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Abstract

Big data poses challenges for storage, management, processing, analysis and visualisation. One technique of handling big data
is the use of a representative sample of the data. This paper proposes a sampling algorithm which makes use of multivariate
stratification with the aim of obtaining a sample that best represents the population while minimising the number of images in the
sample. The proposed sampling algorithm performs effectively on a big spatial image dataset of crop types. The results are assessed
by measuring the number of images sampled and as well as matching the proportionality of the population crop percentages. The
samples obtained from the proposed algorithm are then used for land cover classification. An ensemble method called random
forest is trained on the samples and accuracy is assessed. Precision, recall and F1-scores per crop type are computed as well as the
overall accuracy. The random forest classifier performed best on the proposed sample with the least number of images. In addition,
the classifier performed better on the proposed sample than it did on a random sample as the proposed sample due to the more
informative data. This research develops an effective way of sampling big data for crop classification.

1. Introduction

Geospatial data is information associated with a location on
or near the surface of the earth. Remote sensing is one tech-
nique by which geospatial data can be obtained. The increas-
ing amount of satellites orbiting the earth (remote sensors) in-
creases the volume, velocity, and variety of geospatial data. In-
formation from remote sensors is used for various purposes in-
cluding biodiversity monitoring (Lausch et al., 2024), weather
and catastrophe forecasting (Maqsood et al., 2024), as well as
crop classification (Barriere et al., 2024).

The analysis of big geospatial data is difficult due to the com-
plexity of this data (Gomes et al., 2020). Although strategies
such as parallel programming and distributed programming
have been implemented to handle big geospatial data, metadata
is a simple useful way of handling big data specifically when
classification is to be performed (Li et al., 2016). Metadata
summarises big data, alleviating memory requirement in cases
where metadata can be used instead of reading all the big geo-
spatial data. One such case is sampling, such as sampling from
the metadata instead of reading in all the geospatial data. This
is important to consider as spatial data very quickly becomes
unmanageable in size, requiring access to cloud computing for
analysis and also presenting complexity in the initial storage
and access of the data content.

Obtaining a representative sample of the data from a large
metadata source of crop classification data is a challenge. Strat-
ified sampling is appropriate for crop classification because this
sampling technique requires that each unit must belong to only
one stratum, and in crop classification, one crop can only be-
long to one crop type. Applications of stratified sampling in
remote sensing include the quantification of spatial variability
amongst peach orchids. This was in turn used to classify trees
into homogenous groups (sampling strata) with the aim of de-
creasing sampling size in (Miranda et al., 2016). Other applic-
ations in the estimation of crop area using sampling in remote
sensing can be seen in (Jiao et al., 2006, Zhu and Zhang, 2013,
Schulthess et al., 2023a, Li et al., 2023).

This paper makes use of a recently proposed algorithm (Ran-
gongo et al., 2022) that makes use of multivariate stratified
sampling to obtain a sample that gives the best representation
of the population. The multivariate population under consid-
eration consists of a large database of remote-sensing images
of crop fields, for which each image has a varying number of
fields, crop types, and field sizes. First, the data summary is ob-
tained in the form of a metadata data frame. Then the metadata
itself is used to obtain a desired sample using the algorithm.
The aim of the algorithm is to achieve similar proportional-
ity of crop types between the sample and the population as
well as minimise the number of images sampled while maxim-
ising the information obtained in the images. Various resulting
sample sizes are used for land cover classification, with a ran-
dom forest. The performance is assessed relative to the sample
size.

Section 2 provides the metadata construction. Section 3 covers
the algorithm as well as its implementation. Section 4 covers
classification and implementation. Section 5 discusses the res-
ults, while Section 6 concludes and proposes future research.

