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Abstract 

 

Scan-to-BIM is a widely-used approach to generate Building Information Modelling and by extension Digital Twin models in the 

architecture, engineering, and construction sector. The resulting models need to be as accurate as possible to ensure subsequent 

activities that make use of them can do so effectively. Quality assessment of point clouds and occlusion assessment of BIM 

outputted from Scan-to-BIM has been investigated. However, Scan-to-BIM systems currently do not provide proper metrics as to 

the confidence the user can have in the quality, in particular geometric quality of the outputted model. This paper addresses this 

gap by introducing a confidence index, for analysing the reliability of the generated 3D models and thereby quantifying the 

confidence the user can have in them. Index of confidence is itself derived from three more specific indices: index of coverage 

estimates the portion of the surface of the modelled element that is explained by the input point cloud. Index of distribution estimates 

how well the points explaining the modelled surfaces are distributed around the overall object’s surface. Index of distance defines 

the closeness of the generated element models to the input point cloud. The proposed indices are assessed using three real examples, 

demonstrating their adequacy. 

1 Introduction 

Digital twinning of built environment assets is a modern data-

driven process with benefits to improve performance and 

productivity within the Architecture, Engineering, and 

Construction (AEC) industry. It affords a multi-dimensional 

view of how an asset will perform by simulating, predicting, 

and making decisions based on real-world conditions (Boje et 

al., 2020).   Use cases of digital twins (DTs) in the built 

environment and construction sector include the monitoring 

and optimization of construction project execution Deng et al. 

2021), building energy usage (Zhao et al. 2021) and space 

utilization (Wang et al., 2022). A built environment DT is 

commonly built from a Building Information Model (hereafter 

`BIM model'), that contains geometric and some semantics 

(such as element materials) that can be used to support the 

envisioned use cases (I. Giannakis et al., 2015). 

In the context of developing BIM models from existing 

buildings (e.g. for refurbishment or renovation), best practice 

in industry follows a process commonly called Scan-to-BIM. 

This process uses as input the dense point clouds that can 

nowadays be obtained using 3D Laser Scanning (LS) or 

structure-from-motion (Pantoja et al., 2022).  

The analysis of the point cloud data and modelling of the 

building asset are then commonly done manually, although 

significant efforts are currently put in automating these as much 

as possible. Scan-to-BIM point cloud analysis and modelling 

typically entails the steps of point cloud cleaning and 

denoising, possibly segmentation of the points into subsets that 

correspond to individual elements, and finally the modelling of 

those elements from those subsets (Rashdi et al., 2022). Despite 

the benefits afforded by laserscanning and SFM technologies 

and the extensive research in academia and industry to develop 

automatic Scan-to-BIM algorithms ( Thomson & Boehm, 

2015), the generation of BIM models remains challenging due 

to the complexity and diversity of building geometry, and the 

common high levels of clutter existing in occupied buildings. 

The resulting models need to be as accurate as possible to 

ensure subsequent activities that subsequently make use of 

them can do so effectively. Guaranteeing the completeness and 

accuracy of BIM models generated through Scan-to-BIM 

processes (manual or automated) is thus important. In previous 

research and current practice, people have mainly been doing 

this manually. For example, Skrzypczak et al. (2022) compare 

the lengths from total station measurements and the BIM model 

generated from Scan-to-BIM approach. But, comparisons like 

this one are established to check quality manually for the 

purpose of academic assessment and cannot be generalised for 

use in practice. In industry, users would usually visually check 

the adequacy of the model by overlapping it with the point 

cloud, sometimes by also colour-coding the point according to 

their distance to the model in order to get a sense of where any 

potential error may exist. But, this method is highly subjective, 

time-consuming (and therefore expensive) and prone to human 

error due to the quantity and variety of elements to check and 

the complexity of the scenes (especially when there is 

significant clutter). 

