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Abstract 

In this paper, a remote sensing image segmentation based on probabilistic fuzzy local information clustering algorithm is proposed. 

First, assuming that the spectral measure within the same ground object follows the same probability distribution. The dissimilarity 

between pixel and object is modeled by the negative logarithm of the Gaussian probability density function. It can improve the noise 

sensitive problem caused by the Euclidean distance which can only describe the data with isotropic distribution. Then, in order to 

consider the effect of local spatial constraint, on the one hand, the probability measure is used to modify the local fuzzy factor to 

establish the dissimilarity measure with spatial constraints. On the other hand, the hidden Markov random field is used to model the 

prior probability model of pixel membership. Next, the entropy regularization term of the objective function is built by combining the 

Kullback-Leibler(KL) maximum entropy model to further improve the robustness and noise resistance. The qualitative and 

quantitative analysis of simulated image and different types of real remote sensing images show that the proposed algorithm can 

effectively overcome the above problems and further improve the accuracy of image segmentation to over 95%. 

1. Introduction

Image segmentation is the process of aggregating pixels 

according to certain rules to form several specific regions with 

similar features (Zhang et al., 2020). However, due to the 

complexity of the special imaging process, remote sensing 

image segmentation is full of uncertainty (Löw et al., 2015).  

Fuzzy clustering is one of the effective tools to alleviate 

uncertainty in the image segmentation process (Memon et al., 

2018). Fuzzy C-means (FCM) is the most representative 

algorithm. It extends the relationship between pixels and 

clustering from hard to soft by introducing fuzzy membership. 

FCM improved the impact of outliers. However, it still has 

some problems. Such as (1) It didn't consider the spatial 

neighborhood effect. The noise resistance is weak, (2) It used 

Euclidean distance to describe the dissimilarity between pixels 

and clusters. It can only describe data with spherical distribution 

characteristics. 

To solve the first problem, Ahmed et al. (2002) proposed 

FCM_S. It introduced a regularization term modeled by the 

dissimilarity between neighborhood pixels and clustering. The 

noise resistance has been further improved. Next, Chen and 

Zhang (2004) proposed FCM_S1 and FCM_S2. They 

accelerated FCM_S with the help of mean filtering images. 

Krinidis and Chatzis (2010) proposed FLICM based on the idea 

of FCM_S. It introduced spatial distance weights on the basis of 

neighborhood pixel dissimilarity, which significantly improved 

noise resistance. Gong et al. (2012) proposed RFLICM. It 

proposed the local coefficient of variation model, and used it 

instead of spatial distance to characterize the strength of 

neighborhood interactions. It corrected the issue where the 

central pixel is an outlier. 

To solve the second problem, Gustafson and Kessel (1978) 

proposed GK. It modeled the dissimilarity by mahalanobis 

distance, which extended the model's ability to characterize 

ellipsoidal distribution data. Next, Liu et al. focused on the 

covariance, and proposed FCM_M (Liu et al., 2007) 、
FCM_CM(Liu et al., 2009a) and FCM_SM (Liu et al., 2009b). 

Utilizing the feature representation ability of kernel functions, 

Chen and Zhang (2004) also proposed the robust kernelized 

versions KFCM_S, KFCM S1and KFCM S2. Then, Gong et al. 

(2013) proposed KWFLICM. It replaced the Euclidean distance 

in the fuzzy factor with a kernel function, which improved the 

robustness of the algorithm. Next, Memon and Lee (2018) 

proposed GKWFLICM. It is not limited to processing one-

dimensional data and has achieved segmentation of raw data in 

multidimensional situations. However, the above methods are 

all based on distance measurement to characterize dissimilarity. 

They can not describe the random distribution characteristics of 

the data. Chatzis and Varvarigou (2008) proposed HMRF-FCM. 

It characterizes dissimilarity based on Gaussian distribution and 

neighborhood constraint based on Markov random field, which 

greatly improved the image segmentation effect. However, it 

did not consider the situation where neighboring pixels are 

noisy. 