2. Metadata

2.1 Data Summary

The crop dataset used is the Sentinel-2 time series data for the
Western Cape province in South Africa. This dataset is freely
accessible on the Radiant MLHub website generated by Ra-
diant Earth Foundation and the Western Cape Department of
Agriculture in 20211. The dataset has 12 bands in the near-
infrared, short-wave infrared, and visible part of the electro-
magnetic spectrum, and a 13th image type, CLM, which gives
the cloud coverage on a tile image. The time series is provided
every five days from the 1st of April until the 27th of November
(48 dates). Each image has 12 bands of one area of land with
1 Crop Type Classification Dataset for Western Cape, South Africa.

Available online: https://doi.org/10.34911/rdnt.j0co8q (ac-
cessed on 12 March 2022)
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tile ID 1114 taken by the Sentinel-2 satellite. The images were
resampled by the data providers so that all the images have the
same resolution of 60m.

Each image in the dataset is an area of land made up of crop
fields. Each field contains only one of nine crop types, namely
fallow, canola, wheat, wine grapes, weeds, small grain gaz-
ing, lucerne/medics, planted pastures (perennial), and rooibos.
Each area of land (2650 locations) was captured every five days
through 12 bands of the electromagnetic spectrum and the 13th
image showing cloud coverage (only captured on 13 of the 48
dates) so that the whole data is made up of 1 653 000 images.
The area of interest is 23 850km2 of land of which 9 063km2

(roughly 38%) has been labelled and it constitutes the portions
that will be considered in assessing the accuracy of sampling.
The area coverages of the crop types in each image and field
are available to determine the proportion of the crop types in
the population.

2.2 Metadata Construction

The dataset consists of 1 653 000 images of data, which is ap-
proximately 45.15GB. One way of avoiding loading this big
dataset is using metadata to select only the relevant images of
interest to read into memory. Note that some of the metadata
was already provided whereas some had to be obtained from
the images themselves and collated with the given metadata as
a pre-processing step. The structure of the metadata consists of
three categories, namely general information, information asso-
ciated with tile ID and information per image. General informa-
tion includes properties that all images share regardless of loca-
tion or date captured, namely the satellite used to capture them,
the type of image, licence of data, the providers of data and size
of images since they are all the same size. These are given in the
images STAC (SpatioTemporal Asset Catalogs) files. Informa-
tion associated with tile ID is information that has been used to
differentiate between the different areas of land/locations such
as tile ID, the spatial extent of the area captured, the number
of fields along with the crop types they contain. An image of
another area of land thus with a different tile ID will not ne-
cessarily have the same information. The spatial extent, also
referred to as the bounding box, will be different, as will the
number of fields as the different areas of land have different
fields, and crop proportions will also differ.

Information associated with each image is information that is
unique for each image, such as the date, time, and cloud cover-
age as it depends on the date. With the three categories brought
together, metadata in the form of a database can be created.
From the database itself, one can obtain the structure of the
data, the description of the data as well as the administration
involved in publishing the data. The database is useful because
performing procedures since it then does not require loading
and reading all the images into memory.

3. A Multivariate Stratified Sampling Algorithm

This section presents the multivariate stratified sampling al-
gorithm in (Rangongo et al., 2022). Let N be the number of
images in the population and M be the number of crop types.
Let n be the sample size of images and Ni be the number of
images that contain crop type i in the population. We notate
Ai

pop and Ai
samp as the area coverages of crop type i in the

population and sample respectively. Apop and Asamp are vec-
tors of area coverages of the M crop types in the population

and the sample respectively, and Vpop and Vsamp are vectors
containing the proportions of the M crop types in terms of area
coverage in the population and sample respectively.
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pop
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pop
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pop
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We propose an algorithm to obtain a sample from the population
which ensures that the proportion between the population and
the sample are similar while minimising the number of images
sampled. The proportions are calculated in terms of area cover-
age. The area coverages of the M crop types in the population
(Apop) should be directly proportional to the area coverages of
the crop types in the sample (Asamp). Ideally the desired area
coverages in the sample, Asamp, should be n

N
× Apop. Math-

ematically, the aim is to show the following equation holds for
some small ϵ:

||Vpop − Vsamp|| ≤ ϵ (1)

The algorithm is separated into two main steps where the first
samples by considering the most represented crop type in the
population. The second uses the partial sample from the first
step and focuses on the least represented crop type. This is done
iteratively until all crop types are represented, while satisfying
equation (1).

