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Abstract 
 
Soil salinity, caused by natural and anthropogenic factors, significantly impacts agricultural productivity, ecosystems, and global 
biodiversity. To mitigate severe salinity levels, it is necessary to detect early the salt-affected land for implementing solutions, such as 
adequate irrigation and cultivation of salt-tolerant crops. Before launching spaceborne hyperspectral sensor, Hyperspectral Imager 
Suite, (HISUI) developed by Japanese Ministry of Economy Trade and Industry, Kobayashi et al. (2010 and 2013) developed 
methods utilizing airborne hyperspectral data from HyMap to estimate soil salinity in wheatbelt region of Western Australia as a 
previous study. This paper aims to assess the feasibility of estimating soil salinity with HISUI in the same study area, following the 
past approach. Also, the goal is to estimate low soil salinity levels as same as the past objectives.  As a result, past approach could not 
be fully applied in spaceborne hyperspectral sensor, caused by atmospheric effect in SWIR region. However, absorption of soil salinity 
in SWIR regions could be detected by HISUI. In the soil index, the NDSI (Normalized Difference Soil Index) showed higher accuracy 
than the Soil Index (SI) developed in previous studies. Then, the lowest values of RMSE were less than 100 mS/m in NDSI. As a result, 
HISUI data could not leach to map soil salinity at lower levels in this study. However, it showed the potential to estimate it with higher 
accuracy using hyperspectral data. 
 

1. Introduction 

Soil salinity is a serious environmental hazard affecting 
agricultural productivity, ecosystem stability, and biodiversity 
across the world. Especially, it is happened more severe in arid 
and semi-arid regions of Africa, Asia, and Latin America 
(Hussain, 2019). The increase of soil salinity is triggered by both 
natural and human-induced causes, including inadequate 
irrigation techniques, excessive use of fertilizers, and land use 
changes (Kaya et al., 2022). As a result, the phenomenon leads to 
a decline in the yields of agricultural products because growth is 
hindered by the plants' inability to uptake water (Niu et al., 2019). 
One of the soil-affected regions is Western Australia, where 
salinity poses a significant threat to agricultural lands and natural 
ecosystems (Australian Bureau of Statistics, 2002).  Salinity in 
non-irrigated areas, known as dryland salinity, remains a 
potential risk to 2.8 to 4.5 million hectares of highly productive, 
low-elevation or valley soils in the southwest region of Western 
Australia (George et al., 2005).  
 
Remote sensing techniques show high potential to monitor soil 
salinity on a large scale. Consequently, research on soil salinity 
has increased by remote sensing worldwide (Sahbeni et al., 2023). 
These techniques utilize two main wavelength regions to detect 
soil salinity: visible-to-near-infrared (VNIR) and shortwave 
infrared (SWIR). Studies indicate that the SWIR region provides 
higher accuracy for estimating soil salinity compared to the 
VNIR region in multispectral satellite data from Sentinel-2 
(Bannari et al., 2018).  Also, Bannari et al. (2008) applied salt-
affected agricultural land in Morocco by spaceborne EO-1. 
However, no previous studies have estimated soil salinity 
forcused on SWIR using spaceborne hyperspectral sensors in 
Western Australia. 
 
Hyperspectral Imager Suite (HISUI) was a Japanese spaceborne 
hyperspectral imager launched on December 6, 2019, and 
deployed on the Japanese Experiment Module of the 
International Space Station (ISS). The past study developed a 
method to estimate soil salinity using the airborne hyperspectral 

