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Abstract 
 
With the evolution of satellite video technology, the domain has garnered increasing attention. Concurrently, advancements in deep 
learning have yielded numerous outcomes in target detection. This paper introduces a novel method for detecting moving targets, 
offering a broader detection range compared to traditional satellite video techniques, facilitating orbital target recognition from dual 
panchromatic image strips. Our experimental setup on the Taijing-IV 01 satellite, launched on February 27, 2022, successfully acquired 
two image strips separated by one second. These strips contain speed and directional information of moving objects, extractable through 
the frame differencing technique. We propose combining frame differencing with lightweight deep learning for target detection, 
extracting regions of interest (ROIs) to focus on areas with potential moving targets. This approach reduces the workload of whole-
image target detection, decreasing data processing volume by 89%. By optimizing the YOLOv8 network and using techniques like 
feature map fusion of low-level and high-resolution features, we enhance sensitivity to small targets. Consequently, the model size is 
reduced by 79%, the mean Average Precision (mAP) increases by approximately 1.8% and 4.5%, and detection speed rises by 26%. 
This method introduces a new paradigm in remote sensing data services, facilitating rapid acquisition and real-time transmission of 
positions and image information of moving targets to the ground. This significantly reduces bandwidth requirements for transmitting 
remote sensing information, presenting a novel strategy for data acquisition and processing in large-scale Earth observation systems 
and geoscientific applications. 
 
 

1. Introduction 

Moving target detection is one of computer vision's most popular 
research directions. It is usually used as a pre-processing step of 
advanced visual tasks such as target detection, target tracking, 
and pose estimation to identify the moving target region of 
interest or focus in the video. It is widely used in the military, 
smart city, intelligent transportation, Self-driving, and many 
other fields, making moving target detection more attractive. In 
recent years, the rapid development of space technology and the 
optimization of sensor performance have driven the vigorous 
development of space remote sensing. With the development of 
low-Earth orbit satellites, video satellites with the ability to 
observe continuously have attracted more and more attention 
from experts and scholars. Moving target information extraction 
for satellite images has become a hot topic in scholars' research. 
High-resolution satellite images cover a wide range of areas and 
contain rich information, which can effectively monitor traffic 
conditions of multiple sections simultaneously, saving labour 
and cost. The extensive coverage of satellite remote sensing 
imagery provides the ability to analyse many vehicle movements, 
which is especially suitable for areas lacking cameras. Further, 
satellites for real-time moving target detection in orbit will 
provide more efficient and automated services that will 
significantly facilitate the development of applications in areas 
such as military reconnaissance and intelligent transportation. 
 
Optical and synthetic aperture radar (SAR) data are two common 
types of remote sensing data. Regarding target detection, 
SAR/GMTI can observe moving targets in any weather and 

throughout the day. Increasing the length of the radar antenna or 
the number of satellites can achieve a more extended observation 
baseline, making it more suitable for slow-moving target 
detection. However, the above approach raises the issue of 
increased manufacturing cost and difficulty. Optical remote 
sensing images can use the rich spectral texture information in 
radiation features to achieve identification, classification, and 
interpretation. Many scholars have used satellite high-resolution 
multispectral and SAR images to detect, track and estimate the 
velocity of moving targets. These studies cleverly exploited the 
time delay between imaging sensors (typically less than 0.3 s) to 
detect the difference between two images and achieve moving 
target detection. However, this approach can only extract fast 
targets, and the detection and matching methods are mostly 
semi-automatic and require highly subjective manual parameter 
settings. Obtaining instantaneous dynamic information of targets 
is challenging for single-channel panchromatic images with 
relatively high resolution but lacking temporal differences. It can 
only be used to study target recognition algorithms. Video data 
from satellites such as SkySat and Jilin-1 have solved the 
problem of continuous observation of moving targets. However, 
on the one hand, video capture requires the satellite to perform 
gaze maneuvers, which limits the imaging range; on the other 
hand, redundant frames of video data will increase storage 
consumption and make real-time processing and transmission 
more difficult. 
 
Although a series of previously mentioned moving target 
detection studies have achieved some superior results in slow-
moving target detection, the following challenges still exist. 
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(1) Multispectral or hyperspectral satellite sensors are designed 
to image synchronously to ensure fusion accuracy. However, a 
short time difference for images means that detecting slow-
moving targets is complicated. 
(2) In contrast to panchromatic images, spectral images often 
provide lower resolution, which makes small target detection 
more challenging. 
(3) Satellite video covers a fixed area with a large amount of data, 
which puts pressure on data storage and internal transmission. 
(4) On-orbit processing payloads process remote sensing data in 
nearly real-time, creating high demands on processing efficiency. 
Directly transplanting the target detection algorithm of industrial 
security camera video to the on-orbit hardware platform is 
unsuitable because the power consumption and performance of 
the on-orbit hardware platform are limited. Inappropriate 
algorithms would consume too many hardware resources. 
 