Reducing this tedious, manual and fairly unreliable work could 

be achieved if some algorithms could jointly analyse the input 

data (point cloud) and output data (BIM model) and report 

some level of confidence for the modelling of each element in 

the outputted model such as the indicators which Malihi et al. 

presented  (Malihi et al. 2023). Geometric quality assessment 
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of BIM outputted from Scan-to-BIM is investigated in 

(Bonduel et al. 2017) in two macro and micro scales. Occluded 

zones and non-modelled objects for complete building or its 

parts in macro scale and indication of the geometric accuracy 

of BIM objects in micro scale were analysed. Rebolj et al. 2017 

addressed the relation between levels of point cloud quality and 

element identification for Scan-to-BIM.  

 In this paper, we explore one such algorithm that computes an 

index Iconfidence assessing the reliability of the modelling of each 

element generated by a Scan-to-BIM algorithm, focusing on 

geometrical fitness. Iconfidence is itself the result of combining 

three sub-indices: Icoverage, Idistribution and Idistance that measure 

three distinct characteristics of how well the outputted model is 

explained by the input data. 

The proposed indices are introduced in Section 2. Section 3 

then reports experimental results on their evaluation using 

some real case studies. Finally, the results are discussed and 

avenues for future work suggested in Section 3. 

2 Method 

This section presents the method proposed to calculate the level 

of confidence in BIM models outputted by Scan-to-BIM 

processes. Three underpinning indices are defined Icoverage, 

Idistribution and Idistance, alongside the overarching index Iconfidence 

that integrated them. These can be computed for any element 

in the outputted model. 

2.1 Index of coverage 

Icoverage aims to capture how much of the modelled 3D surface 

of a given element in the outputted model is explained by the 

input point cloud data. One quantitative measure of this 

consists in homogeneously discretizing the element's surface 

and checking if some points from the input point cloud lay in 

the neighbourhood and describe that discrete surface. 

A practical way to implement this is to use space voxelization, 

which achieves good results for modelling and replicating real-

world for digital twin. First, for each modelled element, a 

voxelization is performed in its bounding box, with a resolution 

of 𝛿 (e.g. 𝛿 = 2.5cm) considering the resolution of the point 

cloud and the limit of surface boundary accuracy. The scale of 

modelling affects the level of details of the modelled surfaces. 

The size of bounding boxes and the resolution of voxelization 

are defined to evaluate the coverage of major elements of the 

BIM model.  

The set of voxels intersecting the element mesh is then found 

(we use the method described in (Open3D)); we call this set 

γm. Then, we identify the subset of voxels in γm that also 

contain points from the point cloud. Points are searched inside 

the voxels. The centre of each voxel is the base of this search. 

KD tree structure is used to partition this space and efficiently 

search the set of points falling within each voxel. We call this 

second set γc. We then define Icoverage as: 

𝐼𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
 |𝛾𝑐|

|𝛾𝑚|
             (1) 

where |. | is the cardinality operator. Icoverage takes values 

between 0 and 1, with 1 indicating that the entire surface of the 

element’s mesh has matched scanned point in its vicinity, i.e. 

within 𝛿 distance. 

2.2 Index of distribution 

While Icoverage much how much of the surface is explained by 

the data, it fails to capture which parts of the element’s surface 

are explained, for example, whether the surface parts explained 

are all on one side of the element or not. Idistribution addresses this 

gap by examining the distribution of point cloud data around 

the element. This can be indirectly done by looking at the 

distribution of the points explaining the element’s surface, 

according to the normal directions of the surface locally.  

Number of points in 8 directions is computed by clustering 

normal vectors of voxelized point cloud and mesh. The voxels’ 

normal vectors are intersected with the  𝑋 − 𝑌 plane and then 

grouped in 8 orientation ranges (each covering 45º). Idistribution is 

then calculated according to the difference of distribution of the 

as-built and as-designed normals: 

𝐼𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 1 − 𝛼 ∑ |
𝐷𝑖

∑ 𝐷𝑖
8
𝑖=1

−
𝐵𝑖

∑ 𝐵𝑖
8
𝑖=1

|8
𝑖=1 ,       𝛼 = 1/2     (2) 

where Di [resp. Bi] is the number of as-designed [resp. as-built] 

voxel normal vectors that fall in the orientation range i. 