The algorithm starts by calculating Apop, from this the pro-
portions of the crop types,Vpop, are computed. Then a sub-
dataframe that contains the only the images that have the crop
type with the highest proportion in the population. The im-
ages are ordered in terms of area coverage of the crop type
considered. A parameter, cropAmax, is imposed on crop type
considered to ensure that when other crop types are considered,
the area coverage of this crop type is not exceeded. When
sampling, after achieving the desired cropAmax% of area cov-
erage of the first considered crop type, these images will form
a sample. From this sample, the crop type with the least rep-
resentation area-wise, is considered. A new sub-dataframe is
extracted that only contains images with this crop type. Note
images used in the previous sample are excluded from the pop-
ulation. A parameter cropBmax is imposed on this crop type
to ensure that the desired area coverage is not exceeded. Images
selected during this iteration are added to the previous sample.
Another sub-dataframe is extracted that contains images with
the least represented crop type in the current sample, not one
of the previously considered crop types. The images selected
during this iteration will be added to the sample and another
crop type that is least represented will be considered until the
desired area coverages of all crop types are achieved. From the
final sample, Asamp, the proportions in the sample Vsamp are
determined.

The implementation of the sampling algorithm is done in Py-
thon and the notebook containing the code for the algorithm is
available on Figshare7. The role of the various parameters was
investigated in (Rangongo et al., 2022).
7 Sampling algorithm, Figshare, Python code, https://doi.org/10.
25403/UPresearchdata.20444061
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4. Land Cover Classification

The goal herein is to investigated the effect of the sample size on
the precision of the classification of landcover. Pre-processing
procedures are performed on the image data, namely feature en-
gineering and feature selection. Feature engineering is the pro-
cess of calculating additional features from the raw data. Ad-
ditional features increase the predictive power of a final model
and also help capture extra information that is not clear in the
original data. Additional features considered in crop type clas-
sification are vegetation indices and water indices. The type of
vegetation index used herein is the normalised difference ve-
getation index (NDVI) (Zaitunah et al., 2018). The NDVI is an
indicator used to assesses whether or not vegetation is observed.
It takes on values from -1 and 1 where values approaching -1
correspond to water, those close to 0 are barren land and the
ones approaching 1 correspond to high vegetation. The NDVI
is calculated as NDVI =

(
NIR−Red
NIR+Red

)
where NIR is the near-

infrared image band and Red is the red visible image band.

Two normalised difference water indices (NDWI) were also cal-
culated, which are known to be strongly related to water content
in plants (Gao, 1996). Hence they are used in vegetation related
applications. The two NDWI used are the NDWI green and the
NDWI blue with the following formulas. The Blue is the blue
visible image band and the Green is the green visible image
band.

NDWI green =

(
NIR−Green

NIR+Green

)
(2)

NDWI blue =

(
NIR−Blue

NIR+Blue

)
(3)

Feature selection is the process of selecting the most inform-
ative features. It reduces the dimensionality of data, making
the data easier to store and analyse. Feature selection, which
is synonymous with feature importance, eliminates irrelevant
and highly correlated features resulting in a more easily inter-
pretable data. The feature selection techniques used in this re-
search are mutual information regression (Kraskov et al., 2004),
minimum-redundancy-maximum-relevance (mRMR) (Berren-
dero et al., 2016) and the F-test (Elssied et al., 2014). The
mRMR selects features that reduce their redundancy in the pres-
ence of other features while simultaneously increasing their
own relevance. The F-test (correlation-based method) calcu-
lates a correlation coefficient which is then converted into a
F-statistic. An F-test was performed and the statistically sig-
nificant features with the highest F-statistics were chosen. The
mutual information regression works to identify any sort of de-
pendence between features and eliminates those with high de-
pendency. The mutual information regression is determined as

I(X;Y ) = H(X)−H(X|Y ) (4)

where I(X;Y ) represents mutual information between vari-
ables X and Y, H(X) is the entropy of X and H(X|Y ) is the
conditional entropy of X given Y.