We notice that target detection algorithms are widely used in 
industrial security videos. At the same time, a large number of 
researchers have carried out a lot of improvement work for both 
efficiency and accuracy. Comparing industrial and on-orbit 
environments, we find that industrial target detection algorithms 
still need to be developed for the embedded environment and 
model lightweight and efficiency enhancement. These problems 
inspired us to combine the dual-linear image frame difference 
method and target detection algorithm with improving the 
efficiency and accuracy of target detection and making it more 
suitable for the on-orbit processing environment limitations. 
 
The dual-strip imaging system principle employed in this study 
involves the CMOS sensor within the satellite camera capturing 
dual-strip images through two open window regions. With 
thousands of lines separating these windowed areas on the 
CMOS, the resulting imaging time delay between the two strips 
averages approximately 1 second. As a result, the two strips 
contain diverse spatial information about the same feature, 
facilitating the generation of an initial saliency map essential for 
moving target detection. Subsequently, during the satellite's 
push-broom working mode, the entire strip undergoes target 
detection and classification using a YOLO model accelerated by 
FPGA and GPU. Throughout this process, image slices derived 
from the saliency map significantly reduce the data input 
required for the YOLO model. In the context of on-orbit 
processing tasks, the hardware and software requirements are 
predominantly focused on efficiency and resource utilization due 
to the significant cost escalation associated with increased 
hardware weight, size, and power consumption. Consequently, 
considering the frame difference method for completing data 
processing tasks is a more practical option for dual-strip images. 
However, it is imperative to note that the selection of thresholds 
during processing significantly impacts the recall and false alarm 
rate of moving target detection. Moreover, in comparison to 
satellite remote sensing, the reduction in target size to a few tens 
of pixels results in decreased detection accuracy. Additionally, 
the hundred-fold increase in data volume of remote sensing 
images compared to video frame images poses a considerable 
challenge to hardware design. This paper proposes an on-orbit 
moving object detection method for dual-strip imagery, 
integrating the frame difference method and deep learning, to 
achieve the detection and classification of moving targets with 
hardware acceleration design. Leveraging saliency maps 
generated from dual-strip images significantly reduces the data 
input to the model while enhancing efficiency through 
preprocessing and first-level data production by filtering 
valuable regions. 
 

The results of this paper have been successfully validated in orbit 
using a payload named Frog Eyes. The Taijing IV 01 satellite 
was launched on February 27, 2022, carrying the Frog Eyes 
payload. Following the successful launch of this mission, the 
payload captured panchromatic dual-strip images to achieve full-
range moving object detection. On-orbit processing was utilized 
instead of the traditional process, which typically involves 
mission planning, satellite imaging, satellite-to-ground data 
transfer, and ground processing. The time taken from raw data 
to target information, as well as the volume of resulting data 
transfer, determine whether remote sensing image target 
detection can meet the requirements of applications, such as 
military and intelligent transportation. 
 

2. Related Work 

2.1 Moving Target Detection Based on Multi-frame Image 

The research of moving target detection in satellite remote 
sensing images is mainly divided into moving target recognition 
based on single-frame images and moving target detection based 
on multi-frame sequence images. Most research on moving 
target detection focus on vehicle detection, while the researches 
on ships and aircraft are relatively few. When researchers started 
to propose using satellite remote sensing imagery for moving 
target detection, they mainly chose QuickBird, WorldView, and 
high-resolution SAR radar data for their work. Research on 
moving target detection in single-frame images has been 
abundant, and regular algorithms include threshold segmentation, 
template matching, and object-oriented and artificial neural 
networks. Motion target detection methods for multi-frame data 
are inherited from traditional video target detection algorithms, 
with several improved versions. Commonly used algorithms 
include the background difference method, optical flow method, 
and inter-frame difference method. The inter-frame difference 
algorithm has low complexity, small computational effort, and 
is insensitive to image exposure changes so that it can be applied 
to target detection in most scenes. The inter-frame difference is 
a moving target detection method based on the difference 
operation of sequential images of two or three consecutive 
frames. Researchers proposed a symmetric differential moving 
target detection algorithm based on local clustering 
segmentation (Cao et al., 2015). This algorithm, when applied to 
infrared aerial sequence images, can detect relatively complete 
"slow" moving targets with small motion changes between 
adjacent frames. 
 
