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Abstract

With the increase in built-up areas and rising urban populations, Land Surface Temperature (LST) has significantly increased,
leading to the proliferation of Urban Hot Spots (UHS) in urban environments. To mitigate UHS proactively, researchers have
conducted studies using various models to predict LST. However, current predictions are primarily based on data samples from
isolated stations, making them unfeasible for continuous LST prediction on larger scales, such as regional levels. Therefore, this
research aims to use Singapore as a case study to predict UHS on a regional scale using machine learning based on essential
variables. Specifically, this research proposes training a Convolutional Neural Network (CNN) model using identified independent
variables, including elevation, Normalized Difference Built-up Index (NDBI), Normalized Difference Moisture Index (NDMI),
Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), population, and Land Use and
Land Cover (LULC), along with the target variable, UHS. After training, the model achieves high test accuracy and is fed projected
data, subsequently producing projected UHS locations. The findings indicate that new UHS primarily appear in southwestern areas,
Marina Bay, and the northwest regions of the country. This research predicts that 2.24 percent of the site could be classified as
UHS by 2025, compared to the current percentage of 0.95 percent. Based on these projections, the research proposes preventative
measures to proactively mitigate UHS. This research fills the gap by constructing a prediction model that can predict UHS locations
on a regional scale.

1. Introduction

Urban Hot Spots (UHS) refer to high-temperature areas within
Urban Heat Islands (UHI) that can cause extreme heat stress,
impacting people’s activities (Guha et al., 2018; Pearsall, 2017).
The focus on UHS differs from UHI, as UHI primarily concerns
the difference between the air and Land Surface Temperature
(LST) in urban and nearby rural areas (Krtalić et al., 2020). In
contrast, UHS, within the urban context, is more closely related
to people’s health, specifically the level of heat stress exper-
ienced (Kuang et al., 2014; Guha, 2017). UHS are found in
areas with higher values of UHI and LST (Das and Das, 2020).
Therefore, with the rapid increase of LST in urban areas in re-
cent years, the amount of UHS is also booming, as validated by
researchers in various regions globally (Ahmed, 2018; Amindin
et al., 2021). Additionally, the correlation between UHS and
LST has been further precisely interpreted by Guha et al. (2017)
through a mathematical formula. Thus, it is safe to say that the
locations of UHS are based on the values of LST.

The values of LST have been found to correlate with urban
morphology, Local Climate Zone (LCZ), spectral indices from
satellite imagery, land use and land cover, and demographic
factors (Zeng et al., 2023). Specifically, regarding urban mor-
phology, researchers have found that trees can effectively re-
duce LST and that irregular distribution and diverse species
of green spaces can reduce LST more effectively (Huang and
Wang, 2019). Additionally, concerning building layout, Huang
et al. (2019) found that high-rise buildings scattered in location
could reduce LST more effectively. Furthermore, in terms of
insights from satellite imagery, the Normalized Difference Ve-
getation Index (NDVI) is found to be negatively related to LST
value, and the Normalized Difference Built-up Index (NDBI) is
positively related to LST value (Guha et al., 2018; Zhang et al.,

2009). Researchers have also found that different land uses and
land covers impact LST properties differently, and changes in
land use due to rapid urbanization can lead to changes in LST
(Kardinal et al., 2007). Specifically, commercial and industrial
land uses typically have high LST during the daytime (Huang
and Wang, 2019; Kardinal et al., 2007). Furthermore, in terms
of the demographic aspect, researchers have found that higher
population density generally represents higher traffic volume
and thus results in higher LST (Bokaie et al., 2016).

Researchers have also conducted predictions of LST to identify
future UHS and mitigate their impact in advance (Equere et
al., 2020; Khalil et al., 2021). Advanced machine learning al-
gorithms, such as Artificial Neural Network (ANN) and Convo-
lutional Neural Network (CNN) models, fed with LST values
and necessary independent variables, have shown higher accur-
acy than linear regression models in predicting LST (Deo and
Şahin, 2017; Equere et al., 2021; Khalil et al., 2021). Deo et al.
(2017) used training and testing data from seven sites to com-
pare the accuracy of different models, including ANN, Multiple
Linear Regression (MLR), and Autoregressive Integrated Mov-
ing Average (ARIMA) algorithms, and found that ANN has the
highest accuracy. Similarly, Equere et al. (2021) randomly se-
lected pixels from a region to train and validate their model
for predicting future LST. However, these predictions of LST
are limited to certain pixels or sites, making the method time-
consuming for larger regions. In summary, to the best of our
knowledge, current research mainly focuses on predicting LST
values, rather than UHS, and is often based on selected points
within research sites.