Therefore, a probabilistic fuzzy local information clustering 

algorithm for image segmentation is proposed in this paper. On 

the basis of the local coefficient of variation, it corrected the 

dissimilarity measure with a Gaussian distribution probability 

density function. Then, the probability fuzzy local information 

is obtained to further accurately characterize the features 

between pixels and clusters. Besides, a prior probability model 

is established based on the hidden Markov random field model 

to further consider the neighborhood effect. Finally, combining 

the above model, the clustering objective function is built based 

on the Kullback Leibler (KL) maximum entropy theory. 
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2. Methodology

2.1 Segmentation objective function 

Given a remote sensing image X = {xi : i = 1, …, n}. Where i is 

the index of pixels, n is the total number of pixels, xi is the 

spectral feature vector of pixel i. Assuming there are c clusters 

in the image. The membership degree of pixels between clusters 

is U=[uij]n×c, where j is the index of clusters. U needs to meet 

the constraints, 0 ≤ uij ≤ 1，
1
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. L={li, i = 1,...,n} is ac label 

set, which is used to represent the labels of the clusters to which 

pixels belong.  

Based on the above information, the segmentation objective 

function model in this paper is modeled as,  
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Where the second term is the KL entropy regularization term. λ 

is the coefficient of KL entropy regularization term, which is 

used to characterize the fuzzy degree of the algorithm. The 

larger the λ is, the greater the pixel difference within 

homogeneous regions in segmentation results. dij is the 

dissimilarity between pixel i and cluster j. Gij is fuzzy local 

factor. ij is the prior probability that pixel i belongs to cluster j. 

To describe the random distribution of clusters, dij is modeled 

by the negative logarithm of the probability density function of 

Gaussian distribution, 
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Where w is dimension of bands. μj and Σj are the mean and 

variance of the Gaussian distribution followed by cluster j, 

respectively. When w = 1, the Gaussian distribution in Equation 

(2) degenerates into a normal distribution.

Based on Equation (2), combining the local coefficient of 

variation, the fuzzy local factor is modeled as, 
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Where ∂ = {∂i : i = 1, ...,n} is the neighborhood system, i'  ∂i, i' 

≠ i. Ci is the local coefficient of variation of pixel i. It is used to 

represent the difference in spectral measurements between pixel 

i and its neighboring pixels.  
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Where Ci
1 and Ci

2 correspond to the local coefficient of 

variation for w=1 and w>1, respectively. 
ix is the mean

spectral measure of neighboring pixels centered on pixel i, σ2(xi) 

and Σ(xi) are the variance and covariance. 

To further consider the effect of neighboring pixels, the prior 

probabilityij is modeled based on the theory of hidden Markov 

random fields, 
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Where k is also the index of clusters, β is the strength of 

neighborhood interaction, δ(a, b) is energy function, if and only 

if a = b, δ = 1, otherwise δ = 0.  

2.2 Parameter solving 

Due to the objective function J clearly expressing the mean μj 

and covariance Σj. By directly taking the derivative of the 

objective function and making the derivative 0, we obtain, 
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Due to the constraint of membership degree U, it is necessary to 

construct a Lagrangian function and set its derivative to 0. We 

obtain, 
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The optimal model parameters are obtained through iteration. 

Furthermore, the optimal image segmentation result is also 

obtained. The final label li
* to which the pixel belongs is 

obtained from the defuzzification, 
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Where uij
* is the optimal fuzzy membership. 

2.3 Summary of the proposed algorithm 

The process of the proposed algorithm can be summarized as 

follows, 
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S1: Set constants. Such as the number of clusters c, KL 

regularization coefficient λ, Neighborhood influence strength β, 

iteration stop condition parameter ε； 

S2: Initialization. Iteration indicator t = 0, randomly generate 

initial membership matrix U(0), and obtain initial label L(0) 

through defuzzification; 

S3: Calculate the mean μj
(t) and Σj

(t) according to Equations (6) 

and (7), and calculate the dissimilarity measure dij
(t) according 

to Equation (2); 

S4: Calculate the local coefficient of variation Ci
(t) according to 

Equation (4), and obtain the fuzzy local factor Gij
(t) according to 

Equation (3); 

S5: Calculate the prior probability ij
(t) according to Equation 

(5); 

S6: Calculate the membership degree U(t) according to Equation 

(8); 

S7: Calculate the objective function J(t) according to Equation 

(1); 

S8: If max| J(t) - J(t-1)| ＜ε, exit the loop, otherwise let t = t+1 

and return to S3 to continue iterating. 