A proposal was made to employ the three-frame difference 
method for detecting moving targets with morphological 
constraint processing, yielding commendable detection results 
(Yu, 2016). The algorithm was subsequently embedded into 
DSP for real-time processing. Serving as an enhanced version of 
the two-frame differencing method, the three-frame differencing 
method distinguishes the front and back frames from the 
reference frame. It sets a threshold to filter regions containing 
significant values from the result data, thereby reducing the false 
alarm rate of detection results. Subsequently, the background 
modeling method was proposed to obtain the deviation area of 
the moving target, denoise the target based on actual area 
constraints, improve the detection rate, and enable satellite video 
moving target detection. The algorithm demonstrated a higher 
detection rate compared to the earlier three-frame difference 
method. In 2018, a target detection algorithm was proposed that 
fuses background differencing with inter-frame differencing, 
combining the common region of motion target changes with the 
results extracted by the background difference method. This 
method removes background edge noise and single-point noise 
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to enhance detection accuracy and quality (Yuan et al., 2018). A 
deep frame difference convolutional neural network (DFDCNN) 
was designed. The network comprises DifferenceNet and 
AppearanceNet, capable of detecting moving objects in complex 
scenes. Preservation of multi-scale spatial information through 
multi-scale feature map fusion and progressive upsampling 
improves the sensitivity of DFDCNN networks to small targets 
(Ou et al., 2020). In 2021, a tracking algorithm of scale adaptive 
kernel correlation filter combined with a frame difference 
method was proposed to address the unsatisfactory tracking 
effect of kernel correlation filter in complex scenes (Liu et al., 
2021). An improved intelligent video tracking and detection 
algorithm was also proposed to enhance ordinary video moving 
target tracking technology in real time (Liu et al., 2021). To 
reduce computational effort, the frame difference method is used 
to capture the region of the moving target. Then, the optimal 
estimation points matching technique and the uniform flow 
technique are utilized to construct the optical flow field for target 
detection and tracking. 
 
2.2 Satellite Image Target Detection Based on Deep 
Learning 

Deep learning techniques are now achieving great success in 
computer vision. A convolutional neural network can 
automatically learn features, extract rich target features for 
subsequent detection, and avoid the difficulty of feature 
selection with good detection performance (Qi, 2020). The 
YOLO series is the most popular target detection algorithm, but 
there are still many problems transferring it to remote sensing 
image target detection. A large amount of remote sensing image 
data and the broad coverage area result in smaller aircraft, ships, 
and vehicles occupying fewer pixels on the image. A single tiny 
target contains little pixel information. These small targets 
extract minimal practical information in target detection, and the 
detection recall rate is greatly affected. As for small target 
feature extraction by mesh convolutional neural networks, many 
models usually go through several sampling operations to 
increase the perceptual field and continuously reduce the 
dimensions to shrink the feature map and make the semantic 
information less. Sometimes the tiny targets are severely lost 
after the dimensionality reduction operation and cannot even be 
effectively transmitted to the target detector (Liang et al., 2021). 
 
2.3 On-orbit Processing of Remote Sensing Satellite Image 

With the continuous development of satellite technology, the 
types of remote sensing data have become more diverse, and 
users' needs have become more complex. The traditional satellite 
data acquisition and processing mode can no longer meet the 
high-efficiency information requirement of users. With the 
advent of continuous observation data such as satellite video, the 
data collected by the satellite increases several times per second, 
which is a massive challenge for satellite data storage and 
transmission. Based on this, it is essential to study onboard 
processing algorithms, which extract and transmit specific 
information and regions of interest from the original images and 
no longer transmit the raw data to the ground. Currently, China 
has several remote sensing satellites with on-orbit processing 
capability in space, including "Space Experiment 1", launched 

in September 2015, and "Tianzhi 1", launched in November 
2018. Moreover, the launch of the "Luojia III" satellite with on-
orbit processing capability is also on the agenda (Data and 
Application Centre for High Resolution Earth Observation 
System in Hubei, 2019). The Beijing Institute of Technology 
proposed the on-orbit real-time processing technology of space 
remote sensing for SAR satellite processing, strip mode imaging 
processing, and target detection and positioning (Liu, 2016). The 
Computer Network Information Centre of the Chinese Academy 
of Sciences designed a distributed and networked on-orbit 
processing system of space-based information (Yue et al., 2020). 
 

