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Abstract 

In a construction project, the need to conduct effective and efficient material management is urgent since it takes up to 60% of 
the project budget. Most of the material tracking uses tag-based technology by attaching RFID, GPS, or UWB to the materials. 
This method is found to be effective in tracking the material in construction projects. However, there is still a manual job of 
putting the tag into each of the materials and problems related to the signal quality and infrastructure requirements. As an 
alternative way to do material tracking, point cloud processing can be used. This paper aims to develop an efficient approach to 
accurately detect concrete pipe precast material, calculate its numbers, and produce valuable data for material inventory 
management. The data was taken by a mobile laser scanner of a site-specific infrastructure project in Sydney. The resulting data was 
sparse and occluded because it was taken only from one side to replicate the actual scanning process in a construction project. The 
automated process has been conducted by matching the material based on its geometric feature of the 3D material model. The 
proposed approach can provide some spatial information such as location (x, y, z global coordinate), orientation of each material, and 
the number of materials. The result can detect up to 78.5% of the material. The difference between actual and predicted global 
coordinates is 0.75m which is acceptable for material location in a large infrastructure project. This data can be reconstructed in a 3D 
detail of the site project in the Building Information Modeling (BIM) platform in its actual location. The implementation of this 
method serves as an initial stage toward achieving synchronization between the physical construction and its corresponding digital 
twin in the field of construction. 

1. INTRODUCTION

1.1 Background 

In a construction project, the cost of materials took around 
60% of the project budget (Kar & Jha, 2020). Therefore, 
material management is crucial to be managed effectively. A 
closer look at the construction industry shows that a 
considerable amount of waste produced is rooted in poor 
management of the material supply chain (e.g. delivery services, 
inventory, communications). In this regard, the use of 
information technology (IT) is suggested to achieve better 
logistics processes and avoid delays (Irizarry et al., 2013). 
Moreover, based on (Lin and Golparvar-Fard, 2021), stable 
working assignments can be achieved when information 
regarding the location of the worker, the progress of previous 
work, and the availability of material can be provided by 
location-task visualization. Currently, the assessment of 
materials present on-site heavily relies on manual inspections, 
which can be labor-intensive, time-consuming, and prone to 
human error (Cheng and Teizer, 2013).  

Some previous well-known technologies for construction 
resources tracking include the usage of Ultra-Wide Band 
(UWB) technology (Alarifi et al., 2016), Radio Frequency 
Identification (RFID) (Shin et al., 2011), and Global Positioning 
System (GPS) (Lee and Lee, 2021). Each technology has its 
advantages and weaknesses. Previous technological solutions 
for material detection primarily revolved around tag-based 

methods. To be able to use tagging technology, each resource 
needs to be tagged first before we can track it. The flagging 
activities of the material onsite this activity still need manual 
human-involvement (Grau et al., 2009). Moreover, a specific 
infrastructure is needed to support the tagging technology such 
as Wifi, cellular-based, and Bluetooth (Alarifi et al., 2016). 

The tagging technology has been proven to be effective in 
tracking valuable materials like prefabricated concrete decks, 
heavy equipment, and personnel. However, these methods 
have not adequately addressed the detection and tracking of 
other types of materials, particularly bulk materials and big 
precast items such as concrete pipes, which are commonly 
found on construction sites and require a wider area in a 
construction site (Teizer, 2015). As a result, there is a 
significant gap in the existing technology when it comes to 
detecting and monitoring these specific types of materials. The 
application of tracking technology to support inventory 
management systems and supply chains also lacks exploration. 

In order to fill the gap, a new approach for material tracking 
systems is proposed in this research. Moving from tag-based 
technology which needs manual tagging to the resources and 
its need to build a specific infrastructure in the construction 
site, the proposed technology used to solve the material 
tracking problem is by using laser scanning and Point Cloud 
(PC) data. Nowadays, three-dimensional point clouds 
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generated from laser scanning are adopted in the construction 
industry (Q. Wang et al., 2018). Numerous applications of 
point cloud technology exist within the construction industry. 
Nevertheless, the majority of these applications are 
concentrated on construction progress monitoring (Ibrahimkhil 
et al., 2023), quality inspection (M. Wang et al., 2021), and 
operation safety (Cheng and Teizer, 2013). 