3. Experiments

In order to verify the effectiveness of the proposed algorithm, 

FCM, FCM_S, FLICM, RFLICM, and HMRF-FCM algorithms 

were used as comparative algorithms to perform segmentation 

experiments on simulated and real remote sensing images, and 

the segmentation results were qualitatively and quantitatively 

analyzed. 

3.1 Simulated images 

In order to simulate the random distribution characteristics of 

spectral measurements of ground objects, a simulated image 

that follows Gaussian distribution characteristics is randomly 

generated based on the template image, where I-IV represents 

different homogeneous regions, as shown in Figure 1. Their 

distribution parameters are shown in Table 1. To highlight the 

effectiveness of the proposed algorithm, regions I and III have 

the same mean, and regions III and IV have the same standard 

deviation. 

(a)       (b) 

Figure 1. (a) Template, (b) Simulated image. 

Parameters 
Homogeneous regions 

I II III IV 

Mean 10 20 10 30 

Standard deviation 10 10 5 5 

Table 1. Gaussian distribution parameters. 

Figure 2 shows the simulated image segmentation results, where 

Figures 2 (a1) - (f1) show the segmentation results of FCM, 

FCM_S, FLICM, RFLICM, HMRF-FCM, and the proposed 

algorithm, respectively. Figures 2 (a2) - (f2) show the 

overlapping images of the corresponding segmentation results. 

As shown in Figure 2, the FCM algorithm has the worst noise 

resistance, with salt and pepper noise almost covering the entire 

region in the segmentation results; The FCM_S algorithm 

introduces spatial neighborhood constraints, which reduces the 

degree of salt and pepper noise, but the segmentation effect is 

still poor. The FLICM algorithm constructs fuzzy local factors 

by introducing neighborhood pixel spatial distance and fuzzy 

membership degree, greatly reducing the impact of noise and 

outliers. However, for Region II with high spectral variance, its 

noise resistance is significantly lower than Region III with low 

variance. In addition, there is also a tendency for confusion in 

segmentation at the boundaries of homogeneous regions; 

RFLICM introduces local variation coefficients to correct fuzzy 

local factors on the basis of FLICM, further improving the 

segmentation effect, as shown in region II in Figure 2 (d1) and 

(d2). HMRF-FCM describes the random distribution of pixels in 

homogeneous regions based on Gaussian distribution, and 

constructs a KL entropy regularization model in combination 

with hidden Markov random field theory. It effectively solved 

the problem of distance measurement being difficult to 

characterize randomly distributed data, greatly suppressing the 

influence of noise, but there is still a certain degree of 

misclassification phenomenon, as shown in Figure 2 (e1) and 

(e2). This paper combines Gaussian distribution and its 

modified fuzzy local factors to construct a dissimilarity measure 

with spatial constraints. On the one hand, it effectively 

characterizes the random distribution of the data, and on the 

other hand, it strengthens the spatial neighborhood pixel 

constraint, effectively improving the segmentation effect. There 

is no misclassification noise in each homogeneous region, as 

shown in Figure 2 (f1) and (f2). 

(a1) (b1) (c1) 

(d1) (e1) (f1) 

(a2) (b2) (c2) 

I II 

III IV 
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(d2) (e2) (f2) 

Figure 2. Segmentation results of simulated images. (a1) - (f1) 

show the segmentation results of FCM, FCM_S, FLICM, 

RFLICM, HMRF-FCM, and the proposed algorithm, 

respectively, (a2) - (f2) show the overlapping images of the 

corresponding segmentation results.  

In order to quantitatively evaluate the effectiveness of 

segmentation results, a confusion matrix was generated based 

on template images for the segmentation results in Figure 2, and 

user accuracy, product accuracy, overall accuracy, and Kappa 

values were calculated and listed in Table 2. According to Table 

2, FCM algorithm has the lowest accuracy, with a user accuracy 

of only 49.93% in Region II, and overall accuracy and Kappa 

value of only 66.96% and 0.56%. FCM_S algorithm has greatly 

improved compared to FCM, but it is still less than 90%. 