3. Proposed Method 

This paper presents a method to detect moving targets using two 
panchromatic strip images from a particular camera. The remote 
sensing camera has a built-in multimodal super COMS designed. 
The camera can acquire strip images and read and take pictures 
with flexible on-chip windowing. In Figure 1, we design two 
areas on the chip thousands of rows apart to take pictures of the 
Earth's surface and work in push-broom mode to acquire two 
panchromatic strip images with one-second intervals. The 
subsatellite ground resolution and the number of rows between 
open window regions determine this time difference. Thus, two 
images cover the same area but are imaged at different moments 
to acquire dynamic information from each time. Considering the 
characteristics of MS-COMS imaging, the panchromatic dual-
strip satellite image moving target detection solution proposed 
in this paper accommodates both on-satellite and ground 
processing. The on-orbit processing module acquires the 
information and image slices of the moving target, which can 
transmit only a tiny amount of information during the satellite-
ground transmission, then reproduce the features of the striped 
image by reconstruction algorithm on the ground. The on-orbit 
processing module mainly includes the following functions.  
 

 
 

Figure 1. Schematic diagram of acquiring dual-band images of 
moving targets 

 
(1) Extraction of the suspected target area;  
(2) Classify and identify the suspected target;  
(3) Moving target matching and motion parameter extraction.  
This paper will focus on the part of in-orbit processing. Figure 2 
shows the Technical Flow. 
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Figure 2. The flow of on-orbit moving target detection. 
 

3.1 Extraction of Suspected Target Area 

Since the signal response, image element damage, and dark 
current of the two CMOS regions are not precisely the same. It 
is necessary to perform a series of image pre-processing process 
to ensure the confidence of the motion target detection results. 
The image pre-processing process generally includes relative 
radiation correction, systematic geometric correction, and image 
registration to eliminate radiation and geometric errors. After 
pre-processing, the frame difference method can be selected to 
extract suspicious target regions from a pair of strip images. The 
frame difference method is the most commonly used method to 
detect inter-frame variations. It can compare the difference 
between two frames by pixel value in grayscale and then 
determine whether there is a moving target. The moving object's 
position at both moments can be obtained by cross-subtracting 
the images of the two moments. Equation 1 shows the theoretical 
formula of the frame difference method used in this paper. 
 

𝐷 ( , ) = 𝑓(𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)

𝐷 ( , ) = 𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)
  (1) 

 
In the above equation, (𝑥, 𝑦)  is pixel position in the image, 
𝐷 ( , )  is the pixel value of first frame image (T1) after 
calculation, 𝐷 ( , ) is the pixel value of second frame image (T2) 
after calculation, 𝑓 (𝑥, 𝑦) is the pixel value of T1, 𝑓 (𝑥, 𝑦) is 
the pixel value of T2. 
 
After getting the frame difference results, choose a suitable 
threshold to binarize the frame difference results and further 
obtain the significance map. The foreground region in the 
saliency map indicates the significant grayscale difference 
between images during frame difference calculation, which can 
be regarded as the moving target region. The other regions are 
filled as a background. During processing, a threshold value 
needs to be determined to ensure a high detection rate, and this 
value can be set by experience and updated on-orbit by a 
command. Targets in the saliency map can be enhanced by a 
morphological closure operation, where target pixel expansion 
is followed by erosion. Figure 3 shows the schematic diagram of 
the morphological closure operation. 

 
 

Figure 3. The schematic diagram of closed operations in 
morphology. 

 
Subject to slow target speed or low image alignment accuracy 
and brightness difference images, boundary overlap between 
targets needs attention. After completing the inter-frame 
difference calculation, a threshold needs to be determined to 
binarize the image and project it into the X-Y plane, a value 
based on a priori knowledge of the minimum possible brightness 
of the target. Small holes or cracks appear within a single target 
in the saliency map. A morphological region growth operation 
fills these small holes and cracks, and then an erosion operation 
is performed on the swollen image to restore the original shape. 
The process introduces morphological information to achieve 
noise filterings, such as aspect ratio and the average of the gray 
value of the foreground. Linear noise, such as ground object 
boundaries, and single point noise, such as streaks, are removed. 
 
