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Abstract

It is critical to assess bushfire impact rapidly and accurately because bushfires play a significant role in forest degradation and present
a threat to ecosystems and human lives. Over the past decades, several supervised algorithms of burn severity mapping have been
proposed, facing the significant drawback of time-consuming labeling. Moreover, there is no robust framework for burn severity
mapping through fusing multi-sensor, multi-resolution, and multi-temporal remote sensing imagery from satellite and aerial plat-
forms. Therefore, this paper presents an unsupervised two-step pipeline: processing 2D data followed by 3D data for burn severity
mapping, both of which are acquired from either aircraft or satellites. For the 2D data processing, our proposed unsupervised burned
area detection (UsBA detection) model enhances burned area mapping accuracy by integrating Ultra-High Resolution (UHR) aerial
imagery with bi-temporal medium-resolution PlanetScope imagery, using a Segment Anything Model (SAM)-assisted UNetFormer
(pre-trained on the target-style public dataset – LoveDA Rural) for refinement. The model demonstrates superior burned area seg-
mentation, evidenced by improved evaluation metrics calculated from labeled test sites. For the 3D analysis, the burned areas
extracted from 2D processing are further assessed using pre- and post-event airborne laser data. We implement a voxel-based
workflow, including necessary steps such as ground filtering through Superpoints in RANSAC Planes (SiRP) method and biomass
change analysis. The results indicate that the 3D branch provides a reliable lower bound of the actual damage map, because the
vegetation growth between two measurements remains, in essence, undetected. The proposed framework offers a more accurate
and robust solution for burn severity mapping utilizing combined 2D and 3D data, evaluated on a multi-source dataset from a real
bushfire event that occurred in Bushland Park, South Australia.

1. Introduction

As the world’s climate changes and human activities expand,
bushfires have become a more frequent and devastating real-
ity, particularly in regions like Australia, where the ecological,
societal, and economic impacts are profound (Sharples et al.,
2016). Recent years have witnessed catastrophic bushfires, such
as the 2019-2020 Australian bushfire season, also known as the
“Black Summer”. The “Black Summer” alone resulted in the
loss of over 33 lives, the destruction of more than 3,000 homes,
and the burning of approximately 18.6 million hectares across
the country (Davey and Sarre, 2020). Beyond the immediate
loss of life and property, bushfires also lead to unprecedented
burned areas, significant tree mortality, severe challenges for
forest management, and extensive damage to ecosystems, ex-
acerbating climate change.
While early prevention and identification of the fires is cru-
cial, post-event accurate mapping of burned areas is equally
vital for restoration activities (Chuvieco et al., 2019). The pro-
cess of collecting ground-level data for accurate mapping, lim-
ited by the challenge of accessing vast and isolated areas im-
pacted by wildfires, has proven to be slow and dangerous. Aer-
ial or satellite platforms can solve this problem, providing us
with moderate or high-resolution data for severity mapping,
which allows us to extract the fire information remotely (Bai
et al., 2023; Zhang et al., 2021). A lot of global-scale burned
area products have been developed with the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) (Lizundia-Loiola et
al., 2020). However, significant variations within small burned
areas introduce mapping uncertainty with the limitations of co-

arse pixel spacing (>250m). Then, the accuracies of these
mapping products are increased with the launch of satellites
such as Sentinel-2 and Landsat-8/9 based on medium spatial
resolution images (Roteta et al., 2019; Roy et al., 2019). They
provide the near-infrared (NIR) (800 nm to 1200 nm) and the
short-wave infrared (SWIR) (1200 nm to 2200 nm) bands, whi-
ch are highly sensitive to the fires. With the advent of daily
accessible PlanetScope imagery from Planet Labs at better spa-
tial resolution (3m), there is now the capability to capture more
detailed information before and after bushfires occur, demon-
strating considerable promise for application in disaster man-
agement (Cho et al., 2022).
Alternatively, instruments such as visible, NIR, SWIR hyper-
spectral scanners, and light detection and ranging (LIDAR), in-
stalled on manned aircraft or unmanned aerial vehicles, have
been employed to detail fire severity at the local scale (Arkin
et al., 2019). Ultra-High Resolution (UHR) aerial imagery, of-
fering detailed ground information, allows for visual interpret-
ation and facilitates the manual or automatic identification of
damaged objects affected by fires (McKenna et al., 2017). De-
pending on flight height and capability to penetrate through ve-
getation, the LIDAR data allows for biomass volume compu-
tation. However, two challenges are the volume of aerial data
and its general lack of availability. High-resolution aerial im-
agery must be scheduled in advance and is typically only ac-
cessible after a bushfire event. In contrast, satellites equipped
with medium-resolution sensors consistently capture the Earth’s
surface, offering multi-temporal imagery for locations globally.
Consequently, we find a research gap in that there is no ro-
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bust framework developed specifically for efficiently detecting
burned areas using aerial and satellite 2D optical images to-
gether with 3D LIDAR data.
The objective of this paper is to provide a comprehensive pipe-
line for analysis of 2D and 3D data without any annotated data.
In 2D, we propose the UsBA detection model, an unsupervised
approach for 2D burned area mapping. SAM-assisted UNet-
Former (pre-trained on target-style LoveDA Rural Dataset) is
employed to exclude water bodies and roads in burned area
candidates, which are obtained from the combined use of aer-
ial and satellite imagery. After detecting burned areas in 2D,
the objective shifts to detect the burn severity by volume. Par-
ticularly, with these very task-specific categories of labels, it is
highly non-trivial. This is where the sensor data function comes
into play. We apply the voxel-based change detection module
to the aforementioned clusters to separate the burned and un-
burned areas of the dataset. The crucial intermediate step for
3D analysis is to perform the ground filtering. This is done us-
ing the SiRP (Bulatov et al., 2020) method, which is particularly
suitable for point clouds with explicit 3D structure.