sensor, HyMap, in the wheatbelt region of Western Australia 
(Infoserve Inc., 2013; Infoserve Inc., 2015; Kobayashi et al., 
2010; Kobayashi et al., 2013). Their study applied airborne 
hyperspectral data to map soil salinity, even at lower levels. It 
was a goal to support for decision making to manage salt-affected 
land. The airborne hyperspectral data was acquired in Marchagee 
and Toolbin on February 18, 2010. The sensor, HyMap, consisted 
of 128 bands covering wavelengths from 440 nm to 2500 nm. 
The process is, at first, the data was processed for surface 
reflectance using MODTRAN-based atmospheric correction, 
AtComp, developed by CSIRO (Ong, 2014), and pseudo-
reflectance to remove topographic effects and shadows. After 
that, the data was applied removal vegetation with SWIR region 
for the data. Afterwards, it was processed to select two bands 
combination from 1970 nm to 2130 nm for a key of soil salinity. 
Then, it was selected Soil Index (SI) composing the maximum 
values of Rmax in denominator and estimate soil salinity, using 26 
points of soil sample data. In this study, we explored the 
possibility of estimating soil salinity using the spaceborne HISUI 
hyperspectral sensor, following the methodology of the previous 
study. Then, it is a goal to estimate soil salinity even in lower 
level, such as values of less than 50 mS/m as same as the past 
study. In the process, vegetation impact for removal was assessed 
using the VNIR region instead of the SWIR region, considering 
that spectral patterns in the SWIR were absorbed by H2O. The 
Soil-adjusted Vegetation Index (SAVI) was applied for 
comparison. After that, index was generated SI Normalized 
Difference Soil Index (NDSI) for comparison, which composed 
of the sum of 2 bands in denominator. Through the entire process, 
soil salinity was estimated using the following models:  
 
Model 1: soil salinity map after atmospheric correction 
Model 2: soil salinity map after pseudo-reflectance  
Model 3: soil salinity map after vegetation removal applied by 
the process of VNIR region 
Model 4: soil salinity after vegetation removal applied by SAVI 
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2. Materials 

2.1 HISUI Hyperspectral Data 

Hyperspectral Imager Suite (HISUI) was launched and mounted 
on the Japanese Experiment Module of the International Space 
Station. HISUI was developed by the Japanese Ministry of 
Economy, Trade and Industry. It is composed of 185 bands with 
two spectrometers in the VNIR and SWIR regions to cover 
wavelengths from 400 nm to 2500 nm (J-spacesystems, 2024; 
Tachikawa et al., 2012). The swath width is 20 km by 30 km, and 
the resolution was 20 m by 20 m. In this study, hyperspectral data 
was selected for the area (Latitude: -29.96952° to -30.318084°, 
Longitude: 116.00669° to 116.373315) acquired on November 7, 
2021. The scene was partially including the past study area. The 
data was provided as an L1G level product, which is a 
geometrically corrected and orthorectified top-of-atmosphere 
spectral radiance product (J-spacesystems, 2024). 
 

Sensor name Hyperspectral Imager Suite (HISUI) 
Launch date December 6, 2019 
Spatial resolution 20 m × 20 m 

Wavelength 
400 nm - 2500 nm 

VNIR: 400 nm - 970 nm 
SWIR: 900nm - 2500nm 

Band number 185 (VNIR:57, SWIR:128) 
Spectral 
resolution 

VNIR: 10 nm 
SWIR: 12.5 nm 

Data size 12 bits 
Table 1. HISUI data specification 

 
2.2 Study Site 

The study site is located between Marchagee and Guyindi in the 
state of Western Australia, approximately 240 km north of the 
capital city, Perth (Figure 1). The bioclimate is classified as 
Thermoxeric, indicating a predominantly dry to extra dry 
Mediterranean climate, characterized by cool to mild wet winters 
from April to September, and hot, dry summers from October to 
March (Beard, 1990). Geological reports from the government 
indicate that the region overlays the South West Terrane of the 
Yilgarn Craton, consisting of Archaean granitic rocks. These are 
primarily composed of monzogranite, with significant portions of 
gneiss, granulite, and migmatite. The soil types are sandy duplex 
soils and ironstone gravelly soils, along with loamy earths, loamy 
duplexes, sandy earths, deep sands, and wet soils (Tille, 2006). 
The area features naturally formed salt lakes (playas) from the 
Cainozoic era (George et al., 2006). In terms of land use, the 
region predominantly supports agricultural activities, with wheat 
and canola as the main crops. These crops typically reach their 
peak growth in August or September (Caccetta et al., 2022). 
 

