving the proposed method
based on the abovementioned analysis, this 3D reconstruction
method of roof structures will be employed for the automatic-
ally large-scale 3D building modelling in LoD2. Further applic-
ations of the 3D roof and building models, such as solar energy
analysis, will also be explored, to implement this method in the
real world.
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