2. Previous Works

2.1 Unsupervised Analysis of Optical Data

In recent years, machine learning (Ramo and Chuvieco, 2017;
Gibson et al., 2020) and, particularly, deep learning (Belenguer-
Plomer et al., 2021; Hu et al., 2023), have been widely used in
burned area detection. Many of these approaches are super-
vised and depend on large volumes of manually labeled data
for training. Unsupervised approaches offer a time-saving al-
ternative that efficiently explores the patterns or structures of
data. In burned area mapping, unsupervised Principal Compon-
ent Analysis (PCA) is one of the most commonly used methods
for the normalized burn ratio (NBR) (Key et al., 2006) and the
normalized difference vegetation index (NDVI) (Rouse et al.,
1974). In addition to this, similarity calculation between pre-
and post-event data is also popular for feature extraction based
on the contrastive learning framework SimCLR (Zhang et al.,
2022). It is typically designed for multi-temporal data from
satellite platforms and is not suitable for our case. Domain Ad-
aptation is another promising unsupervised approach for burned
area mapping (Zhang and Ban, 2023). However, there are only
standardized burned areas classification datasets using satellite
imagery, which limits the application of Domain Adaptation ap-
proaches.

2.2 3D Point Cloud Processing

Even though a quite comprehensive survey on deep-learning-
based algorithms for ground filtering has recently been pub-
lished by Qin et al. (2023), approaches not necessarily based
on deep learning are still very popular for 2.5D and 3D laser
point processing, because of their absolute metric scales, of-
ten higher accuracy, and a scarcer availability of the training
data. State-of-the-art conventional methods for point filtering
from airborne laser scanning data include volume-based filter-
ing (Piltz et al., 2016; Mousa et al., 2019; Oniga et al., 2023)
and hierarchical filtering (Mongus and Žalik, 2012). The re-
cently published Superpoint in RANSAC Planes (SiRP), (Bu-
latov et al., 2020) approach can be applied to unorganized point
clouds to differentiate between 2D manifolds (large and approx-
imately planar surfaces), on the one hand, and 3D and 1D man-
ifolds (chaotic or linear fragments ob the point cloud), on the

other hand. Thanks to a pre-processing step similar to voxeliz-
ation, the method is relatively robust against noise and variable
point density and can be applied to both airborne and terrestrial
point clouds (Bulatov et al., 2021; Stütz et al., 2023).
We conclude this section with a short review on bushfire sever-
ity grading using 3D points. Like us, Kwak et al. (2010) apply
combined image and elevation data for two different, strictly
speaking jobs. The image data (basically, NDVI) assesses bio-
logical damage while the 3D data assesses the physical damage,
whereby the Number of Ground Returns and Number of Total
Returns were provided by the data capturing software and re-
lied on. Differently to us, it seems that only post-event LIDAR
data were available. In (Dixon et al., 2023), the LIDAR-based
individual tree detection takes place. Supervised classification
of concatenated pre- and post-event images allows establishing
which trees are not present anymore. The LIDAR data used
were captured a few years before the event. Here, the fact that
single tree detection is a cumbersome procedure, the reason
why we implemented a more simple, statistical approach.

3. Datasets

A serious bushfire started on 20/12/2019 shortly after 9 am in
Cudlee Creek, near Lobethal Town, which is a suburb of Ad-
elaide, the capital of South Australia. The fire, which tragically
resulted in the loss of one life, injured 51 firefighters, and des-
troyed 85 homes1, also burned 23,295 hectares of land.
For the case study, this paper selected an area of interest (AOI)
that includes Bushland Park to analyze the severity of the fire,
as shown in Figure 1.