 
Figure 1. Location of the study and HISUI and HyMap data 

(HISUI : R=635 nm, G=545 nm, B=465 nm) 
 

2.3 Field Measurements 

Field measurements were conducted in October 2012 to collect 
soil samples and reflectance data for a previous study. Out of 70 
collection points, soil samples from only 12 locations were 
covered by HISUI data. The field measurements included the 
sampling of electrical conductivity (EC) at a 1:5 soil-to-water 
ratio, a standard method for assessing soil salinity in Australia. 
The EC values recorded for this study were as follows: 41, 43, 
59, 63, 65, 93, 100, 150, 170, 5,000, and 22,000 mS/m. 
According to classifications provided by the Government of 
Western Australia (2022), the soil samples were categorized 
based on EC1:5 (w/v) loam values in mS/m. The salinity classes 
were defined as follows: “Moderately” for 5 samples with EC 
values ranging from 40 to 80 mS/m, “Highly” for 3 samples with 
EC values from 80 to 160 mS/m, “Severely” for 2 samples with 
EC values from 160 to 320 mS/m, and “Extremely” for 2 samples 
with EC values exceeding 320 mS/m.  
 

3. Method 

Following the process of the past report, this study was applied 
to estimate soil salinity and generate the map as shown in Figure 
2 below. 
 

 
Figure 2. Process flow 

 
3.1 Geometric Correction and Atmospheric Correction 

The HISUI data was geometrically corrected within 1 pixel by 
referencing Sentinel-2 L2A, acquired on November 7, 2021. 
After that, HISUI data required to be converted to radiance 
(W/m2/sr/µm). The radiance data was applied an atmospheric 
correction with Fast Line-of-Sight Atmospheric Analysis of 
Spectral Hypercube (FLAASH), which is a MODTRAN-4 based 
approach that is available in ENVI software. The atmospheric 
model was applied with Mid-Latitude Summer, and the aerosol 
model was selected Rural. Also, water retrieval was selected with 
1135 nm of water absorption feature. The corrected data was 
multiplied by 10,000 to keep the integer unit.  
 
3.2 Pseudo-reflectance 

The past study processed pseudo-reflectance after atmospheric 
correction (Kobayashi et al., 2010). The pseudo-reflectance was 
applied to remove the effects of topographic features and 
shadows by normalizing the reflectance by square root of the sum 
from the reflectance of 185 bands squared.  
 

𝑃𝑅։ =
𝑅։

ఊ∑ 𝑅։
ϵφ΅Θ

։=φ

(1) 

 
where  R = reflectance 
            n = number of bands 

©J-spacesystems, 2023  
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3.3 Vegetation Removal 

The data still contained vegetation in the area. To improve the 
estimation of soil salinity, it was conducted spectral unmixing of 
soils and vegetation. Based on the past study, pseudo reflectance 
of pure soil, Rsoil is given by the following equation: 
 

𝑅֎֊քև =
𝑂𝑃𝑅 − 𝑋(𝑉𝑃𝑅)

1 + 𝑋
(2) 

 
where  OPR = pseudo-reflectance including soils and vegetation 

VPR = vegetation of pseudo-reflectance 
X = impact of vegetation 

 
VPR is average pseudo reflectance of the vegetation area found 
in the crop fields, except trees, which is not a target in this study. 
X is defined as the angle formed by the reflectance at 1114 nm, 
1202 nm, and 1244 nm and derived from following equation: 
 

(𝑂𝑃𝑅φϵЈϵ − 𝑉𝑃𝑅φϵЈϵ ∗ 𝑋) − (𝑂𝑃𝑅φφφΚ − 𝑉𝑃𝑅φφφΚ ∗ 𝑋)