With the urgency to mitigate potential future UHS and the proven
high accuracy of machine learning in estimating LST trends,
this research aims to utilize machine learning techniques for
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predicting potential UHS locations on a regional or national
scale, based on factors correlated with UHS. Compared to UHI,
UHS is an index more directly related to people’s experience of
heat stress (Coutts et al., 2015). Building upon current research,
which mainly focuses on predicting LST and UHI, the results of
this study will fill the research gap in predicting UHS using ma-
chine learning models, thereby making the research field more
complete. Additionally, the outcomes of this research could be
utilized by urban planners to implement mitigation solutions in
advance to prevent the increase of UHS.

2. Research Site and Data

2.1 Research Site

Singapore, situated near the equator at 1°17’ N, 103°50’ E, as
shown in Figure 1, is characterized by a tropical climate, which
has similar climate settings for all seasons. Singapore covers an
area of 734.3 km² and with a population of 5.92 million as of
June 2023. The region maintains a consistent climate with av-
erage temperatures ranging from 26.8°C to 28.6°C. Daily highs
vary from 30.5°C to 32.4°C, and lows from 24.3°C to 25.7°C
(The National Environment Agency). Research indicates a po-
tential temperature increase due to urbanization of up to 0.79°C
by the 2030s and an additional 2.3°C by the 2080s (Zhu and
Yuan, 2023). Owing to the lack of data regarding Tekong Is-
land, this research excludes Tekong Island from its scope.

Figure 1. Research site geographic location.

2.2 Data

This research utilizes data from three primary sources: Digital
Elevation Model (DEM) data from the National Aeronautics
and Space Administration (NASA), Landsat 8 data from the
United States Geological Survey (USGS), LULC data from Senti
-nel-2 land cover, and demographic data from the Singapore
Department of Statistics (DOS). The DEM data from NASA re-
veals the bare surface of the research site with a resolution of 30
m by 30 m. The Landsat 8 Collection 2 Level 1 dataset from Oc-
tober 13, 2023, was selected for its recency and minimal cloud
coverage. This research employs five bands from the Landsat 8:
GREEN (Band 3), RED (Band 4), NIR (Near-Infrared, Band 5),
SWIR1 (Short-Wave Infrared 1, Band 6), and Thermal Infrared
(Band 10). The third dataset, detailing the LULC of Singapore
in 2017 and 2022, is obtained from Sentinel-2 land cover. The
fourth dataset, detailing the population of Singapore in 2022,
is obtained from DOS. The population data are categorized by
subzone, which is a subdivision of Singapore’s planning zones.
Table 1 describes the data, its resolution, the time of collection,
and its sources.

Data Resolution Time Sources

DEM 30 m 2019 NASA
Landsat 8
(Band 3,
4, 5, 6 and
10)

30 m and
100 m

Oct 13,
2023

USGS

LULC 10 m 2017, 2022 Sentinel-2
land cover

Population subzone 2022 DOS

Table 1. Descriptions of data, data resolution and data sources in
the research.

3. Methodology

Figure 2 illustrates the general method applied in this research.
Independent variables, including elevation, NDBI, NDMI, NDVI,
NDWI, population, and LULC, are converted into a multi-channel
array. The target variable, which is the current UHS, is trans-
formed into one-hot encoded matrices. After the CNN model is
trained using the training dataset comprising independent vari-
ables and target variables, it is fed projected independent vari-
ables, and subsequently, it produces a projected UHS. More de-
tails regarding the model will be explained in Section 3.3.

Figure 2. Diagram of general research method.