Figure 1. AOI for 2D mapping, defined by the black rectangle.
Optical images showcasing (a) post-event Color-Infrared (CIR),

(b) pre-event RGB, and (c) post-event RGB data. Pre-event
LIDAR data shares the same extent as pre-event RGB data: (d)

nDSM in meters, (e) scan angle in degrees.

1 https://www.cfs.sa.gov.au/about/about/bushfire-history/
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3.1 Remote Sensing Data

The dataset for the Bushland Park area is a subset of a lar-
ger dataset 2, includes captures from 05/06/2016 (pre-event),
01/26/2020 (less than a month post-event) and 09/09/2020 (over
ten months post-event). Data selected for this paper had already
been classified using the Airborne Research Australia’s (ARA)
standard LIDAR- and RGB-imagery-workflow.
The LIDAR scanners and RGB cameras were flown on one of
the motorgliders, with the flight conducted at a height of 250m
AGL around noon before the fire. The post-event flights utilized
the LIDAR Q680i-S, Canon 5DMk4 and VNIR hyper-spectral
scanner (a modified Specim AISA Eagle 2) at the same flying
height. Line spacing was 150m on 05/06/2016, and 100m
on 01/26/2020, and 09/09/2020. CIR data, derived from the
hyper-spectral scanner at approximately 0.2m ground sampling
distance, is only available after the fire and presents healthy,
chlorophyll-bearing vegetation as bright red colors. Figure 1
displays the related RGB and CIR data as well as the pre-event
LIDAR data.
In addition to aerial imagery acquired from aircraft, we also
utilize PlanetScope multi-spectral (MS) data as model inputs,
specifically obtaining surface reflectance products (four bands:
RGB and NIR) on 12/19/2019 and 01/06/2020.

3.2 Reference Data

Labels of the datasets are generated by aerial photo interpreta-
tion, which involves analyzing, processing, and interpreting im-
ages collected from aircraft to gather information about bushfire
damages. First, we use the initial k-means clustering result of
CIR imagery as candidates for labels of burned areas. How-
ever, due to the similarities between some water bodies, black
ashes after the bushfire, and burned areas, NDVI is calculated
from post-event CIR imagery to distinguish roads or water bod-
ies from burned areas. We manually determine the threshold for
this NDVI map to reduce the noise and guarantee high recall.
Then labels for burned areas can be improved by excluding wa-
ter bodies and roads. It is noteworthy that, due to the similarity
in values of water and roads in the NDVI map, setting an ap-
propriate threshold can aid in effectively extracting both water
bodies and roads. Pre-event RGB data, with a spatial resolution
of 25 cm, is upsampled to 7.4 cm using Lanczos resampling to
match the spatial resolution of post-event data. The region of
interest identified using pre-event RGB imagery is not as ex-
tensive as identified from post-event aerial data, which restricts
our ability to label accurately over some areas. For such areas,
we use PlanetScope pre-event data as complementary consider-
ing that 3m resolution imagery is enough to facilitate the aerial
imagery, to create comprehensive labels. However, because of
differences in spatial and temporal resolutions between Planet-
Scope and airborne data, manual annotation is time-consuming.
In order to save time, we randomly selected three test sites for
manual interpretation for the evaluation step, and the selected
test patches would cover as many types of surfaces as possible.

4. Methodology

In this paper, we propose an effective and efficient end-to-end
framework to fast detect burned areas based on an unsupervised
machine learning method, which fuses the results from airborne
post-event RGB, and CIR data with temporal PlanetScope MS
data. These datasets are fed into the UsBA detection model,
2 https://www.airborneresearch.org.au/fires2020

which facilitates the generation of detailed mapping to distin-
guish between burned and unburned areas. Following the clas-
sification provided by the UsBA detection model, the proces-
sing of 3D data is undertaken. This step is predicated on the
binary classification results from the mapping, enabling further
grading of severity within the burned areas. Specifically, it al-
lows for the identification of regions experiencing varying de-
grees of burn severity, dividing them into categories of either
low, medium, high, and very high.