1202 − 1114
 

=
(𝑂𝑃𝑅φϵΚΚ − 𝑉𝑃𝑅φϵΚΚ ∗ 𝑋) − (𝑂𝑃𝑅φϵЈϵ − 𝑉𝑃𝑅φϵЈϵ ∗ 𝑋)

1244 − 1202
(3) 

 
At the angle formed by the three wavelengths, if the impact of 
vegetation is significant, it becomes an acute angle, and if it is 
low, it approaches the value of a straight line (180 degrees). Due 
to the area spreads the rest of cultivated products after harvesting 
and natural vegetation, which is salt-tolerant shrub and grass, 
such as Chenopodiaceas, vegetation characteristic, red-edge in 
their spectral pattern between red and NIR are not observed (Ben-
Dor et al., 2008). Therefore, vegetation impact was estimated by 
using spectral absorption of water in vegetation around 1200 nm 
of SWIR bands. However, in HISUI data, it was found that the 
reflectance at 1114 nm and 1202 nm was affected by absorption 
of H2O in air, so it was not the expected indicator. Figure 3 shows 
the spectra of green vegetation, soil (unpaved road), and dry 
vegetation sampled from the HISUI pseudo reflectance image. In 
Figure 3, the wavelengths at which the angles formed by the three 
wavelengths are acute angles are 565 nm, 685 nm, and 745 nm, 
which are not affected by the atmosphere and are only green 
vegetation. Thus, in this study, the three wavelengths of 565 nm, 
685 nm, and 745 nm of VNIR bands were substituted for three 
wavelengths around 1200 nm in eq. 3. 
 

 
Figure 3. Spectra of green vegetation, soil (unpaved road), and 
dry vegetation sampled from HISUI pseudo reflectance image. 

 
In addition to the vegetation impact indicator, this study also 
considered, for comparative purposes, the use of SAVI (Soil 

Adjust Vegetation Index) (Huete, 1988), which were calculated 
using reflectance corrected for atmospheric correction. 
 

𝑆𝐴𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 𝐿)
(1 + 𝐿) (4) 

 
where  NIR = reflectance at 835 nm 
            Red = reflectance at 655 nm, 
            L = amount of green vegetation cover 
 
SAVI was selected among variable vegetation indices because it 
corrects the effect of soil background brightness for lower 
amount of vegetation. The angle X derived from VNIR and SAVI 
were linearly transformed to range from 0 to 1, encompassing 
their minimum to maximum values, and were subsequently 
utilized as indicators of vegetation impact in experimental trials. 
 
3.4 Soil index and EC Estimation 

The past study focused on the water absorption feature from 1970 
nm to 2130 nm, based on Whiting et al. on 2003. Also, this area 
was known the absorption feature observed near 2200 nm with 
soil moisture (Mouazen et al., 2006). In the past study, soil index 
was calculated as the difference in reflectance between the two 
bands selected from 1970 nm to 2130 nm and divided by the 
maximum reflectance of each soil spectra to estimate EC values. 
 

𝑆𝐼 =
(𝑅մոժճφ − 𝑅մոժճϵ)

(𝑅ֈռ֓)
(5) 

 
where SI = Soil index 

RSWIR1, RSWIR2 = reflectance at SWIR band from 1950 nm 
to 2100 nm 
Rmax= the maximum reflectance of each soil spectra from 
1950 nm to 2100 nm 

 
Band combination of RSWIR1 and RSWIR2 were selected by the 
highest coefficient of determination performing through 
correlation analysis among the soil index and EC values. 
 
Soil spectral signature effects shows soil information about 
organic matter content, moisture, mineral composition, color 
bright, roughness. Bannari et al. (2008) denotes spectral 
properties of the soil salinity are detectable in the SWIR region 
and proposed NDSI (Normalized Differential Soil Index).  
 