3.1 Retrieval of Independent Variables

Major contributing factors of urban heat have been identified
by Voogt and Oke in 2008, including geographic location, time,
weather conditions, city function, city size, and city form (Voogt,
2008). The research location, city size, weather, and time are set
in the research site section and will not be subjected to change,
and thus are not recognized as independent variables. There-
fore, this research focuses on applying impacting factors from
the city function and city form categories to predict the UHS in
the research site. Based on a comprehensive literature review,
Rajagopal (2023) summarized the specific impacting factors of
urban heat regarding city function and city form that were used
by researchers in the past ten years (Rajagopal et al., 2023).
Wang et al. (2023) conducted a critical literature review re-
garding the prediction of air temperature in the past ten years
and summarized the frequently used variables in predicting air
temperature (Wang et al., 2023). Based on the frequency of
relevance of the impacting factors in the above two literature
reviews, this research identified seven crucial independent vari-
ables, including elevation, NDBI, NDMI, NDVI, NDWI, popu-
lation and LULC, that will be applied in our research. Specific-
ally, surface elevation has been proven to be a significant factor
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that can improve the accuracy of LST prediction (Equere et al.,
2020). NDBI, which indicates built-up areas, has been found to
have a positive correlation with LST values. In contrast, NDVI,
which evaluates vegetation percentage, and has been found to
be negatively correlated with LST (Kumar et al., 2022). Fur-
thermore, NDMI, describing the water stress level in vegeta-
tion, and NDWI, mapping the index for water bodies, have also
been found to correlate with LST values (Taloor et al., 2021).
The density of population, indicating the level of activities of
residents which can potentially generate anthropogenic heat in
urban areas, has been found to be positively correlated with
LST in residential regions (Li et al., 2014). Finally, different
LULC types have been found are associated with levels of LST
by researchers (Halder et al., 2021).

NDBI is calculated from the NIR and SWIR1 bands, which are
bands 5 and 6, via equation(Zha et al., 2003):

NDBI =
(SWIR1−NIR)

(SWIR1 +NIR)
(1)

NDMI is calculated as the ratio between the difference and the
sum of the refracted radiations in the NIR and SWIR regions
(Gao, 1996). The formula is:

NDMI =
(NIR− SWIR1)

(NIR+ SWIR1)
(2)

The NDVI is calculated as the ratio of the difference between
the NIR and RED reflectance to the sum of these two values
(Purevdorj et al., 1998). Its equation is:

NDV I =
(NIR−RED)

(NIR+RED)
(3)

NDWI is calculated using the Green and NIR bands (Mcfeeters,
1996), as follows:

NDWI =
(GREEN −NIR)

(GREEN +NIR)
(4)

This research also use two projected independent variables, which
are projected population of 2025 and projected LULC of 2025.
Specifically, Singapore’s population is projected to increase to
6.9 million in 2030, up from the current 5.92 million (Singa-
pore Department of Statistics, 2023), resulting in an increase
rate of 16.9 percent. Based on this rate, the research projects
that the population of each subzone will increase by 4.82 per-
cent in 2025. This change in population for each subzone is
represented by variations in color within an image format.

Regarding projected LULC, the Modules for Land Use Change
Simulations (MOLUSCE) employs multiple models and algorit
-hms, including Cellular Automata (CA), ANN, and Logistic
Regression (LR), based on necessary inputs such as previous
land use maps and distance to road systems, and has been proven
to have high accuracy in simulating future land use (Muhammad
et al., 2022). MOLUSCE can be implemented via QGIS to sim-
ulate the predicted LULC map for 2025 based on the LULC
maps of 2017 and 2022, and the road system of 2022. Firstly,
the model will predict the LULC of 2022, which will be com-
pared with the LULC map of 2022 from Sentinel-2 land cover

data. The two LULC maps are compared to validate the model’s
accuracy using the kappa value, which is calculated via for-
mula:

K =
Po − Pe

1− Pe
(5)

where K = The Kappa coefficient
Po = Probability of observed agreement
Pe = Probability that agreement between the observed

and predicted data occurs by chance

The value of the Kappa coefficient varies from -1 to 1, with
higher values indicating better performance in predicting the
LULC map. Once the model is trained to achieve sufficient
accuracy, it will be used to predict the LULC of 2025.