1.2 Contribution 

This research focuses on answering the research question of 
how to make the precast concrete pipe material onsite be 
automatically detected, recognized, quantified, and 
reconstructed from mobile laser scanning data in a construction 
site project. Moreover, there is a need to extract the volume, 
specific location, and orientation of the materials as basis data 
for material inventory. The project manager can get information 
on material needs by synchronizing the material inventory and 
schedule of the project. The result will of this object detection 
will be visualized in the digital model as the basis for the 
construction digital twin model.  
 

2. LITERATURE REVIEW 

Some positioning technologies such as RFID, UWB, infrared, 
ultrasonic, and ZigBee require building infrastructure 
technology such as Wi-Fi, cellular-based, and Bluetooth. 
Meanwhile, some technologies such as image-based technology 
and point cloud processing do not need dedicated technologies 
in the building (Alarifi et al., 2016). Therefore, this technology 
is gaining much attention nowadays. For instance, Kamari and 
Ham, (2021) have proposed an automated method for 
measuring the volume of bulk materials. This approach 
integrates point cloud data obtained from both photogrammetry 
and computer vision technologies to identify various types of 
bulk materials. Li and Chen, (2022) have also developed a 
computer vision-based system capable of automatically 
quantifying the quantity of densely packed steel pipes at a 
construction site from image data. While it achieves a detection 
rate of up to 95.8% for the pipes, it necessitates a substantial 
volume of data for training, which poses a challenge given the 
current scarcity of available construction site data. Despite these 
limitations, the adoption of vision-based and point cloud 
technologies has gained traction in addressing the shortcomings 
of scan-based methods, as they reduce the need for manual 
tagging and scanning, and do not require specialized 
infrastructure for data transfer.  
 
To retrieve an object detection from a 3D point cloud, generally, 
there are 3 different methods used currently i.e. simple 
geometric models, feature descriptors, and deep learning (Chen 
et al., 2019). The first method is by detecting objects using 
simple geometric shapes such as planes and cylinders from 
point cloud data. The second method includes the utilization of 
feature descriptors from an object. A descriptor is a vector of 
information/features that enables algorithms for shape retrieval 
or correspondence finding to identify a key point of an object 
uniquely. It can be divided into local descriptors and global 
descriptors. The local descriptor tries to summarize statistics of 
the object feature such as curvature, density, and normal to 
describe the neighborhoods around interest points. Meanwhile, 
the global descriptors define objects by their lengths, area, and 
angle in a single feature vector. The third method is using deep 
learning for object detection. This method requires a large 
number of objects to be trained before it can predict the correct 
type of object to be detected.  
 

Previous work has been made to identify cylinder objects from 
point cloud data. Bosché et al. (2014) tried to align the as-built 
3D point cloud of pipes scanned using TLS from the site project 
with its coordinate system in the as-planned model. An object is 
considered detected if at least 500 points from the as-built PC 
are matched with the as-planned model. The objects that are not 
matched with the 3D model are identified as occluders. For this 
method, the 3D model of as-design point cloud with its location 
is needed. Meanwhile, for material in the site project, the 
location of material is unknown. 
 
Patil et al. (2017) detect cylinder pipelines by using area-based 
adaptive Hough transform. Hough transform was used to detect 
geometric shapes such as cylinders by using a set of parameters 
such as axis direction, axis position, and radius. In this research, 
pipeline plants can be detected and automatically reconstructed 
to produce the as-built drawing. Since the algorithm needs to 
detect the edge of the point cloud and use a voting mechanism 
to determine the best fit of the cylinder, a dense and complete 
point cloud is needed to make sure that the pipes can be 
segmented and detected. While Czerniawski et al. (2016) filter 
pipe spool from cluttered point cloud by using curvature-based 
shape descriptor and Bag of Features (BoF) to compare the 3D 
3D model point cloud with the actual point cloud. The 
algorithm can extract pipe spools and differentiate between 
similar pipes from the same point cloud. In both of this 
research, the point cloud was scanned by TLS resulting in a 
dense and complete point cloud. Meanwhile, the data resulting 
from mobile laser scanning is usually not complete and 
occluded. 