𝑁𝐷𝑆𝐼 =
(𝑅𝑆𝑊𝐼𝑅1 − 𝑅𝑆𝑊𝐼𝑅2)

(𝑅𝑆𝑊𝐼𝑅1 + 𝑅𝑆𝑊𝐼𝑅2)
(6) 

 
For comparison, the two soil indices were applied to the below 
EC equation with 12 EC values: 
 

𝐸𝐶 = 𝐸𝑋𝑃((𝑆𝑜𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 + 𝑎) 𝑏⁄ ) (7) 

 
where  a, b = model coefficient given by soil samples 
 
3.5 Accuracy 

For accuracy validation, a cross-validation was employed by 
Leave-one-out method. It evaluates one sites of the remaining EC 
values and iterated through the entire dataset. This procedure was 
iterated 12 times, sequentially rotating the data so each site was 
used once as the validation set. Subsequently, the Root Mean 
Square Error (RMSE) was calculated using the following 
formula: 
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𝑅𝑀𝑆𝐸 = ఋ
1

𝑛
ం (𝑦ք − 𝑦ք̂)

ϵ։−φ

ք=Ј
(8) 

 
where  𝑦 ̂𝑖 = the predicted value of the sample 

y𝑖 = the measured value 
 

4. Result and Discussion 

After processing the HISUI data with atmospheric correction 
using FLAASH in an urban local area, the HISUI data indicates 
the spectral reflectance pattern in the SWIR region from 1800 nm 
to 2500 nm in Figure 4. It shows 12 points of soil sample data 
were categorized with soil salinity class. All spectra show 
absorption in the negative peak from 1800 nm to 1950 nm and at 
2025nm by atmospheric molecules, which was not shown by 
airborne sensor, HyMap at the past study, because image in 
HyMap is not affected by the atmosphere like HISUI due to its 
low altitude of observation. Also, it shows absorption from 1950 
nm to 2000 nm, which is denoted that soil salinity related with 
liquid absorption because it contains liquid water molecules in 
soils in the past study. 
 

 
Figure 4. Spectral pattern between 1800 nm to 2200 nm 

 
Following the process of pseudo-reflectance and vegetation 
removal, the two bands were selected by the highest 
determination coefficient, R2, from the range of 1950 nm to 2000 
nm, with avoiding spectral absorption caused from CO2 from 
2000 nm to 2050 nm in HISUI. After selecting the two bands, the 
soil index was assigned in exponential model. In fact, linear 
regression also tested, but it was not adapted in that the 
coefficient determination was low. Figure 5 shows (a) a heat map 
of R2 among the soil index and EC values. Blackish zone from 
200 nm to 2100 nm was out of range for spectral absorption. (b) 
indicates an exponential regression model for soil salinity 
estimation by the soil index. The soil index was computed from 
eq. 5 by applying pseudo-reflectance after vegetation removal 
with the impact indicator of the angle formed by the three 
wavelengths of VNIR. 
 

 
(a) 

 
(b) 

Figure 5. (a) Heat map of determination coefficient, R2, among 
the soil index and EC values. (b) Exponential regression model 

for soil salinity estimation. 
 
In this study, eight models were developed to estimate soil 
salinity, following the order of the processing flow and types of 
soil indices. Table 2 indicates all models and their coefficients of 
determination. Model 1 employed reflectance after atmospheric 
correction. Model 2 applied pseudo-reflectance. Model 3 and 4 
both involved pseudo-reflectance after vegetation removal, but 
for Model 3, the vegetation impact indicator was estimated by the 
angle formed by the three wavelengths of VNIR, and for Model 
4, the indicator was estimated by SAVI. Model A indicates SI as 
the soil index from eq. 5 and Model B refers to NDSI from eq. 6. 
As a result, these models indicated high coefficient values of EC 
on both of SI and NDSI. Among all models, the combination of 
1987.65 nm and 2062.585 nm was selected in most cases. 
Therefore, the combination of those bands was found to be 
important in understanding the soil salinity by using HISUI. 
 