After exploring the proportions of the data, feature selection
was conducted, where the mRMR, mutual information regres-
sion method and the F-test were used to find the most informat-
ive features. According to the mRMR, the selected features are
the NDWI green, NDVI, B04, B8A, B06 and B07.

Taking all three feature selection techniques into account, the
following bands were determined to be the most significant:
NDWI green, NDWI blue, NDVI, B04, B8A, B06 and B07.
These are the bands that will therefore be considered for train-
ing.

The selected machine learning algorithm is random forest as not
only is it easier to implement, but is widely used for crop classi-
fications (Su and Zhang, 2021, Schulthess et al., 2023b, Tariq et
al., 2023). The implementation of the random forest is done us-
ing the Python package called sklearn with the classifier called
RandomForestClassifier. The algorithm is trained on the
smaller samples (i.e. 10%, 20% and 30%) generated using the
proposed multivariate sampling algorithm covered in Chapter
3. A random forest classifier with 100 estimators is defined and
trained on the samples with the lowest Euclidean norms. The
cropAmax values that resulted in the lowest Euclidean norm
for the 10%, 20% and 30% sample are 0.6, 0.5 and 0.7 respect-
ively, whereas the cropBmax value for all the samples is 0.9.
The random forest classifier was trained on the seven features.
The arguments used for the classifier were default parameter
values.

5. Results

5.1 10% Sample

The classifier was trained on 136 images sampled when a 10%
sample was targeted. When fitted on the 10% proposed sample,
the random forest classifier achieved an overall accuracy of
80.977% with a RMSE of 1.442. To understand how accur-
ate the classifier was per category, precision, recall as well as
F1-score are shown in Table 1.

Crop Type
Accuracy assessments

Precision Recall F1-score
Lucerne/Medics 48.077% 66.667% 0.559
Planted pastures 75.172% 68.553% 0.717

Fallow 56.18% 64.103 % 0.599
Wine grapes 98.243% 93.194% 0.957

Weeds 59.551% 70.667% 0.646
Small grain grazing 54.545% 63.83% 0.588

Wheat 85.0% 73.913% 0.791
Canola 25.926% 77.778% 0.389

Rooibos 84.783% 73.585% 0.788

Table 1. Precision, recall and F1-scores per crop type for the
10% sample.

Further, a comparison was made between samples from the pro-
posed sampling algorithm and a simple random sampling al-
gorithm. Since the 10% sample using the proposed sampling
algorithm was achieved at only 136 images, the same number
of images are sampled randomly for fair comparison. Figure 1
shows the representations of the crop types in the two samples
compared to the population.

Training the same random forest classifier on the random
sample, an overall accuracy of 69.062% was achieved with an
RMSE of 1.788. Figure 2 gives an illustration of how the preci-
sion and recall values between the random sample and proposed
sample differ. Positive values mean the precision and/or recall
measures in the proposed sample are higher than those achieved
in the random sample and negative values vice versa. Figure 3
shows a graph of F1-scores for each crop type for both the ran-
dom sample and 10% proposed sample.
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Figure 1. Area-wise proportions of the crop types in the 10%
proposed sample, random sample and the population.

Figure 2. Difference between achieved precision and recall
values in the proposed sample and the random sample.

5.2 20% Sample

The random forest classifier was also trained on a 20% sample
(278 images) achieved from the proposed sampling algorithm.
An overall accuracy of 76.479% was achieved with a RMSE of
1.573. The same accuracy assessments were measured. Table 2
contains the precision, recall and F1-scores per crop type.