2.3 Index of distance 

Icoverage and Idistribution capture how much of and with what 

distribution around it the modelled surface is explained by the 

point cloud, but they do that in a somewhat coarse way, using 

voxelization. They thus do not capture how closely the 

modelled surface matches the point cloud. To fill this gap, 

Idistance takes the set of points that are in the voxels in γc, 

calculate their closest (orthonormal) distance to the element, 

and then compute Idistance as follows: 

𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1.0 .𝑛1+0.5 .𝑛2+0.25 .𝑛3+0.125 .𝑛4+0.0625 .𝑛5

𝑛
           (3) 

where  𝑛1 is the number of thepoints in γc that are within (
1

5
) 𝜎 

distance to the mesh; 𝑛2 is the number of points in γc that are 

between (
1

5
) 𝜎 1 and (

2

5
) 𝜎 distance to the mesh; 𝑛3 is the 

number of points in γc that are between (
2

5
) 𝜎 and (

3

5
) 𝜎 

distance to the mesh, 𝑛4 is the number of points in γc that are 

between(
3

5
) 𝜎  and (

4

5
) 𝜎 distance to the mesh, and finally 𝑛5 is 

the number of points in γc that are between (
4

5
) 𝜎 and 𝜎 distance 

to the mesh. All points whose closest distance to the element is 

larger than 𝜎 are discarded. 

Calculation of the distance of a cloud point to the element can 

easily be done by converting the element’s surface geometry 

into a mesh. The calculation of the distance then requires the 
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calculation of the distance between it and every triangle of the 

mesh, which is done by projecting the point on the plane 

defined by the triangle from which the orthogonal distance is 

obtained. But, this distance is valid only if the projected point 

is located inside this triangle. Finally, the closest orthogonal 

distance of the point to the element is set as the shortest of all 

its distances to all the element mesh triangles. Idistance also takes 

values between 0 and 1, with 1 indicating that all the points are 

very close to the element (within (
1

5
) 𝜎 distance). 

3 Experimental Validation 

3.1 Experimental Data and Setup 

 Two case studies are used for validating the proposed indices:  

● Kripis House:  A two-storey house located in 

Thessaloniki, Greece. The house is furnished, but the 

interior is not very cluttered. For this case study, a 

coloured point cloud of the whole house (exterior and 

interior) was captured using a terrestrial laser scanner 

Faro Focus 150s, and subsequently subsampled to a 

density of 1 pt/cm3.  

● Bilbao Building: One of the floors of a multi-storey flat 

building in Bilbao, Spain. Each floor contains four flats. 

A story of the building was captured fully by terrestrial 

laser scanning. In contrast to the Kripis House, the Bilbao 

environment is cluttered because the building was 

scanned when fully inhabited. It contains wardrobes, 

cupboards and other pieces of furniture and personal 

belongings inside rooms, resulting in significant levels of 

occlusion, which challenge Scan-to-BIM processes. 

Two Scan-to-BIM processes were then applied to these 

datasets: 

● Manual Scan-to-BIM: Modelling was done manually by 

a professional BIM modeller using standard commercial 

software. This method was applied to both the Kripis 

House data only. 

● Automated Scan-to-BIM: Modelling was done 

automatically by the algorithm proposed by Valero et al., 

(2021) that generates an IFC model containing the main 

architectural elements (floors, walls, openings, spaces). 

This method was applied to both the Kripis House and 

Bilbao Building data. 

Figure 1 gives an overview of the Kripis House dataset, while 

Figure 2 gives an overview of the Bilbao Building dataset. 

It is important to highlight that the proposed indices are 

agnostic of the Scan-to-BIM method employed. The Scan-to-

BIM methods employed in this paper are thus used only for 

illustrative purposes. However, they enable the comparison of 

the current industry best practice (i.e. manually by a 

professional BIM modeller) and some automated approaches 

(which are more likely to be defeated in more complex 

situations).  