Current research on point cloud processing mostly uses 
Terrestrial Laser Scanning (TLS) from more than one angle 
which results in a dense and complete point cloud. Meanwhile, 
the data from the actual construction site taken by a mobile 
laser scanner is sparser and more occluded (Bienert et al., 
2018). In addition, current point cloud research is more 
focused on object detection from a computer science point of 
view. The evaluation criteria mostly rely on recall (count 
accurately identified objects belonging to a specific class of 
interest), precision (correct identification of objects within all 
data predicted for a particular class) and mean average 
precision. Meanwhile, a new parameter of point cloud 
processing which is more related to construction project 
management is needed (Xu & Stilla, 2021). Other semantic 
data such as location, number of materials, and orientation also 
need to be tracked for material tracking and visualization 
purposes.   

3. METHODOLOGY 

The proposed methodology aimed to achieve material tracking 
DT in construction projects. This approach leverages 
construction-specific point cloud data and is projected as a 
viable substitute for material tracking that does not rely on tag-
based techniques. A Fast Point Feature Histogram (FPFH) 
combined with the Random Sample Consensus (RANSAC) 
method was used to extract the feature from concrete pipe 
material and evaluate the geometric feature of the detected 
object. This method was chosen to balance a simple algorithm 
to detect the pipes and calculate their number to support 
material tracking. 
 
Figure 1 illustrates the framework of the material detection from 
construction site and material reconstruction into 3D digital 
model. A mobile laser scanning system traveled through the 
construction site to capture data, resulting in the creation of a 
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point cloud. Subsequently, this construction site point cloud 
served as input for a geometric feature detection algorithm. The 
algorithm can determine both the quantity of materials and their 
respective locations from GPS. This data, presented in 
spreadsheet format, then was used as input to visualize the 

materials within the Building Information Model (BIM). Since 
the generated locations were specified in terms of global 
positioning, the BIM model must be synchronized with its 
global coordinates. The result of this methodology is a 3D 
visualization of the material in 3D BIM format.

1. Geometric Feature 
Extraction

Obtain source Point Cloud 
from 3D design model

2. Global and Local 
Registration 3. Geometric Evaluation

Data pre-processing (Noise 
reduction, normal 

calculation, voxelization)

Compute the geometric 
feature of object (FPFH)

Global Registration using 
RANSAC algorithm

Local Registration using 
Iterative Closest Point (ICP)

Evaluate shape of 
registered point cloud

Evaluate radius/geometric 
representation of the object

Compare normal between 
registered and design Point 

Cloud

4. Location and Orientation 
Detection

Obtain number of object 
(volume)

Obtain global Coordinate of 
each object

Obtain orientation of each 
object

5. Point Cloud 
Reconstruction

Sycnhronize object and its 
coordinate

Obtain location of project 
(open source mapping)

Reconstruct Point Cloud in 
its location

Material Detection from Actual Site Project Material Reconstruction to 3D Model

 
Figure 1. Framework of Material DT 

To obtain material tracking from point cloud data, the 
proposed workflow consists of five modules as follows: (1) 
geometric feature extractions of the material from the 3D 
object, (2) global and local registration of the material, (3) 
geometric evaluation of the registered object, (4) location and 
orientation detection of the material, and (5) reconstruction of 
the point cloud into a 3D model.  

3.1 Geometric feature extractions of the material from 
a 3D model 

A 3D point cloud data was taken from mobile laser scanning 
to provide us with the actual condition of the site project. The 
retrieved data is large, noisy, and mostly occluded. This data 
served as a location to search for the construction material 
and further will be mentioned as ‘target’ point cloud in 
Figure 2. From the actual site condition, the objective of this 
study is to find an object of interest material to be detected 
without knowing prior information about the material 
location. A 3D model of the construction material will be 
used as the source data for the registration step and will be 
further mentioned as ‘source’ point cloud in Figure 2.  

 
Figure 2. 3D pipe as a source point cloud (above-left) and 

construction area as a target point cloud (below-right) 

Since the material was expected to be above the ground, 
removing the ground point was the first preprocessing step 
conducted to reduce the number of point clouds. This was 
done to decrease the volume of point cloud information. 
Subsequently, a down-sampling technique was employed to 
achieve a uniform distribution of the point cloud data. Down-
sampling is a method utilized to reduce the data volume 
while retaining the geometric and semantic characteristics of 

the point cloud (Qiu et al., 2022). The point cloud was 
sampled by using voxel-based method. The size of the voxel 
was 8 cm. The result of downsampling made the point cloud 
data becomes uniformly distributed. 
 