Similar to the 10% sample from the proposed sampling al-
gorithm, the same number of images as from the 20% proposed
sample is randomly selected for further comparison. The ran-
dom forest classifier was trained on the random sample with 278
images. The classifier achieved an overall accuracy of 66.798%
with a RMSE of 1.921. Figure 4 gives an illustration of how
the precision and recall values between this random sample and
20% proposed sample differ. Figure 5 gives a comparison of
the F1-scores for the two samples.

5.3 30% Sample

When trained on the 30% proposed sample (445 images), the
overall accuracy of the random forest classification algorithm
was 74.260% with a RMSE of 1.695. To illustrate how accurate

Figure 3. F1-scores between the random sample and the
proposed sample.

Crop Type
Achieved area coverage

Precision Recall F1-score
Lucerne/Medics 59.848% 68.996% 0.641
Planted pastures 71.92% 66.755% 0.692

Fallow 51.813% 59.88% 0.556
Wine grapes 96.845% 90.574% 0.936

Weeds 52.151% 55.747% 0.539
Small grain grazing 50.385% 59.817% 0.547

Wheat 83.081% 71.522% 0.769
Canola 28.846% 100.0% 0.448

Rooibos 63.366% 78.049% 0.699

Table 2. Precision, recall and F1-scores per crop type for the
20% sample.

the classifier is per category, precision, recall as well as F1-
scores are computed for each crop type in Table 3.

Again a random sample with the same number of images as
the 30% proposed sample was drawn. The overall accuracy of
the classifier when trained on this random sample is 64.429%
with a root mean square error of 1.905. Figure 6 shows the
precision and recall values between this random sample and the
30% proposed sample. Figure 7 gives a comparison of the F1-
scores for the two samples.

6. Discussion

A random forest classifier was trained on three samples ob-
tained using the proposed sampling algorithm. Random
samples with the same number of images were drawn and
also trained for comparison. The classifier was assessed using
overall accuracy, normalised RMSE, precision, recall, and F1-
scores. The improved sampling algorithm works in such a way
that the proportions of the crop types in the sample are repres-
entative to that in the population, while minimising the number
of images sampled.

Feature engineering and feature selection, as pre-processing
techniques, were performed on the image data where the im-
age bands are the features. One vegetation index and two wa-
ter indices were added. These indices range between -1 and 1
and are constructed from 4 of the 12 bands, namely the NIR,
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Figure 4. Difference between achieved precision and recall
values in the proposed 20% sample and the random sample.

Figure 5. F1-scores between the proposed 20% sample and
random sample.

the red, the green and the blue. After the 3 features were
added to the existing 12 bands, the most important features
were selected. Three feature selection techniques were used,
namely mutual information regression, minimum-redundancy-
maximum-relevance and F-test. The seven bands that had con-
sistent high importance ratings were NDWI blue, NDWI green,
NDVI, B04, B06, B07, B8A.

The 10% sample, using the new sampling algorithm, contained
136 images. Note that the 10% sample has the lowest Euclidean
norm not just compared to other 10% samples, but compared to
all the other samples considered from 10% to 90%. Thus the
area-wise proportions of the crop types are closest to those in
the population.

Considering the random 10% sample, most of the images con-
tain unlabelled data (roughly 62% of database of images are
not labelled). Ideally, a sample should contain sample images
with the most labelled data, i.e. informative images. Compar-
ing the two samples with the same number of images, we see
that the sample coming from the proposed sampling algorithm
contains around twice more information than from the random
sample. Figure 8 shows the difference between the labelled and

Crop Type
Achieved area coverage

Precision Recall F1-Score
Lucerne/Medics 51.105% 66.071% 0.576
Planted pastures 68.503% 60.763% 0.644

Fallow 43.046% 63.725% 0.514
Wine grapes 95.113% 89.835% 0.924

Weeds 58.02% 51.672% 0.547
Small grain grazing 47.156% 58.017% 0.520

Wheat 85.169% 73.511% 0.789
Canola 29.167% 67.742% 0.408

Rooibos 57.927% 65.517% 0.615

Table 3. Precision, recall and F1-scores per crop type for the
30% sample

Figure 6. Difference between achieved precision and recall
values in the proposed 30% sample and the random sample.

unlabelled data in the two samples. The proposed sampling al-
gorithm resulted in a sample with 20.648% uninformative data
while the random sample has over 59% uninformative data.