The validation reported in this paper focuses on the walls, as 

walls are the most frequent elements in the models. In order to 

assess the adequacy of the proposed indices to capture and 

quantify the confidence in modelling, a measure of wall 

modelling quality needs to be used and evaluated 

independently. With our focus on walls, we select wall 

thickness error as proxi to measure modelling quality where we 

have manually measured the thickness of each wall in the 3D 

point cloud data and computed the modelling error as the 

different between the carefully manually measured thickness 

and that of each modelled wall (whether modelled using the 

Manual Scan-to-BIM or Automated Scan-to-BIM methods). 

3.2 Results and Discussion 

Figure 3, Figure 4 and Figure 5 report the results obtained for 

the three evaluation cases: Kripis House + Manual Modelling, 

Krispis House + Automated Modelling, and Bilbao Buiding + 

Automated Modelling. For each case, the figures contrast 

Icoverage, Idistribution and Idistance obtained for all wall elements with 

the thickness modelling error for those walls. Since wall 

thickness error is used here as a proxy metric for wall modelling 

quality, this enables us to assess whether those indices are good 

predictors of modelling error or more exactly of the confidence 

in the modelling.  

Note that in this experiment we use 𝛿 = 2.5 cm, and as a result 

red vertical lines are inserted in the Icoverage graphs at the 

thickness error 2𝛿 (i.e. 5 cm). These lines are important for the 

analysis for the following reason. Assuming the wall is 

modelled (approximately) at the right location but with a 

thickness error larger than  2𝛿, then the number of points within 

𝛿 of each wall side, and as a result the value of Icoverage, should 

be much lower. In other words, we should see a drop in the 

Icoverage for values of thickness errors larger than  2𝛿. This 

appears to be the case in all three cases, although maybe not as 

sharply as expected. Notwithstanding, it can be noted that even 

for walls with small thickness modelling error, Icoverage have 

values that span a large range. This is because a wall may be 

modelled perfectly both if its surface is fully visible or if only 

a small part of its surface is visible (for example due to clutter). 

There is also the possible case that a wall is modelled with the 

right thickness but at the wrong location, in which case less 

point will fall with 𝛿 of the surface and thus Icoverage is low. Note 

that this behaviour of Icoverage is good, since it means it captures 

modelling error, and would be a good predictor of low 

confidence in modelling in that case. 

Looking at Idistribution, it similarly appears that it generally 

increases with modelling quality. In other words, cloud points 

covering parts of the model with more various orientations tend 

to lead to better modelling outcomes (as expected), and 

Idistribution seems to capture that well. This is particularly clear in 

the case of the Spanish Building + Automated Scan-to-BIM 

and Kripis House + Automated Scan-to-BIM experiments. For 

the Kripis House + Manual Scan-to-BIM experiment, the 

results are less obvious because the modelling error is in most 

cases lower than 4cm. Nonetheless some outliers appear in this 
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experiment (1 outlier) and in the Kripis House + Automated 

Scan-to-BIM experiment (3 outliers). These are discussed 

further below. 

Table 1 shows, for seven example walls: the modelled wall, the 

point cloud used for the modelling, the wall thickness 

modelling error, and the computed indices. The example walls 

were selected for representing various combinations of index 

values and modelling quality, and are ordered according to their 

thickness modelling error. Walls (a) (b) and (c) may be 

considered to have a reasonable error (≤ 2cm), while the other 

ones have more problematic levels of errors, in particular (f), 

(g), (h) and (i) having significant errors.  

Examples (a) and (b) show two walls with good modelling 

quality (at least in terms of thickness error) and reasonably high 

Icoverage values. The main difference however is that it can be 

seen that wall (b) is modelled with fewer points coming from 

one side of the wall, which should be highlighted to the user 

(for them to check) because it should lead to a reduced 

confidence in the modelling outcome. This difference is 

captured well by Idistribution that is reasonably high for wall (a) 

but lower for wall (b). Wall (c) presents a similar case but with 

much lower Idistribution  which is due to very few points 

matched on the one side of the wall. 

Wall (d) has indices with similar values as Wall (b) and the 

situation at first appears indeed similar. However, the 

modelling error of Wall (d) is much higher. The difference here 

is that the Scan-to-BIM method, which is Automated Scan-to-

BIM in this case, mistakenly detected the wall boundary at the 

location of the drawn curtains. However, Idistribution remains 

low which would rightly draw the attention of the user to this 

wall. 