FLICM algorithm can reach 93.83%, and the Kappa value 

exceeds 0.9. RFLICM has further improved by about 2 

percentage points on the basis of FLICM algorithm. HMRF-

FCM has the highest accuracy in the comparison algorithm, 

reaching 96.81%, and the user and product accuracy in each 

region are both above 90%, but it is still not as good as the 

proposed algorithm. The proposed algorithm has overall 

accuracy of 98.8% and Kappa value of 0.98. The effectiveness 

of the proposed algorithm was accurately validated through 

quantitative analysis. 

Algorithms 
Accuracy 

(%) 

Homogeneous regions 

I II III IV 

FCM 

User 59.01 89.03 77.56 52.11 

Product 60.63 49.93 96.53 61.51 

Overall = 66.96 Kappa = 0.56 

FCM_S 

User 89.44 95.34 91.86 77.04 

Product 86.15 80.24 99.03 86.53 

Overall = 87.92 Kappa = 0.84 

FLICM 

User 95.41 99.33 99.02 83.82 

Product 95.96 84.93 97.50 97.15 

Overall = 93.83 Kappa = 0.92 

RFLICM 

User 95.93 98.42 99.80 87.62 

Product 92.84 94.33 96.83 96.90 

Overall = 95.20 Kappa = 0.94 

HMRF- 

FCM 

User 98.68 93.24 99.26 96.41 

Product 95.36 99.74 99.50 92.58 

Overall = 96.81 Kappa =0.96 

Proposed 

User 95.82 99.62 100 100 

Product 99.62 99.95 96.88 98.69 

Overall = 98.80 Kappa = 0.98 

Table 2. Quantitative evaluation of the simulated image. 

In order to further verify the ability of probability measures in 

the proposed algorithm to characterize the distribution 

characteristics of spectral measures in homogeneous regions, a 

Gaussian distribution function curve is drawn as shown in 

Figure 3. Figures 3 (a) - (d) represent regions I-IV, black 

represents the true distribution function curve, blue represents 

the Gaussian distribution function in the HMRF-FCM model, 

and red represents the Gaussian distribution function of the 

proposed algorithm. As shown in Figure 3, the proposed 

algorithm function curve is closer to the true curve, especially 

for regions III and IV with small standard deviations, which 

almost overlap, as shown in Figures 3 (c) and (d). Figure 3 

further effectively verifies the ability of the proposed algorithm 

to characterize randomly distributed data. 

(a) (b) 

(c) (d) 

Figure 3. Gaussian distribution function fitting, (a) - (d) 

represent regions I-IV. 

3.2 Real remote sensing images 

In order to verify the applicability of the proposed algorithm to 

different types of remote sensing images, multispectral remote 

sensing images and SAR images were selected for segmentation 

performance testing, as shown in Figure 4. Figures 4 (a1) - (c1) 

represent multispectral remote sensing images and SAR images 

captured from Spot-5, IKONOS, and RADARSAT-II, 

respectively. Figures 4 (a2) - (c2) represent the corresponding 

template images. 

(a1) (b1) (c1) 

(a2) (b2) (c2) 
Figure 4. Real remote sensing images. (a1) Spot-5, (b1) 

IKONOS, (c1) RADARSAT-II. (a2) - (c2) the corresponding 

template images.  

Figure 5 shows the segmentation results of real remote sensing 

images. Each row represents different remote sensing images. 

The different columns are FCM, FCM_S, FLICM, RFLICM, 

HMRF-FCM, and the segmentation results proposed by the 

algorithm. The overlapping images of the corresponding 

segmentation results are shown in Figure 6. From Figures 5 and 

6, it can be seen that the FCM algorithm and FCM_S algorithm 
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have poor noise resistance, especially difficult to overcome the 

influence of speckle noise in SAR images, as shown in Figures 

5, 6 (a1) and (b1) - (a3) and (b3). The FLICM algorithm and 

RFLICM algorithm introduce neighborhood pixel effects, which 

can effectively overcome the influence of speckle noise, but 

cannot effectively segment object with large area heterogeneity 

(region IV in Figure 4), as shown in Figures 5, 6 (c1) and (d1). 