3.2 Classify and Identify Suspected Target 

To ensure the recall rate of target detection, Choosing a threshold 
value as small as possible during the frame difference method to 
obtain the saliency map is very important. As the two ends of the 
scale, this also has the disadvantage of generating a higher false 
alarm rate. We use a deep learning target detection algorithm to 
perform secondary recognition of the region confirmed by the 
saliency map and detect moving targets from the region, which 
can significantly reduce the false alarm rate. At the same time, it 
effectively solves the problem of incomplete target outline in 
saliency maps, and the target recognition on the original map can 
guarantee the integrity of the target outline. In order to reduce 
the data input to the model, it makes conditional judgments on 
the slice data. It selects only those slices containing the target 
location in the frame difference saliency map, which is also 
recorded as POI information for subsequent processing. Each 
slice is 512 pixels long and wide, and the model only reads the 
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slice containing the target, which can significantly reduce the 
amount of data processed by the model and improve real-time 
performance. 
 
YOLO(You Only Look Once) have developed rapidly, merging 
target determination and target identification and regressing 
directly in the output layer to generate detection frames and 
belonging classes, with excellent performance in terms of 
accuracy and efficiency. The YOLO network inference 
computation includes many convolutional operations, which are 
time-consuming and have a strong optimization potential. To 
address the issues of incomplete targets and increased false 
alarms during the moving target detection process, a lightweight 
motion target classification model based on deep learning is 
proposed to authenticate the results of the first stage. The 
algorithm is inspired by the YOLOv8s target detection model, 
with optimized capabilities for detecting small targets. Within 
the network architecture, a specialized prediction head for 
detecting tiny objects is added, which combines low-level, high-
resolution feature maps to enhance sensitivity to small targets. 
Although this method increases computation and storage costs, 
it mitigates the negative impact of target scale variations. In 
terms of efficiency, model volume optimization and inference 
efficiency improvement are achieved through sparse training and 
pruning methods. 
 

 
 

Figure 4. Network structure with improved optimization for 
small target detection 

 
3.3 Estimate Motion Parameters of Target 

The saliency map indicates the target's position at two moments, 
and by matching the features of the target at different moments, 
the paired target can estimate its motion parameters. It also needs 
to build a database of motion information of suspicious targets 
in two images separately, determine which two objects are the 
same based on feature information, and match them. 
 
According to the target features in the label of the suspected 
target area obtained by the deep learning target detection, the 
following determination indicators are formulated: 
(1) Type: Target type from target recognition box type. 
(2) Target distance: The distance between two target positions. 
The centre of the outer rectangle is used to calculate the distance, 
and the upper limit is set according to the physical limit speed of 
different types of targets. It is assumed that the target moves with 
a constant velocity in 1s. 
(3) Diff-area: in the satellite image, the target boundary is fuzzy, 
and the length and width of the moving target have about 1 pixel 
error. 
 

(w − 1)(h − 1) ≤ Area ≤ (w + )(h + )     (2) 

 
In the formula, ℎ  and 𝑤  are the length and width of the object 
at T1, 𝐴𝑟𝑒𝑎  is the area of object at T2. 
 
(4) The similarity of targets: The target detection yields two sets 
of individual target masks and associated target parameter 
information, including centroid position, area, mean grayscale, 
and standard deviation. To match the moving targets at two 
moments, the grayscale information of the moving targets at the 
first moment is utilized as much as possible to correctly match 
the moving targets in the second moment, forming a list of 
matched targets. The extracted information of the two sets of 
moving targets is regarded as two-dimensional lists, and the 
Euclidean distance is introduced to measure the similarity of 
parameter vectors between the two lists. The rationality of this 
method has been extensively discussed in many studies. A 
smaller Euclidean distance indicates a greater similarity in 
grayscale distribution between two moving targets, while a 
larger distance indicates greater differences between them. 
 

⎩
⎪
⎨

⎪
⎧ 𝐴 = 𝐴 , 𝐴 , 𝐴

𝐵 = 𝐵 , 𝐵 , 𝐵

𝐷 (𝐴，𝐵) = (𝐴 − 𝐵 ) + 𝐴 − 𝐵 + (𝐴 − 𝐵 )

 (3) 

 
Equation (3) represents the similarity between the feature 
vectors of the moving targets at time t and t+1. A denotes the 
feature vector of the target at time t, with attributes A , 𝐴 , 
and A  representing the area, average grayscale value, and 
standard deviation of the pixel region, respectively. B denotes 
the feature vector of the target at time t+1, with attributes  B , 
B  and B  representing the area, average grayscale value, 
and standard deviation of the pixel region, respectively, 
𝐷 (𝐴, 𝐵) represents the similarity between feature vectors A 
and B described by the Euclidean distance. 
 