3.2 Retrieval of the Dependent Variable

LST can be retrieved using the methods provided by (Yuan and
Bauer, 2007). The computation of Top of Atmospheric (TOA)
spectral radiance utilizes Band 10 of the Landsat 8 data. TOA
radiance is calculated using the formula:

TOA = ML×Qcal +AL−Oi (6)

where ML = Radiance Multiplicative Scaling Factor
AL = Radiance Additive Scaling Factor
Qcal = Quantized calibrated Digital Number (DN)
Oi = Correction factor, set at 0.29

This process is followed by converting TOA radiance to Bright-
ness Temperature (BT) using the equation:

BT =
K2

ln
(

K1
TOA

+ 1
) − 273.15 (7)

where K1, k2 = Thermal band-specific conversion constant

The resulting temperature, initially in Kelvin, is converted to
Celsius by subtracting 273.15.

Subsequent to this, NDVI was calculated using the formula:

NDV I =
NIR−Red

NIR+Red
(8)

with NIR and Red representing the spectral reflectance in the
near-infrared and red wavelengths, respectively. NDVI is cru-
cial for correcting emissivity in the LST calculation.

where NIR = Spectral reflectance in near-infrared wavelengths
Red = Spectral reflectance in the red wavelengths

The Proportion of Vegetation (Pv) was estimated from NDVI
through the equation:

Pv =

(
NDV I −NDV Imin

NDV Imax −NDV Imin

)2

(9)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-195-2024 | © Author(s) 2024. CC BY 4.0 License.

 
197



where NDV Imin = Minimum observed NDVI value
NDV Imax = Maximum observed NDVI value

The surface emissivity (ϵ) was calculated using the formula:

ϵ = 0.004× Pv + 0.986 (10)

where ϵ = Land Surface Emissivity
Pv = Proportion of Vegetation

Finally, LST was calculated using the equation:

LST =
BT

1 + (λ×BT/C2)× ln(ϵ)
(11)

where λ = Wavelength of emitted radiance
C2 = Second radiation constant, valued at 14,388 µm ·K
λ = 10.8 µm for Band 10
λ = 12.0 µm for Band 11

Finally, the dependent variable in this research, Urban Hot Spots,
are identified using the formula proposed by Guha et al. (2017):

LST > Tmean + 2× StdDev (12)

where Tmean = Mean LST
StdDev = Standard deviation of LST

Applying this formula, this study will pinpoint urban hot spots
in the research site.

3.3 Predicting Future UHS by CNN Model

The prediction process based on the CNN model can be divided
into four parts: data preparation, training, evaluation and pre-
diction. Firstly, regarding data preparation, this research pro-
cesses all variables, including LST, elevation, NDBI, NDMI,
NDVI, NDWI, population, and LULC data, into 8 uniformly
sized images of 2827 by 4000 pixels. The independent vari-
ables are subsequently transformed into a multi-dimensional ar-
ray, where each channel corresponds to an input variable, with
the exception of LULC, which utilizes three channels to repres-
ent its RGB values. The target variable, the UHS diagram, is
converted into one-hot encoded matrices for classification pur-
poses. Both independent and dependent data are split into train-
ing data (80 percent) and testing data (20 percent).

Next, the training data is fed into the model. The model ar-
chitecture consists of 6 layers. The first Conv2D layer has 20
filters to extract spatial features from the input data. The second
batch normalization layer normalizes activations from the pre-
vious layer. A dropout layer, setting a portion of inputs to zero
during training, helps prevent overfitting. Max pooling is used
to reduce the dimension of the input, followed by a Conv2D
transpose layer for upsampling. The final layer, a Conv2D layer
with 2 filters, classifies each pixel into one of two classes. The
model is updated using the Adam optimizer and the categor-
ical cross-entropy loss function, over 7 epochs and a batch size
of 10. Finally, the trained model is tested on the split testing

data and evaluated based on test accuracy. The test accuracy is
calculated as the percentage of accurately predicted classes for
pixels divided by the total pixels of the dependent variable, and
the formula is shown as follows:

Accuracy =
NumberofCorrectP ixels

TotalNumberofP ixels
(13)

After training the model to achieve sufficient accuracy, this re-
search feeds the model with projected independent variables to
predict future UHS. In this study, we use one projected vari-
able, the projected LULC and population of 2025, while keep-
ing other input variables unchanged, to assess how future LULC
and population trends may impact UHS.