For geometric feature extraction, a robust method called Fast 
Point Feature Histograms (FPFH) (Rusu et al., 2009) was 
employed to characterize the local geometric properties 
surrounding a given point p in the source point cloud. 
Through the nearest neighbour query in the 33-dimensional 
space, points with similar local geometric structures are 
retrieved. The computation of these structures was based on a 
combination of specific geometric relationships among p's 
closest k neighbours. These relationships encompass the (x, 
y, z) 3D point coordinates and the estimated surface normal 
(nx, ny, nz) of the points, but they can be expanded to 
accommodate other properties like curvature, 2nd order 
moment invariants, and other properties.  
 
3.2 Global and local registration of the material  

Registration is a process to find a transformation estimation 
between two-point cloud (Huang et al., 2021). In order to find 
the object of material in a noisy point cloud, a registration 
process was used to match the object from a source point 
cloud in the target point cloud. A global registration process 
was used as this method does not require a rough alignment 
as the initialization. The global registration process usually 
produces less tight alignment results and is used as the 
initialization data for the local registration process. 
 
For the global registration stage, a Random Sample 
Consensus (RANSAC) iteration was used (Fischler & Bolles, 
1981). This is a popular algorithm for robust estimation in 
computer vision problems (Raguram et al., 2008). In each 
RANSAC iteration, 3 random points were picked from the 
source point cloud. Their corresponding points in the target 
point cloud were detected by querying the nearest neighbor in 
the 33-dimensional FPFH feature space. A pruning step took 
fast pruning algorithms to quickly reject false matches early. 
There are two pruning algorithms used.  The first one was a 
correspondence checker based on distance. This algorithm 
checks if the aligned point clouds are close to each other in 
less than a threshold which is 1.5*voxel size = 12 cm.  The 
second algorithms were correspondence checker based on 
edge length. This algorithm checks if the length of any two 
lines formed by two vertices individually drawn from source 
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and target point cloud are similar. The algorithm checked that 
||edgesource|| > 0.9*||edgetarget|| and ||edgetarget|| > 
0.9*||edgesource||. Only matches that passed the pruning step 
were used to compute a transformation, which was validated 
on the entire point cloud.  
 
For performance reasons, the global registration was only 
performed on a heavily down-sampled point cloud. The 
results were also not tight. We used Point-to-plane Iterative 
Closest Point (ICP) (Rusinkiewicz & Levoy, 2001) to further 
refine the alignment and call this stage as local registration. 
The result from global registration was used as the initial 
pose for the ICP Step. The ICP algorithm found 
correspondence for each point in the source point cloud into 
the closest point in target point cloud by using nearest 
neighbor search. Then, it computed the transformation 
(rotation and translation) that minimize the mean squared 
error between the matched points. After the least mean 
squared error found, the algorithm applied transformation to 
all points in the source point cloud. By conducting the global 
and local registration process, a pipe would be matched 
between the source and the target point cloud and would be 
referred to as a registered object or detected pipe.   
 
3.3 Geometric evaluation of the registered object 
Once the pipe has been detected, some steps were be 
conducted to check if the registered object matches the 
dimension of the concrete pipe in the object of interest. The 
registered object was evaluated individually by separating it 
from the rest point cloud data. Firstly, for each registered 
point cloud, a RANSAC-based cylinder fitting was done to 
check the radius, center point, and axis of the cylinder. The 
second important geometric evaluation is to check the normal 
angle differences of the detected pipe with its 3D model. The 
procedure started by extracting the detected pipes and finding 
k-nearest neighbors (KNN) for each point in the detected pipe 
and the 3D model. For each point and its corresponding point 
detected, we calculate the angle difference between them. 
This step aimed to determine if the detected point cloud has 
the same shape as the 3D model. 
 
3.4 Location and orientation detection of the material 

From various iterations, not all point clouds can be classified 
as pipes based on the previous geometry evaluation. For the 
group of point clouds that have successfully passed all the 
thresholds, we designate them as detected pipes and calculate 
their properties. Through cylinder fitting, each pipe is 
assigned its center coordinate and axis/orientation. The center 
coordinates are considered local coordinates. The mobile 
laser scanner plays a crucial role in providing accurate GPS 
coordinates for each point cloud. By having a global 
coordinate of one reference point, we can have the global 
coordinate of the material center point by calculating its 
distance difference.   
 