The targets at the two moments are calculated according to the 
above indicators, and the successfully matched targets are 
entered into the matching information base. The algorithm 
deletes the object from the database when the best match occurs 
to prevent one-to-many matches in the results. After successfully 
matching the target, it is necessary to calculate its displacement, 
velocity and direction. The target displacement distance 
determines the velocity. The displacement can be estimated 
based on the position of the same target at two moments (X , Y ) 
and (X , Y ) and the image resolution 𝑅. Equation (4) below 
shows the process. The direction of motion 𝜃 is expressed as the 
angle between the displacement vector and the north direction. 
Judging the direction of motion requires calculating the position 
(x , y ) and (x , y ) of the same target at two moments. Formula 
(5) describes the calculation method. 
 

𝐷 = 𝑅 × (𝑋 − 𝑋 ) + (𝑌 − 𝑌 )     (4) 
  

𝜃 =

⎩
⎪⎪
⎨

⎪⎪
⎧arctan

| |

| |
                    𝑥 > 𝑥 , 𝑦 > 𝑦

𝜋 − arctan
| |

| |
            𝑥 > 𝑥 , 𝑦 < 𝑦

𝜋 + arctan
| |

| |
           𝑥 < 𝑥 , 𝑦 < 𝑦

2𝜋 − arctan
| |

| |
          𝑥 < 𝑥 , 𝑦 > 𝑦

      (5) 
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4. Experiments 

4.1 Classify and Identify Suspected Target 

To validate the effectiveness of our method, we conducted 
experiments using dual-strip images captured by the Taijing-IV 
01 satellite in orbit, with a spatial resolution of 2 meters per pixel. 
The imaging area was near the Port of Los Angeles, USA, and 
the imaging time was August 2022. The experimental setup 
utilized the NVIDIA AGX Xavier development board 
computing platform, which includes an NVIDIA Volta 
architecture GPU, an 8-core ARM64 CPU, 512 CUDA cores, 
and 64 Tensor cores. The experiment area is conducted over the 
area of the Port of Los Angeles in the United States, with the 
image dimensions of 5000×5000 pixels. The images contain 
numerous small and dim targets. Figure 5 shows a binary image 
with highlighted pixels as primary suspected targets. When 
cropping the ROI in the original image, there exist two methods, 
target-centred cropping, and grid cropping. The former method 
requires traversing the distances between targets and classifying 
them into discrete and aggregated types based on the distance 
between the geometric centres of each target. At each iteration, 
the current benchmark targets will be classified, and targets with 
a Euclidean distance of fewer than 64 pixels from the benchmark 
will be considered a cluster. In contrast, isolated benchmark 
targets without neighbours are considered discrete. In this way, 
there are slices containing a single target and those containing 
multiple targets. The grid cropping algorithm divides the map 
frame into square grids of 512 pixels, determines whether there 
are suspected targets in each grid separately, and crop out the 
grid areas containing suspected targets. As a comparison, target-
centred cropping retains fewer grids and has a higher 
compression ratio but is high computationally. On the other side, 
grid cropping produces redundant grids to avoid missing targets 
on the grid divider, thus generating a more significant number of 
grids with lower compression ratios, but the computerization is 
small. We chose the grid cropping method with higher efficiency 
to better accommodate the hardware performance of in-orbit 
processing. 
 

 
 

Figure 5. The result of moving target detection by frame 
difference method. (a) and (b) are images for testing, (c) and 

(d) are saliency map for frame difference and denoising results. 

The applicability of this method was subsequently tested on 
images from the Taijing-IV 01 satellite with dimensions of 
5000×5000 pixels, as shown in Figure 6. This is crucial for 
accurately interpreting the results. Table 1 presents quantitative 
statistics, including the total number of suspicious targets, the 
number of grid slices, the number of ROI slices, and the 
percentage of data reduction. Compared to grid cropping and 
target-centred cropping, the data volume of the two frames after 
slicing was effectively reduced, with reductions of 36%, 32%, 
10%, and 7%, respectively. After cropping, the data input to the 
target recognition model decreased, improving the real-time 
performance of the algorithm. 
 

Table 1. Experimental results of cropping. 
    

 
(a)   (b) 

 
Figure 6. According to the location of the grid, the results of 

stitching the cropped regions of interest (ROIs) are shown. (a) 
and (b) represent slices of the moving target ROIs in the first 

and second frames, respectively. 
 