4. Result

4.1 Retrieval of Independent Variables

Figure 3, 4, 5, 6, 7, 8, and 9 show the independent variables
of current situation, including elevation, NDBI, NDMI, NDVI,
NDWI, LULC, and population. All images are under the EPSG:
4326 - WGS 84 coordinate reference system (CRS). The el-
evation diagram indicates that high elevation areas in the re-
search are primarily concentrated in the central region. The
NDBI diagram reveals that green spaces and water bodies in
the central water catchment and western areas have a relatively
lower NDBI index than other built-up areas. Conversely, NDMI
shows that green spaces in central and western water catch-
ment areas have relatively higher values than built-up areas.
Similarly, the NDVI index is high for green spaces in cent-
ral and western areas, while water bodies and built-up areas
belong to low NDVI index ranges. Water bodies, like rivers,
have a relatively high NDWI index, as indicated in the diagram.
The population diagram, as denoted by the shade of color, re-
veals that most people are concentrated in the eastern, south-
eastern, and northern areas of the country. This observation
aligns with findings from other related research (Li et al., 2023).
The LULC diagram, as denoted by the legend, reveals the dis-
tribution of vegetation, built areas, trees, water bodies, crops,
and bare ground, which refer to infrastructure in the context of
Singapore.

Figure 12 and 13 and show the predicted independent variables,
including LULC of 2025 and population of 2025. The optimal
parameters set in the MOLUSCE model to predict LULC in-
clude: sample mode set to ’random’, the number of samples to
’1000’, method set to ’Artificial Neural Network (Multi-layer
Perceptron)’, neighborhood to ’1px’, learning rate to ’0.100’,
maximum iterations to ’1000’, and hidden layers to ’10’. After
training, the accuracy of the predicted LULC map of 2025 is
validated by a high Kappa value which is 0.85, indicating 85
percent correctness when comparing the predicted LULC map
of 2022 with the existing LULC map of 2022.

4.2 Retrieval of Dependent Variables

Figure 10 displays the retrieved LST values. In this research,
the range of LST values is divided into five categories, each
indicated by different colors. As shown in the diagram, blue
and green colors represent areas with higher LST, over 32.43
degrees Celsius, while orange and grey colors denote areas with
relatively lower LST values. UHS, depicted in Figure 11, is
retrieved based on equation 12 from the LST diagram. The
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Figure 3. Elevation of the research site based on DEM from
NASA. Unit: meters.

Figure 4. NDBI of the research site based on Landsat 8 satellite
imagery.

Figure 5. NDMI of the research site based on Landsat 8 satellite
imagery.

values of UHS are shown in binary format, meaning that a value
of 1 indicates the location of UHS, while a value of 0 indicates
that there is no UHS. According to the UHS diagram, these
spots are primarily concentrated in the eastern, northeastern,
and southwestern built-up areas currently.

Figure 6. NDVI of the research site based on Landsat 8 satellite
imagery.

Figure 7. NDWI of the research site based on Landsat 8 satellite
imagery.

Figure 8. LULC of the research site in 2022 based on Sentinel-2
imagery.

4.3 Predicted UHS

The CNN model, which is trained based on current UHS and
independent variables, has shown a test accuracy of 0.92 after
seven epochs of training. Due to the high test accuracy of the
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Figure 9. Current distribution of population of the research site.

Figure 10. LST of the research site based on Landsat 8 satellite
imagery. Unit: Celsius.

Figure 11. Current UHS of the research site.

trained model, this research uses the trained model along with
its parameters to predict the future UHS of 2025. Feeding the
predicted LULC of 2025 into the trained model, we generated
the projected UHS for 2025, depicted in Figure 14. Quantit-
atively, compared to the existing UHS, as shown in Figure 11,
where UHS occupies 0.95 percent of the entire research site,
the predicted UHS, as shown in Figure 14, occupies 2.24 per-

cent of the research site. From the image, it is observable that
most of the UHS remains concentrated in the current UHS loc-
ations. However, more UHS are predicted in the southern areas,
such as southwestern regions and Marina Bay, which were not
evident in the current UHS diagram.