3.5 Reconstruction of the point cloud to the 3D model 

The concrete pipe detection process yields valuable 
information, including the number of pipes, their orientation 
(axis), and their global coordinates. Additionally, it captures 
the crucial timestamp of each scanning operation, which is 
essential for the reconstruction process. This timestamp 
ensures that data confusion between successive scan results is 
avoided, guaranteeing the accuracy and integrity of the 
reconstructed data. Since each material has its global 

coordinate, the visualization can be done by using the actual 
coordinate in BIM-based visualization software. The actual 
site project location obtained from open-source mapping data 
and the material can be placed in its real location. The 
visualization of material aimed to give information to the 
project manager about the location and inventory of material 
available on the site project.  
 

4. CASE STUDY 

As a case study, a construction site from the Sydney Gateway 
project was selected to implement the proposed methodology. 
The data collection was conducted using the Green Valley 
International Mobile Laser Scanner with the specification 
mentioned in Table 1. The described methodology was 
implemented in a Python environment on a PC with the 
Processor Intel(R) Core (TM) i9-7940X and installed RAM 
128 GB. The primary library utilized for 3D processing was 
Open3D library (Zhou et al., 2018). For this case study, a 
precast pipe concrete was used to check the robustness of the 
methodology. As a source point cloud, a 3D model of the 
material that will be detected can be seen in Figure 3.  
 

Criteria Specification 
Laser Sensor XT32 
Range Accuracy ±3cm 
Vertical Field of View -16o ~ 15o 
Horizontal Field of View 0o – 360o 
Maximum Range 120 m 

Table 1. Mobile Laser Scanner Specification 
 

 
(a)  

 
(b)  

Figure 3. Model of concrete pipe. (a) Size of 3D pipe, ID = 
1.74 m (r = 0.87 m), OD = 1.96 m (r = 0.98 m), A = 2.18 m (r 
= 1.09 m); (b) 3D model of the concrete pipe as source point 

cloud 

4.1 Preprocessing 

The first preprocessing step was by removing the source 
ground points (Figure 2) as most of the material onsite will be 
located above the ground. The result of ground point removal 
and the pipe numbering can be seen in Figure 4a. This 
process was conducted using open access PDAL library for 
ground filtering (Butler et al., 2021). The next step is to do a 
down sampling and normal estimation. Down sampling is a 
process to reduce the amount of data without losing point 
cloud geometric and semantic features  (Qiu et al., 2022). The 
point cloud is sampled by using voxel-based method with 8 
cm voxel size. The proper voxel size should be determined 
based on the project characteristics. If the project contains 
many small components, a smaller voxel size should be taken 
to avoid losing object characteristics. The result of down 
sampling makes the point cloud data becomes uniformly 
distributed.  
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4.2 Material Detection from Actual Site Project 

This step was started by calculating the geometric feature of 
the concrete pipe. To find the matching pipe, the RANSAC 
iteration for global registration was set to be done into 
maximum 5 million iterations with the threshold fitness 0.7. 
If the maximum iteration is achieved but the threshold of 
fitness is below the target, the algorithm will continue to ICP 
local registration. This is because the point cloud data is 
sparse and not all the object has enough point cloud to reach 
70% of the source point cloud. The result of this stage is a 
detected pipe from a target area (Figure 4b).  

(a) Ground point removal, 
voxelization, and geometric 

feature extraction 

 
 
(b) Detected pipe from global 
and local registration 

Figure 4. Stages of concrete pipe detection. 

If the fitted cylinder had a radius between 0.8 to 1.4 meter, 
the cylinder is counted as well-aligned. The actual radius of 
inner diameter (ID) of the pipe is 0.87 meter, and the radius 
of outer diameter (OD) is 0.98 meter, it also has a bigger 
diameter (A) in one side of the pipe which has a 1.09-meter 
radius (Figure 2). Since the RANSAC algorithm will estimate 
the radius from random points in the point cloud, it can detect 
the inner, outer, or even the bigger diameter on one side of 
the pipe. Therefore, the threshold was made not too tight, 
namely 0.8 meters to 1.4 meters. To get this threshold, a 
visual check was carried out to ensure that the detected pipe 
was indeed the desired pipe. 