4.2  Moving Target Detection Based on YOLO 

We optimized the YOLOv5s and YOLOv8s networks for small 
object prediction heads and sparse pruning training, and 
compared the networks before and after optimization. The 
results, as shown in Figure 6, on the dataset collected by the 
Taijing-IV 01 satellite, indicate that our models 
YOLOv5s+mini+prune and YOLOv8s+mini+prune achieved 
desirable results across various metrics. In Table 2, for 
YOLOv5s, the mAP accuracy improved by 1.6% and 5.5% 
respectively compared to the original network before 
optimization; FPS increased by 56%; the model size decreased 
by 45.4%, and the parameter count reduced by 70.2%. As for 
YOLOv8s, the mAP accuracy improved by 1.8% and 4.5% 
respectively compared to the original network before 
optimization; FPS increased by 26%; the model size decreased 
by 79%, and the parameter count reduced by 80.1%. This 
enhancement in sensitivity to detecting small objects also led to 
an improvement in target detection efficiency. 
 
 

 grids 
suspected 

targets 
ROI 

ROI 
/grids 

ROI/ 
suspected 

targets 

Frame1 100 353 36 0.36 0.102 

Frame2 100 422 32 0.32 0.071 
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Figure 7. Object detection results based on YOLO 

 
4.3 Results of Estimate Motion Parameters 

In the motion target detection algorithm for dual-strip satellite 
images presented in this paper, the original image data was first 
cropped to extract suspected target regions before deep learning-
based target detection. When performing the target algorithm 
based on object feature matching, mapping all target information 
back to the original image based on the cropping results before 
matching may lead to a decrease in algorithm efficiency. Since 
the time difference between the two images is only 1 second and 
the distance of target motion is minimal, the majority of targets 
remain in the same grid position before and after motion. To 
address this characteristic, improvements were made to the 
target tracking algorithm based on object feature matching. It 
prioritizes block-level target matching, followed by matching 
failed targets across the entire image, as illustrated in Figure 8 to 
calculate motion parameter results.

 

Table 2. Performance comparison small target prediction head and sparse pruning 
 

 
Figure 8. On-orbit processing results of Taijing-Ⅳ 01 satellite, including the original images acquired by the satellite, pre-processing 

results, frame difference results, cropping and target detection results, target matching, and motion parameter estimation results. 
 

Based on calculations, the speed of the vessel is approximately 
16 m/s, consistent with the typical cruising speed of a speedboat. 
The direction, clockwise from true north, forms an angle of 312   
degrees. Its position is at approximately 118.116 degrees west 
longitude and 33.692 degrees north latitude. It is speculated that 
the vessel is heading towards the nearby port of Los Angeles for 
docking. 
 

5. Conclusion 

This paper's proposed on-orbit moving target detection and 
correction method improve target detection accuracy and 
efficiency under satellite energy limitations. In this approach, 
there are positive interactions between the different steps; 
YOLO target detection reduces the false alarm rate, while the 
ROI cropping improves the efficiency of deep learning target 
detection. The extraction of regions of interest (ROIs) from the 
motion target area significantly reduces the amount of detection 
data, with reductions of 63% and 89% compared to grid slicing 

Model mAP@0.5 mAP@0.5:0.95 FPS Model Size(M) Parameter  

YOLOv5s 0.926 0.493 25 14.1 7046599 

YOLOv5s+mini 0.931 0.457 18 15.5 7192244 

YOLOv5s+mini+prune 0.941 0.520 39 7.7 2101396 

YOLOv8s 0.935 0.598 35 22.5 11166544 

YOLOv8s+mini 0.944 0.622 29 21.7 10627228 

YOLOv8s+mini+prune 0.952 0.625 44 4.7 2218145 
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and centre cropping methods, respectively. Through 
enhancements to the YOLOv8 network, we significantly 
improve the detection capability of small targets in satellite 
images. Notably, the model size is reduced by 79%, while the 
mean Average Precision (mAP) increases by approximately 1.8% 
and 4.5%, and the detection speed rises by 26%. 
 
 The satellite automatically detects the targets on-orbit and 
acquires slice images of the target, which makes the transfer of 
entire stripe data unnecessary and dramatically improves the 
overall efficiency of the satellite remote sensing information 
application. However, there are still some shortcomings in the 
whole research work, and the problem of incomplete boundaries 
still exists. In our future work, we will continue to improve the 
algorithm to balance efficiency and performance as satellite 
equipment. Moreover, to solve the problem of incomplete target 
boundary and improve the accuracy of target matching. 
Ultimately, the satellite will provide more data that will allow us 
to improve target detection accuracy by labeling more targets, 
such as ships, aircraft, and other moving targets. It will also 
provide future researchers with a richer moving target data set. 
 
 

References 

Cao, Y., Wang, G., Yan, D., & Zhao, Z., 2015. Two algorithms 
for the detection and tracking of moving vehicle targets in aerial 
infrared image sequences. Remote Sensing, 8(1), 28. 
 