The HMRF-FCM algorithm replaces the Euclidean distance in 

the above method with a Gaussian distribution, and introduces 

spatial constraints in combination with the Markov random field 

model, greatly overcoming the influence of noise and outliers. It 

can achieve effective segmentation of different types of images, 

but there is still some segmentation noise, as shown in Figures 5, 

6 (e1) - (e3). According to Figures 5, 6 (f1) - (f3), it can be seen 

that the proposed algorithm can further overcome the impact of 

different types of noise such as large area heterogeneity and 

speckle on segmentation results. There is almost no salt and 

pepper noise in homogeneous regions, and the boundaries of 

homogeneous regions are relatively smooth. The segmentation 

effect has been greatly improved. 

(a1) (b1) (c1) (d1) (e1) (f1) 

(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 

Figure 5. Segmentation results of real remote sensing images. (a1)-(a3) FCM, (b1)-(b3) FCM_S, (c1)-(c3) FLICM, (d1)-(d3) 

RFLICM, (e1)-(e3) HMRF-FCM, (f1)-(f3) The proposed algorithm. 

(a1) (b1) (c1) (d1) (e1) (f1) 

(a2) (b2) (c2) (d2) (e2) (f2) 

(a3) (b3) (c3) (d3) (e3) (f3) 

Figure 6. The overlapping images of real remote sensing images. (a1)-(a3) FCM, (b1)-(b3) FCM_S, (c1)-(c3) FLICM, (d1)-(d3) 

RFLICM, (e1)-(e3) HMRF-FCM, (f1)-(f3) The proposed algorithm. 
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Table 3 shows the quantitative evaluation results of real remote 

sensing image segmentation. From Table 3, it can be seen that 

Figure 4 (a1) is affected by the large-scale heterogeneous noise 

in region IV, and the segmentation accuracy of each algorithm 

is relatively low. HMRF-FCM can improve the accuracy from 

about 60% to 90%. The proposed algorithm corrects the fuzzy 

local factor based on probability measurement, combined with 

the hidden Markov random field model, and introduces spatial 

constraints from different perspectives, achieving a 

segmentation accuracy of 98.36%. The region I in Figure 4 (a2) 

has a large variance, which is the main factor affecting 

segmentation accuracy. With the strengthening of spatial 

constraints, the accuracy gradually increases. Figure 4 (a3) is 

affected by the inherent speckle noise in SAR images, and the 

accuracy of FCM and FCM_S algorithms is only 60%. FLICM, 

RFLICM, and HMRF-FCM can improve their segmentation 

accuracy to over 90% through spatial constraints. The proposed 

algorithm has a higher accuracy, reaching 96.56%. By 

quantitatively analyzing the segmentation accuracy of different 

types of remote sensing images, the feasibility and effectiveness 

of the proposed algorithm in real remote sensing image 

segmentation have been further verified.  

Images 

Algorithms 

FCM FCM_S FLICM RFLICM 
HMRF-

FCM 

Propos

ed 

Figure 

4(a1) 
58.90 62.59 59.20 58.62 92.09 98.36 

Figure 

4(b1) 
78.77 81.34 85.35 85.39 94.26 95.27 

Figure 

4(c1) 
56.65 60.67 93.62 94.30 95.60 96.56 

Table 3. Quantitative evaluation of real remote sensing images. 

(Overall accuracy: %) 

4. Conclusion

In this paper, a remote sensing image segmentation algorithm 

based on probabilistic fuzzy local information clustering is 

proposed. The dissimilarity is modeled based on probability 

measures to describe the random distribution characteristics of 

data. The modified fuzzy local factor is modeled by the local 

coefficient of variation and probability measures, which can 

more accurately describe the local features. In addition, 

combining the hidden Markov random field theory to model the 

prior probability and establishing the KL maximum entropy 

regularization term, it can further strengthen the spatial 

constraint effect. Through qualitative and quantitative analysis 

of simulated images and different types of real remote sensing 

images, the proposed algorithm's noise resistance and 

robustness have been effectively verified. In future research, it 

is planned to extend this algorithm to the object-oriented level 

to expand its application in high-resolution remote sensing 

image processing on a large regional scale. 
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