 

(a) Example of normal of 
well-aligned pipe 

 

(b) Example of normal of not 
well-aligned pipe 

Figure 5. Geometric evaluation of the registered object. 

The next step was a calculation of the normal between the 
registered point cloud and comparing it with the normal of 
the 3D model. Figure 5a shows normal from a well-aligned 
pipe and Figure 5b shows an example of normal from a not 
well-aligned pipe. The angle differences between both were 
then calculated and plotted to a graphic in Figure 6a. Since 
the angle differences were mostly dense at 0.05 degrees, this 
value becomes the threshold. If the registered point cloud had 
angle differences more than 0.05 degrees below 55%, the 

point can be categorized as the pipe of interest. The smaller 
the angle difference means that the two-point clouds have 
high similarity. Figure 6a shows the plot of the angle 
difference for each point in the object. When the object has 
many similarities, the plot of the angle difference is denser 
below the 0.05-degree axis (black line). Two groups of 
clouds that were not too similar resulted in a sparse normal 
angle difference plot as shown in Figure 6b. 
 

 
(a) Angle differences 

more than 0.05 
degrees = 37.24% 

 
(b) Angle differences 

more than 0.05 
degrees = 56.05% 

Figure 6. Angle differences between detected pipe with the 
3D model. 

4.3 Material Reconstruction to 3D Model 

To obtain the global coordinates of each pipe, a reference 
point with a known global coordinate was utilized as a 
reference plot. The grid coordinate of the reference point was 
verified using Cloud Compare software. To achieve accurate 
location data, the coordinates were then transformed into 
geographic coordinates through the service provided at 
https://geodesyapps.ga.gov.au/grid-to-geographic. The 
distance between the center point of the pipe and the 
reference point was subsequently measured. By combining 
this distance with the global coordinate of the reference point, 
the global coordinate of the registered point cloud could be 
determined (Figure 7a). 
 
After validating the identified pipe, the radius, center, and 
orientation (axis) of the pipe were computed. Subsequently, 
the group of registered pipe points was removed to minimize 
the chances of detecting the same pipe twice and to simplify 
the subsequent processing stage. This removal of registered 
pipe points was marked as the ending of each iteration in the 
material detection process. The entire process was then 
repeated, starting from global and local registration and 
geometric evaluation to detect any remaining pipes until no 
more pipes were detected. Figure 7b displays the outcome at 
the completion of the looping process. The visual observation 
of the point cloud reveals that multiple detected pipes have 
been intentionally removed from the data. 

 
(a) Reference point (green) and 
the center of detected pipe (red) 

 
(b) Final result after the pipes 
have been detected. 

Figure 7. Point Cloud after Processing Material Visualization 
 
Once the algorithm completed its looping process, it 
successfully acquired the data for each pipe, including the 
global coordinates and axis orientation. In Figure 8a, the 
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actual construction site location was obtained using CAD 
Mapper software. This data was then imported into Revit 
2022 software, which serves as the primary tool for 
visualization. To streamline and automate the visualization 
process, the global coordinate and axis data for each pipe 
were exported into an Excel file. This Excel file served as the 
data source for Dynamo BIM, a visual programming tool 
used within Revit software. The result of visualization can be 
seen in Figure 8b.  

 
(a) 

 

 
(b) 

Figure 8. Visualization of the Material. (a) Actual location of 
site project; (b) Material in its exact location 
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Table 3. Difference between Actual Global Coordinate and 

Predicted Global Coordinate 
4.4 Result 

The performance and accuracy of the proposed object 
detection method were assessed using real experimental data 
from one construction site. The area contains concrete pipes 
of the same size. From 14 pipes presented, there were 11 
pipes (i.e., 78.5%) detected using the proposed methodology. 
Additionally, the number of pipes, their radius, axis, angle 
differences and center were automatically detected and are 
summarized in Table 2. Pipes number 7, 12 and 13 were not 
detected as the point cloud is very sparse. The results, in the 
form of an Excel file, served as the foundation for 3D 
reconstruction and data for material inventory purposes. 
 