Finally, Walls (e), (f) and (g) show three examples where 

modelling is wrong due to one of the wall faces being wrong 

identities (cf. Walls (f) and (g)) alongside various levels of 

occlusion due to clutter. 

Overall, lower Icoverage and Idistribution and to a lesser extent Idistance 

values, show some level of correlation with low confidence in 

modelling outcome (i.e., the modelling could be either good or 

bad), while higher levels show some level of correlation with 

high confidence in modelling outcome.  We have also seen that 

some walls with non-negligible modelling error may still score 

highly in one of the indices. Therefore, a logical conclusion is 

to develop an overarching index, Iconfidence, that integrates all 

three indices in a way that it can only achieve a high value if all 

three indices have high values. As a first suggestion, we 

propose: 

𝐼𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝐼𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ∗   𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝐼𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛     (4) 

The 𝐼𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  for all three experiments are shown in Figure 6 

against the wall thickness modelling errors. They show that 

Iconfidence works nicely, with a clear trend where low Iconfidence 

values really correlate with high uncertainty (i.e. low 

confidence) in modelling quality and in contrast, high Iconfidence 

values correlate with low uncertainty (i.e. high confidence) in 

modelling quality. 

Nonetheless, further improvements may still be needed to 

enhance the metric’s discriminatory performance. For example, 

it is observed that many of the modelling thickness errors, even 

for elements that still achieve reasonably good indices, arise 

from the presence of pieces of furniture or decoration in close 

proximity to the walls as well as the confusion of the algorithm 

between walls and columns. To reduce the influence of these 

points, future work could explore the use of some point cloud 

semantic segmentation algorithm, which could be used to refine 

the calculations of the indices by ensuring that wall elements 

are indeed modelled with points that are mostly labelled as 

being in the “wall” category. 

Moreover, modelling errors of wall thickness was the only 

metric which is investigated in this research. Other error 

sources can interfere in the results for example occlusion and 

visibility of walls on each side of the walls, wrong location of 

walls, non-modelled elements. Hence, uncertainty of the 

proposed metric for the proposed indicators is affected by 

errors which can not be evaluated by this metric, and it needs 

further research which opens new areas in computing 

confidence of Scan-to-BIM. 

4 Conclusion 

Users of Scan-to-BIM algorithms should be provided with 

reliable metrics of confidence for geometric modelling, so that 

they do not need to check everything manually and corrective 

works can be eased. For this purpose, we introduce indices 

related to coverage, distribution and distance that can be used 

collectively to estimate confidence of the modelling outcome. 

The    coverage and distribution indices appear to be the most 

critical, and the overall index Iconfidence shows value for use in 

practice.  

However, due to obstruction, and the presence of furniture and 

decorative items in close proximity of or onto walls, which 

contribute to reducing the index values even in cases where the 

modelling is of good quality. To further enhance the 

discriminatory performance of the proposed index, semantic 

segmentation could be employed to detect different elements 

such as desk, mirror, frame, cupboard, as well as distinguish 

columns from walls, which would then be removed before 

modelling and/or accounted for in the calculation of the 

confidence index. 
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Figure 2. Bilbao Building dataset: (a) 3D model generated manually by the BIM modeler; 

(b) plan view of one floor; and (c) the point cloud of one apartment 
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ID Modelled wall Point cloud Thickness 

error (cm) 

𝐼𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒; 

𝐼𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛; 𝐼𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

a 

  

1.8 0.76 

0.80 

0.41 

b 

  

1.8 0.68 

0.61 

0.70 

c 

 
 

3.8 0.78 

0.22 

0.72 

d 

 
 

4.5 0.63 

0.55 

0.87 

e 

  

6.8 0.42 

0.87 

0.59 

f 

 
 

12.6 0.35 

0.50 

0.32 

g 

  

27.1 0.51 

0.52 

0.66 

Table 1: Illustrative examples of results showing, for each wall: modelled wall model, point cloud used for the modelling, 

the computed indices and thickness. 
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