 Model of soil salinity estimation R2 

Model 
1A 

𝐸𝐶 = 𝐸𝑋𝑃 ൬
𝑆𝐼 − 0.007406

0.037989
൰ 

𝑆𝐼 =
（𝑅ଶ଴଺ଶ.ହ଼ହ − 𝑅ଵଽ଻ହ.ଵହହ）

𝑅௠௔௫
 

0.999679 

Model 
2A 

𝐸𝐶 = 𝐸𝑋𝑃 ൬
𝑆𝐼 − 0.002996

0.038506
൰ 

𝑆𝐼 =
（𝑅ଶ଴଺ଶ.ହ଼ହ − 𝑅ଵଽ଻ହ.ଵହହ）

𝑅௠௔௫
 

0.999626 

Model 
3A 

𝐸𝐶 = 𝐸𝑋𝑃 ൬
𝑆𝐼 + 1.371663

0.284873
൰ 

𝑆𝐼 =
（𝑅ଶଵ଴଴.଴ହହ − 𝑅ଵଽ଼଻.଺ସହ）

𝑅௠௔௫
 

0.999666 

Model 
4A 

𝐸𝐶 = 𝐸𝑋𝑃 ൬
𝑆𝐼 + 0.883086

0.165523
൰ 

𝑆𝐼 =
（𝑅ଶଵ଴଴.଴ହହ − 𝑅ଵଽ଼଻.଺ସହ）

𝑅௠௔௫
 

0.998064 

Model 
1B 

𝐸𝐶 = 𝐸𝑋𝑃 ൬
𝑁𝐷𝑆𝐼 + 0.039816

0.024554
൰ 

𝑁𝐷𝑆𝐼 =
（𝑅ଶ଴଺ଶ.ହ଼ହ − 𝑅ଵଽ଼଻.଺ସହ）
(𝑅ଶ଴଺ଶ.ହ଼ହ + 𝑅ଵଽ଼଻.଺ସହ)

 

0.999869 

Model 
2B 

𝐸𝐶 = 𝐸𝑋𝑃 ൬
𝑁𝐷𝑆𝐼 + 0.042622

0.024878
൰ 

𝑁𝐷𝑆𝐼 =
（𝑅ଶ଴଺ଶ.ହ଼ହ − 𝑅ଵଽ଼଻.଺ସହ）
(𝑅ଶ଴଺ଶ.ହ଼ହ + 𝑅ଵଽ଼଻.଺ସହ)

 

0.999863 
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Model 
3B 

𝐸𝐶 = 𝐸𝑋𝑃 ൬
𝑁𝐷𝑆𝐼 + 8.651934

1.337036
൰ 

𝑁𝐷𝑆𝐼 =
（𝑅ଶ଴଺ଶ.ହ଼ହ − 𝑅ଵଽ଼଻.଺ସହ）
(𝑅ଶ଴଺ଶ.ହ଼ହ + 𝑅ଵଽ଼଻.଺ସହ)

 

0.964301 

Model 
4B 

𝐸𝐶 = 𝐸𝑋𝑃 ൬
𝑁𝐷𝑆𝐼 + 0.666613

0.127264
൰ 

𝑁𝐷𝑆𝐼 =
（𝑅ଶ଴଺ଶ.ହ଼ହ − 𝑅ଵଽ଼଻.଺ସହ）
(𝑅ଶ଴଺ଶ.ହ଼ହ + 𝑅ଵଽ଼଻.଺ସହ)

 