Figure 12. Projected LULC of the research site in 2025.

Figure 13. Projected population distribution in 2025.

Figure 14. Predicted UHS of 2025 based on the CNN model.
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5. Discussion

5.1 Potential UHS in the Future and Related Implications

As mentioned in Section 4.3, by comparing the existing UHS
and projected UHS based on the CNN model, it is evident that
the main locations of concentrated UHS remain unchanged. Spe-
cifically, most of the concentrated UHS are located near Changi
Airport, and in the southwestern and northeastern parts of the
country. The new projected UHS indicates that with the pro-
jected population and LULC, some new UHS will appear in
the southwestern areas, Marina Bay area, and in northwestern
areas. Research has investigated potential methods to lower
LST and thus reduce UHS, and these measures could be po-
tentially implemented according to our projected UHS to mit-
igate UHS effectively. For example, increasing the coverage
of green spaces has been shown to be effective in lowering
LST and reducing UHI (Li and Zheng, 2023). Thus, based on
the predicted locations of UHS in this research, urban planners
and designers could increase the amount of urban green spaces
or implement other potential mitigation measures around pre-
dicted UHS areas to prevent the formation of UHS in advance.
However, while implementing or increasing green space cover-
age in areas like parks is feasible, it is not practical in land used
for specific industrial purposes. For instance, Changi Airport
or oil refining centers in Jurong Island might not be allowed to
renovated to incorporate more plants to reduce LST. In such in-
stances, alternative measures, such as transitioning to pavement
materials with high albedo values, could be adopted to reduce
LST (Tahooni et al., 2023).

5.2 Limitations

There are a few limitations to this research. Firstly, the study
identified seven independent variables related to LST values
based on a literature review to project UHS. Additional factors
could be added to the model to check if their inclusion im-
proves the model’s accuracy. Secondly, when projecting fu-
ture UHS, this research only updated the population and LULC
variables, and the rest of the variables were not projected. Fur-
thermore, master plans and future redevelopment plans from
governmental agencies should be considered when projecting
future values of variables. For example, the Greater Southern
Waterfront plan, which will redevelop 2,000 hectares of land
from Marina East to Pasir Panjang, will undoubtedly impact the
current LULC of the research site. In future research, we intend
to project future values for the remaining variables with greater
precision to enhance the robustness of the projected UHS scen-
arios.

6. Conclusion

This research employs multiple independent variables that were
identified by previous researchers as closely related to urban
heat, including elevation, NDBI, NDMI, NDVI, NDWI, pop-
ulation, and LULC, along with the dependent variable, exist-
ing UHS distribution, to train the CNN model for predicting
future potential UHS. By predicting LULC and population in
year 2025, this study is able to predict the projected distribu-
tion of UHS. According to the results, the majority of projec-
ted UHS locations are the same as the current UHS. New UHS
primarily appear in the southwestern areas, Marina Bay area,
and the northwest areas of the country. Based on these projec-
ted locations, preventive measures are proposed in the research
to mitigate UHS in advance. Compared to previous commonly

used prediction methods whose feature data is collected at vari-
ous points, such as weather stations (Liu et al., 2021; Alonso
and Renard, 2020) in research sites, this study collects feature
data from each pixel of images to predict values of UHS pixel
by pixel, continuously. Urban planners and decision-makers
could implement mitigation measures in advance at the newly
identified UHS predicted by the model, thereby preventing the
proliferation of UHS.
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driven assessment of surface urban heat islands in the city of
Zagreb, Croatia. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, V-3–2020, 757–764.

Kuang, W., Liu, Y., Dou, Y., Chi, W., Chen, G., Gao, C., Yang,
T., Liu, J., Zhang, R., 2014. What are hot and what are not in
an urban landscape: quantifying and explaining the land sur-
face temperature pattern in Beijing, China. Landscape Ecology,
30(2), 357–373.

Kumar, B. P., Babu, K. R., Anusha, B., Rajasekhar, M., 2022.
Geo-environmental monitoring and assessment of land degrad-
ation and desertification in the semi-arid regions using Landsat
8 OLI / TIRS, LST, and NDVI approach. Environmental Chal-
lenges, 8, 100578.