Data and Application Centre for High Resolution Earth 
Observation System in Hubei, 2019. Data and application 
service of Luojia-1 01 satellite. Satellite Application, (5), 26-29. 
 
Fiaz, M., Mahmood, A., Javed, S., & Jung, S. K., 2019. 
Handcrafted and deep trackers: Recent visual object tracking 
approaches and trends. ACM Computing Surveys (CSUR), 52(2), 
1-44. 
 
Kang, J. Z., Wang, G. Z., He, G. J., Wang, H. H., Yin, R., Jiang, 
W., & Zhang, Z., 2020. Moving vehicle detection for remote 
sensing satellite video. J. Remote Sens, 24, 1099-1107. 
 
Liang, H., Wang, Q., Zhang, Q, Li, C., 2021. Small object 
detection technology: a review. Computer Engineering and 
Applications, 57(01), 17-28. 
 
Liu, X. N., 2016. Key technologies in on-board real-time 
imaging processing for spaceborne SAR. Beijing Institute of 
Technology, Beijing. 
 
Liu, Y., Zhang, H., Yang, J., et al, 2021., A new algorithm of 
moving target tracking and detection based on optical flow 
techniques with frame difference methods. Electronic Design 
Engineering. 
 
Liu, Z., Chen, Y., Cheng, J., 2021. Scale adaptive kernel 
correlation filter tracking combined with frame difference 
method. Computer Technology and Development, 31(2), 5. 
 
Luo, Y., Liang, Y., Ke, R., & Luo, X., 2018. Traffic flow 
parameter estimation from satellite video data based on optical 
flow (No. 18-02345). 
 
Ming, D. P., Luo, J. C., Shen, Z. F., Wang, M., & Sehng, H., 
2005. Research on information extraction and target recognition 
from high resolution remote sensing image. Cehui Kexue/ 
Science of Surveying and Mapping, 30(3), 18-20. 

 
Ou, X. F., Yan, P. C., & Wang, H. P., 2020. Research of moving 
object detection based on deep frame difference convolution 
neural network. Acta Electron. Sin, 48(12), 2384-2393. 
 
Qi, L., 2020. Research of ship detection in SAR images based on 
depth features. University of Electronic Science and Technology 
of China. 
 
Ren, S., He, K., Girshick, R., & Sun, J., 2015. Faster r-cnn: 
Towards real-time object detection with region proposal 
networks. Advances in Neural Information Processing Systems, 
28. 
 
Sharma, G., Merry, C. J., Goel, P., & McCord, M., 2006. Vehicle 
detection in 1‐m resolution satellite and airborne imagery. 
International Journal of Remote Sensing, 27(4), 779-797. 
 
Wang, N., Shi, J., Yeung, D. Y., & Jia, J., 2015. Understanding 
and diagnosing visual tracking systems. IEEE International 
Conference on Computer Vision, (pp. 3101-3109). 
 
Yang, C., Zhou, C., 2019. Review of moving target detection 
algorithms for UAV video images. Chinese Journal of Liquid 
Crystals and Displays, 34(1), 98-109. 
 
Yu, Y., Zheng, H., 2006. Vehicle detection from high resolution 
satellite imagery based on the morphological neural network. 
Journal of Harbin Engineering University, 27(s1), 189-193. 
 
Yuan, Y., He, G., Wang, G., Jiang, W., Kang, J. 2018. Remote 
sensing satellite video vehicle detection method based on fusion 
of background difference and inter-frame difference. Journal of 
University of Chinese Academy of Sciences, 1, 50-58. 
 
Yue, Z., Qin, Z., Li, J., Shi, Y., 2020. Design of in-orbit 
processing mechanism for space-earth integrated information 
network. Journal of CAEIT, 15(06), 580-585. 
 
Yu, Y., 2016, Multiple objects real-time tracking and detection 
technology in satellite video based on multi-core DSP. 
Changchun Institute of Optics, Fine Mechanics and Physics, 
Chinese Academy of Sciences. 
 
Yu, Y., Zhang, T., Guo, L., He, X., 2017. Moving objects 
detection on satellite video. Chinese Journal of Liquid Crystals 
and Displays, 32(02), 138-143. 
 
Zhang, Z., Yin, T., Wu, H., 2018. Comparison and analysis of 
moving target detection methods for video star data. Geomatics 
and Spatial Information Technology, 41(3), 3. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-203-2024 | © Author(s) 2024. CC BY 4.0 License.

 
210