0.996503 

Table 2. Estimated models and Coefficient Determination 
 
As a result, every model was mapped using the same legend: blue 
for the lowest EC values, gradually changing to green, yellow, 
and red for the highest EC values. Models 1 and 2, which did not 
apply vegetation removal, showed variable color ranges in their 
soil salinity maps. The east side of salt lakes where are 
accumulated salt over the surface on the ground are higher 
reflectance in True color image and estimated-EC values 
indicates more than 2,000 mS/m. The middle area of map shown 
cultivated area is mostly less than 10 mS/m. In the case of Model 
3, which was applied vegetation removal by the process of VNIR 
region, the Salt Lake exhibits around 650 mS/m to 700 mS/m, 
which underestimated the area. Additionally, soil salinity in 
Model 3 ranged from approximately 600 to 700 mS/m across the 
entire dataset. Model 4, which applied vegetation removal using 
SAVI, showed EC values of approximately 200 to 300 mS/m, 
with the salt lake showing higher EC values. Models A and B, 
which applied different types of soil indices, did not show 
significant differences. Figure 6 shows soil salinity maps in 
Model 1B and 3A where Model 1B is the model with the highest 
coefficient determination, while Model 3A is the model after 
whole process. Also, Figure 6 (d) shows a color-composited 
image created using three bands related to soil salinity (R: 
2062.585 nm, G: 1987.645 nm, B: 1975.155 nm). In the soil 
salinity color-composited image, areas affected by soil salinity 
are shown in reddish colors. 
 

  
(a)  (b)  

  
(c)  (d)  
Figure 6. Examples of soil salinity maps. (a) Soil salinity map in 
Model 1B, (b) Soil salinity map in Model 3A, (c) Atmospheric 
corrected image (R=635 nm, G=545 nm, B=465 nm), (d) Soil 

salinity color-composited image (R=2062.585 nm, G=1987.645 
nm, B=1975.155 nm) 

 

Figure 7 shows an enlarged soil salinity map in Model 1B 
adjusted the range of soil salinity referred to soil salinity class 
provided by the Government of Western Australia (2022) on the 
left figure, (a) and the soil salinity color-composited image on the 
right figure, (b). These both images exhibit the same trend. When 
the soil salinity map shows ‘Severely’ (in orange) and ‘Extremely’ 
(in red), in color-composited image, the effects of soil salinity are 
indicated by area appearing in red color. In soil salinity map, 
when Google Earth was used to see the ground in detail, it has 
been observed that areas covered with dense vegetation, such as 
trees, indicated as location with high soil salinity.   
 

 
(a)  

 
(b)  

Figure 7. Evaluation of soil salinity map. (a) Adjusted color 
level with salinity class along Western Australia, (b) Soil 

salinity color-composited image (R=2062.585nm, 
G=1987.645nm, B=1975.155nm) 

 
Table 3 and Table 4 listed the true EC values and the estimation 
by each model. Each model was applied using cross-validation to 
validate the EC values of ground data.  Table 3 for SI presented 
RMSE for the entire dataset ranging from 3,000 to 20,000 mS/m. 
However, when the dataset was filtered less than 1,000 mS/m, 
the values of RMSE was dramatically declined up to the value 
from 117 to 270. Table 4 for NDSI presented RMSE for the entire 
dataset were variable. However, when the dataset was less than 
1,000 mS/m, the lowest RMSE, 77 mS/m, presented in both 
tables. Compared with each model, Table 3 indicated lowest 
RMSE were Model 3A for the entire dataset and Model 1A for 
less than 1,000 mS/m and Table 4 presented Model 1B at both 
datasets. In the method of previous study is similar to Model 3A, 
the method was shown the lowest RMSE for the entire dataset. 
However, this study case was shown the lowest RMSE for less 
than 1,000 mS/m dataset in NDSI.   
 