The 20% samples obtained from the proposed stratified al-
gorithm has 278 images. This is about 10.49% of the total
number of images. The classifier when trained on the 278 im-
ages has an overall accuracy of 76.479% which has declined by
4.498 from the 80.977% accuracy in the 10% proposed sample.
The normalised RMSE has increased from 0.18 to 0.197 which
is still quite low. Considering only these two measures, one
may say the model is still good at predicting observed data.
However, when trained on the 20% proposed sample, the clas-
sifier detected more noise than when trained on the 10% pro-
posed sample. This is because of how the proposed sampling al-
gorithm is setup: it takes the images with the most information
and least noise first, so the higher the sample size, the higher
the noise added. The images in the 10% sample from proposed
algorithm are included in the 20% sample from the proposed
algorithm. Hence the noise in the 20% sample is higher than
the one in the 10% proposed sample.

A random sample of 278 images is drawn to be compared to the
20% proposed sample. More fields are in the proposed sample
than in the random sample for each crop type. The number of
fields in the proposed samples (10% and 20%) are generally
higher than the number of fields in their corresponding random
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Figure 7. F1-scores between the proposed 30% sample and
random sample.

Figure 8. Labelled and unlabelled data between the 10%
proposed sample and random sample.

samples. The total number of fields trained in the 20% pro-
posed sample is 2942 which is more than the 2036 fields in
the corresponding random sample containing the same number
of images. Comparing the two samples with the same number
of images, we have that the sample coming from the proposed
sampling algorithm gives more information than the random
sample. Figure 9 shows the difference between the labelled and
unlabelled data in the two samples. The proposed algorithm
resulted in a sample with 23.86% uninformative data while the
random sample has over 60% uninformative data.

Figure 9. Labelled and unlabelled data in the 20% proposed and
random sample with same number of images.

When trained on the random sample with 278 images, the clas-
sifier has an overall accuracy of 66.798% which is lower than
what is achieved when trained on 20% proposed sample and
also the random sample with 136 images. The normalised
RMSE is 0.240125 which is higher than all previous obtained
normalised RMSE values. A higher RMSE makes sense as in-

creasing the training data increases noise. However, what is in-
teresting is the decline in overall accuracy in both the proposed
and the random samples. The accuracy has decreased by 4.9%
in the proposed samples and by 2.264% in the random samples.

In the 30% proposed sample the 445 images represent 16.79%
of the total 2650 images. This sample had a Euclidean norm
of 7.47 which is higher than the norm for the 20% proposed
sample of 4.82 and that of 10% proposed sample of 2.79. This
mean that the proportionality between the population and the
30% proposed sample is close to each other, but not as close as
the proportions between the 10% and 20% proposed sample to
the population. When fitted on the 30% proposed sample, the
classifier has a good accuracy of 74.26%. Note that this is lower
than the accuracies obtained from the 10% and 20% samples
but is higher than the accuracies for the previously considered
random samples. The RMSE values is 1.695 which when nor-
malised, gives a value of 0.211875. This is higher than the nor-
malised RMSE for the 10% and 20% proposed samples. This
supports the statement that adding more data adds more noise.
Also looking at how the accuracy values has decreased as the
sample increases, this means that the model performs best when
trained on the sample with the least noise, which is the 10% pro-
posed sample. Diving deeper into the accuracy measures per
category, precision, recall as well as F1-scores are computed
for each crop type in the 30% proposed sample.