The prediction of the global coordinate was taken by 
transforming the center of each pipe which is a local 
coordinate into the global coordinate using the transformation 
matrix from a known reference point. To check the precision, 
a difference between predicted and actual global coordinates 
was presented in Table 3. For pipe location tracking, a high 
degree of precision in the order of millimeters or centimeters 
is not essential. Detecting and visualizing the pipe's location 
in the 3D virtual model with an accuracy within a range of 1 
meter is deemed adequate. In this study, the average disparity 
between the actual and predicted coordinates of the pipe was 
found to be 0.75 meters. Project managers can effectively 
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utilize this information, including the material's location and 
volume, to facilitate their tasks. This finding aligns with the 
conclusions of prior research by Cheng et al., (2011), which 
emphasized that meter-level accuracy is generally sufficient 
for the majority of construction project tasks. 
 
The use of geometric feature extraction for material tracking 
in construction projects presents a promising alternative to 
traditional tag-based methods. By offering advantages over 
its predecessor, this approach addresses the limitations of tag-
based tracking particularly for less valuable precast materials 
like concrete pipes and boxes, which require a large storage 
area and have a substantial impact on the success of project 
activity. By processing the point cloud, one can acquire the 
number of the precast material, its orientation, and actual 
coordinates which helps to locate the materials. Although 
obtaining point cloud data can be expensive, this approach 
offers significant benefits for a large construction project that 
already uses point cloud technology for monitoring progress. 
Furthermore, it takes advantage of additional surrounding 
point cloud data that is usually overlooked, enhancing the 
tracking process.  
 
In comparison to conventional tag-based approaches, 
utilizing 3D point cloud data processing for material tracking 
presents several advantages. Notably, it eliminates the 
dependence on specific building infrastructure technologies 
like Wi-Fi, cellular-based, and Bluetooth, thereby offering a 
more flexible and adaptable solution. Additionally, this 
method alleviates the need for manual tagging to the material 
during a construction project, streamlining the tracking 
process. It is therefore suitable for both indoor and outdoor 
use.  
 

5. CONCLUSION 

This research focuses on the application of 3D point cloud 
technology for onsite precast concrete pipe object detection 
from a mobile laser scanner. The study proposes a material 
tracking method as an alternative to the conventional tag-
based approach commonly employed in current construction 
projects. A case study was conducted on a site containing 
concrete pipes, where the proposed method successfully 
detected 11 out of 14 pipes with a precision rate of 78.5%. 
Some objects that were not detected are not complete and 
occluded.  Therefore, they cannot be detected as a pipe. 
Moreover, the predicted location of the pipes was within 0.75 
meters of their actual positions, which is acceptable for 
material tracking in a large construction project.  

 
The newly developed method effectively eliminates the 
manual labor involved in tagging materials. It eradicates the 
need for scanning tagged items and significantly reduces the 
necessity for supporting infrastructure to facilitate signal 
transfer from the tags. By conducting scans of a construction 
site using a mobile laser scanner, 3D point cloud data is 
generated. The proposed method employs geometric feature-
based algorithms for object detection to extract meaningful 
information. It enables the determination of material 
characteristics such as quantity, real-world location, and 
orientation in a timely manner. These findings hold 
significant value for inventory updates and offer valuable 
insights to project managers for efficient material 
management.  It forms a low-level Digital Twin, capable of 
converting the construction site conditions into a virtual 3D 
model. This information can further be incorporated into a 
4D model that encompasses both the 3D site project details 

and the timing of the scans. This data plays a crucial role in 
controlling on-site materials inventory within the 
construction site. Additionally, when integrated with the 
construction progress, this data can be employed to forecast 
material requirements to support the material ordering 
process. 
 
Despite the effectiveness of this method, using point cloud 
data as a material tracking method also has several 
disadvantages. The point cloud data cannot identify which 
objects should be in which positions in the main structure. 
Additionally, some post-processing step required after the 
scanning makes the proposed method not categorized as real-
time. This method also has a high dependency on data 
quality. If the resulting point cloud is not complete and 
occluded, then the object cannot be detected properly. The 
quality of data has a significant role in the success of the 
method.  
 
For future research direction, there is an option to use a 
machine learning-based method to complete the point cloud 
and conduct material detection. However, one particular 
problem that arises from this approach is the need to have 
enough data for training. Unfortunately, the construction 
industry does not have much data for training, especially 
from the actual construction site data that is usually occluded 
and sparse. Therefore, the usage of learning transfer from 
other machine learning training might be useful for 
construction case studies.  
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