  
Estimation 

Model 1A Model 2A Model 3A Model 4A 

T
ru

th
 (

E
C

 a
t s

oi
l s

am
pl

e)
 

41 139 146 155 265 
43 232 247 355 679 
59 163 173 149 259 
63 110 116 145 255 
65 85 91 61 122 
93 126 133 148 246 

100 152 162 174 300 
150 405 424 233 493 
170 73 77 112 178 
190 198 205 163 294 

5,000 3,857 3,765 3,861 2,623 
22,000 32,452 33,773 32,183 67,159 
RMSE 3,037 3,419 2,960 13,057 

RMSE (EC<1000) 117 126 120 270 

Table 3. Cross Validation for SI (units: mS/m) 
 

  
Estimation 

Model 1B Model 2B Model 3B Model 4B 

T
ru

th
 

(E
C

 
at

 41 58 61 737 342 
43 181 190 820 715 
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59 67 71 734 347 
63 51 54 724 315 
65 33 35 582 249 
93 68 72 749 386 

100 77 82 751 402 
150 236 248 779 600 
170 29 31 695 252 
190 91 95 734 382 

5,000 4,669 4,589 324 2,248 
22,000 24,044 24,673 6.97E+09 92,092 
RMSE 602 784 2.01E+09 20,252 

RMSE(EC<1000) 77 79 6.38E+02 339 

Table 4. Cross Validation for NDSI (units: mS/m) 
 

5. Conclusion 

Soil salinity is an escalating environmental concern that 
compromises agricultural productivity and ecosystems, 
especially in arid and semi-arid regions, including Western 
Australia. Remote sensing has proven to be an effective tool for 
monitoring and identifying current soil salinity levels. In the past 
study, they studied a method to estimate soil salinity using 
airborne hyperspectral data (Kobayashi et al., 2010; Kobayashi 
et al., 2013). This study followed their methodology in the same 
area, using spaceborne hyperspectral data from HISUI. Pseudo-
reflectance was processed to remove topographic effects and 
shadows, and vegetation removal was applied using two methods 
(VNIR and SAVI). At the next, two band combination was 
searched from regions of SWIR region, and soil salinity map was 
generated with Soil Index in the past study and NDSI assigning 
the sum of two bands for comparison. For the validation, the 
lowest RMSE at both indices was indicated Model 1B, which 
generated soil salinity map after atmospheric correction in NDSI. 
It could estimate EC reaching 77 mS/m in RMSE if the dataset 
filtering EC values at less than 1,000 mS/m. Based on the RMSE 
values, soil salinity could not be estimated at the lower levels of 
soil salinity. However, it could detect the spectral feature for the 
absorption of soil salinity in the SWIR region. The previous study 
was applied with airborne hyperspectral data in the same region. 
As a result, it was different approach was the highest accuracy at 
HISUI data in fact that atmospheric effect from spaceborne and 
airborne sensor and acquisition date were different.  
 
For improving the model, it is necessary to add more soil samples 
because the past study could estimate by the lower EC values of 
26 soil samples. On the other hand, in this study, the model was 
created with 12 soil samples with an unbalanced range of EC 
values. If possible, it should have applied to add lower level of 
EC, such as “Slightly” class of EC, 20 – 40 mS/m and “Severely” 
class of EC, 160 – 320 mS/m. In fact, even though it could 
estimate the soil salinity, it is not enough to generate a more 
reliable model. In the next time, we would like to implement a 
same soil salinity method with abundant soil samples and try in 
different regions of salt-affected country and different 
spaceborne hyperspectral sensor. In recent years, spaceborne 
hyperspectral satellite with specifications comparable to HISUI 
have been launched. For example, the Indian Space Research 
Organization (ISRO) launched HySIS on November 29, 2018, 
covering wavelengths from 200 to 2400 nm with a spectral 
resolution of 10 nm (ISRO, 2018), the Agenzia Spaziale Italiana 
(ASI) launched PRISMA on March 22, 2019, covering 
wavelengths from 400 nm to 2505 nm with a spectral resolution 
of 12 nm (ASI, 2024), and, the German Aerospace Center (DLR) 
launched EnMap on April 1, 2022, observing over wavelength 
from 430 to 2450 nm with a spectral resolution of 10 nm in SWIR 
(DLR, 2022). This research will be useful to show spectral 
features of soil salinity using those above spaceborne 
hyperspectral data. 
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