A random sample with the same number of images as in the
30% proposed sample is drawn. The total number of fields in
the random sample is 2845 whereas the ones in the proposed
sample is 4596. Comparing the two samples with the same
number of images we have that the sample coming from the
proposed sampling algorithm gives more information than the
random sample. Figure 10 shows the difference between the
labelled and unlabelled data in the two samples. The 30% pro-
posed sample resulted in a sample with 27.004% uninformative
data while the random sample has over 61.7% uninformative
data.

Figure 10. Labelled and unlabelled data in the 30% proposed
and random sample with same number of images.

When trained on the random sample with 445 images, the clas-
sifier has an overall accuracy of 64.429% which is the lowest
accuracy compared to the ones achieved on the other 5 samples.
The normalised RMSE is 0.238125 which is the highest one
yet. It does seem that the larger the sample size, the higher the
RMSE. As the random sample sizes increases, the normalized
RMSE increases and the overall accuracy decreases. Note that
this is also true for the proposed samples, increasing the sample
size, increased the error rate and decreased the overall accuracy.
However, we do have that the classifier performed better when
trained on the proposed samples than on the random samples.
The accuracy has decreased by 2.219% in the proposed samples
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(20% and 30%) and by 2.369% in the random samples (278 and
445 images).

One can conclude based on the precision, recall, overall ac-
curacy, as well as normalised RMSE, that the model performs
better when trained on the random sample with 278 images as
opposed to the one with 445 images. So far, the classifier per-
forms best when trained on the 10% proposed sample. Figure
11 is a plot of accuracy values achieved by the classifier when
trained on the different random and proposed samples. The
main reason for these results is the amount of informative data
in the samples. The proposed samples have higher informative
data than the random samples. In both samples, the more data
sampled, the more uninformative the data is since the algorithm
acts by determining most representative data first.

Figure 11. Accuracy values of the classifier when trained on the
different random and proposed samples.

7. Conclusions

The big data used in this research is crop classification remote
sensing data, that is freely available. First, metadata was ob-
tained and constructed in the form of a dataframe that contains
descriptive information of the images to be used for sampling.
The construction of metadata can also be done on any land
cover dataset, it is not limited to crop data only. The usage
of metadata alleviated the memory requirement that an applica-
tion may need as instead of reading all images in, metadata can
be used, as this also saves the time required.

Next, a multivariate stratified sampling strategy is made use of
that aims to minimise the number of images sampled, keep the
area-wise proportions in the sample and the population similar
while maximising the information obtained from the images
sampled. Euclidean norms were used to measure the close-
ness of the proportions in the samples and the population. We
had that the sample with the least number of images had pro-
portions closest to the ones in the population. Also, from the
samples achieved, you get twice as much information with half
the number of images, for example, the achieved 10% sample is
made up of 5% of the total images. This means the number of
images sampled is minimised whilst the information obtained is
maximised, making the proposed sampling strategy a practical
solution.

When training the samples, the one with the least number of
images has the highest accuracy measures as well as lowest
training error. This sample contains the most informative data
and is easier to train on. Future research should investigate the
changes of the recall and precision values for specific crop types
in the different samples. Other land cover data sets (used for

classification purposes), not just crops, should be considered to
assess the versatility of the sampling algorithm. Even though
the largest considered sample has 445 images, which is almost
17% of all images, training on these images is computationally
heavy, hence higher samples were not considered. In addition,
the accuracy continued to decrease as the sample size increased.

Considering all the information the accuracy measures
provided, the usage of metadata, as well as, the proposed
sampling algorithm is beneficial for land cover detection pur-
poses. This will help with the extraction of information, choos-
ing a sample that best represents the population with the least
number of images but a lot of information as well as the train-
ing of data for classification purposes. This paper focussed on
crop classification as the application area. The methodology
developed could be easily applied to any imagery with labelled
areas. For example, land use data is widely available, and if
combined with imagery to do classification, will encounter the
same computational difficulties as this current focus.
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