Li, J., Li, Z., Lin, J., Li, K., Feng, G., 2023. A GIS-based ap-
proach to assess elderly liveability in Singapore and to suggest
possible directions for optimization. Proceedings of Building
Simulation 2023: 18th Conference of IBPSA, BS 2023, IBPSA.

Li, L., Tan, Y., Ying, S., Yu, Z., Li, Z., Lan, H., 2014. Impact
of land cover and population density on land surface temperat-
ure: case study in Wuhan, China. Journal of Applied Remote
Sensing, 8(1), 084993.

Li, Q., Zheng, H., 2023. Prediction of summer daytime land
surface temperature in urban environments based on machine
learning. Sustainable Cities and Society, 97, 104732.

Liu, J., Zhang, L., Zhang, Q., Zhang, G., Teng, J., 2021. Pre-
dicting the surface urban heat island intensity of future urban
green space development using a multi-scenario simulation.
Sustainable Cities and Society, 66, 102698.

Mcfeeters, S. K., 1996. The use of the normalized difference
water index (NDWI) in the delineation of open water features.
International Journal of Remote Sensing, 17(7), 1425–1432.

Muhammad, R., Zhang, W., Abbas, Z., Guo, F., Gwiazdzin-
ski, L., 2022. Spatiotemporal Change Analysis and Prediction
of Future Land Use and Land Cover Changes Using QGIS
MOLUSCE Plugin and Remote Sensing Big Data: A Case
Study of Linyi, China. Land, 11(3), 419.

Pearsall, H., 2017. Staying cool in the compact city: vacant
land and urban heating in Philadelphia, Pennsylvania. Applied
Geography, 79, 84–92.

Purevdorj, T., Tateishi, R., Ishiyama, T., Honda, Y., 1998. Re-
lationships between percent vegetation cover and vegetation in-
dices. International Journal of Remote Sensing, 19(18), 3519–
3535.

Rajagopal, P., Priya, R. S., Senthil, R., 2023. A review of re-
cent developments in the impact of environmental measures on
urban heat island. Sustainable Cities and Society, 88, 104279.

Tahooni, A., Kakroodi, A., Kiavarz, M., 2023. Monitoring of
land surface albedo and its impact on land surface temperature
(LST) using time series of remote sensing data. Ecological In-
formatics, 75, 102118.

Taloor, A. K., Manhas, D. S., Chandra Kothyari, G., 2021. Re-
trieval of land surface temperature, normalized difference mois-
ture index, normalized difference water index of the Ravi basin
using Landsat data. Applied Computing and Geosciences, 9,
100051.

Voogt, J., 2008. How researchers measure urban heat islands.
Unpublished article or working paper.

Wang, H., Yang, J., Chen, G., Ren, C., Zhang, J., 2023. Ma-
chine learning applications on air temperature prediction in the
urban canopy layer: A critical review of 2011–2022. Urban Cli-
mate, 49, 101499.

Yuan, F., Bauer, M. E., 2007. Comparison of impervious sur-
face area and normalized difference vegetation index as indic-
ators of surface urban heat island effects in Landsat imagery.
Remote Sensing of Environment, 106(3), 375–386.

Zeng, L., Lindberg, F., Zhang, X., Pan, H., Lu, J., 2023. Road
surface temperature evaluated with streetview-derived paramet-
ers in a hot and humid megacity. Urban Climate, 51, 101585.

Zha, Y., Gao, J., Ni, S., 2003. Use of normalized difference
built-up index in automatically mapping urban areas from TM
imagery. International Journal of Remote Sensing, 24(3), 583–
594.

Zhang, Y., Odeh, I. O., Han, C., 2009. Bi-temporal character-
ization of land surface temperature in relation to impervious
surface area, NDVI and NDBI, using a sub-pixel image ana-
lysis. International Journal of Applied Earth Observation and
Geoinformation, 11(4), 256–264.

Zhu, W., Yuan, C., 2023. Urban heat health risk assessment in
Singapore to support resilient urban design — by integrating
urban heat and the distribution of the elderly population. Cities,
132, 104103.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-195-2024 | © Author(s) 2024. CC BY 4.0 License.

 
202