4.1 Model Inputs

The airborne-based raw data requires a few preprocessing steps
before it can be fed into our proposed model. For post-event
UHR RGB data, we first need to mosaic several captures into
on large stitched image. Then, the large RGB data is clipped by
the region of interest extracted from CIR data extent to make
sure both of them share the exact same locations. We split the
refined RGB data into rectangular tiles with 1024 px× 1024 px
size for the semantic segmentation model – UNetFormer (Wang
et al., 2022). For post-event UHR CIR data preprocessing, there
is no need to partition the imagery into smaller tiles. This data
can be directly utilized as input for the clustering segmentation
method. Furthermore, both pre- and post-event PlanetScope
MS data are downloaded and clipped with the previous region
of interest, after which the differenced Normalized Difference
Vegetation Index (dNDVI) is calculated, allowing reflection of
temporal change information. The LIDAR point clouds are
used to compute the absolute burned volume and relative sever-
ity. Because they have over 200 000 000 pt, we investigate only
burned classified areas by 2D analysis. We reduce the resolu-
tion of the 2D result to 10m × 10m by downsampling, calcu-
lating the mean value for each cell.

4.2 UsBA detection Based on Image Data

4.2.1 Clustering Module We introduce the UsBA detecti-
on model, an unsupervised approach for burned area mapping
via the fusion of airborne UHR data and PlanetScope MS data.
It is designed to first use the unique spectral characteristics of
post-event UHR CIR data acquired from aircraft. The CIR data,
inclusive of the NIR band, is particularly sensitive to vegeta-
tion, displaying high reflectance for healthy vegetation. This
sensitivity enables the rapid and effective classification between
unburned vegetation and burned residues. We employ k-means
clustering on the CIR data to segregate the area into color-based
clusters. The choice of CIR data is predicated on the capacity
of the NIR band to differentiate healthy vegetation from burned
remnants accurately. By setting the cluster number to five, our
model demonstrates optimal performance in extracting carbon-
ized residues, thereby identifying potential burned area candid-
ates. However, relying solely on post-event data introduces a
limitation in capturing change information, leading to potential
omissions. For instance, trees that were green in pre-event data
and turned to a yellowish hue after the event without complete
carbonization, may resemble barren soil in CIR imagery, thus
risking misclassification.
To address this problem, we incorporate multitemporal Planet-
Scope MS data within AOI geographical coordinates. By com-
puting dNDVI and applying both PCA and k-means clustering
to the PlanetScope data, we generate additional candidates for
the burned area. We further perform upsampling (the nearest
neighbor interpolation) on the PlanetScope result (original size:
595 px × 1193 px) to match the resolution of the airborne CIR
clustering segmentation result (final size: 9791 px× 19 619 px),
ensuring uniformity when fusing.
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Figure 2. Overview of our pipeline for two-step burn severity mapping. UsBA detection is the proposed 2D model for burned area
mapping, and severity detention utilizes LIDAR data for damage grading.

4.2.2 Refinement Module However, the integration of can-
didates from both datasets still introduces potential interference
from water bodies and roads, which share similar color charac-
teristics with carbonized residues in CIR data.
To refine our mapping, we employ the SAM-assisted semantic
segmentation model (Ma et al., 2023) to accurately delineate
water bodies and roads using post-event airborne RGB data.
The SAM model is famous for its precise segmentation bound-
aries, enhancing the performance of the semantic segmenta-
tion models. In our work, UNetFormer (Wang et al., 2022) is
chosen for its semantic segmentation capabilities and the seg-
mentation result is improved by the object boundaries generated
via SAM. We pre-train the UNetFormer model on the LoveDA
dataset of Wang et al. (2021), which includes ground truth la-
bels with 7 categories: building, road, water, barren, forest,
agriculture, and background. Due to the bias of the differ-
ent datasets, the pre-trained UNetFormer may not perform well
on our RGB dataset. To alleviate this issue, the style trans-
fer (Huang and Belongie, 2017) is applied to generate target-
style images by treating the given one unlabeled target image
(1024 px × 1024 px, split tile from post-event RGB imagery)
as an “anchor style”. This transformation normalizes the source
images (LoveDA Rural) based on their mean and standard devi-
ation, and then adjusts them using the target’s mean and stand-
ard deviation, which are recalculated to include statistic off-
sets controlled by weights sampled from a Gaussian distribution

G(0, 1). We pre-train the SAM-assisted UNetFormer on the
target-style dataset, using it to obtain and downsample masks
for water bodies and roads to match CIR spatial resolution. Fi-
nally, we exclude water bodies and roads from combined burned
area candidates.
A binary classification map is the output of UsBA detection
model, distinguishing between burned and unburned areas. It
is fed into the biomass analysis module for further analysis.

4.3 Severity Detection Based on 3D

4.3.1 Ground Filtering We start by retrieving the ground
map, applying the previously developed SiRP method to the
point cloud X . This method, briefly described here for com-
pleteness and referred to in (Bulatov et al., 2020, 2021; Stütz et
al., 2023) for a more detailed explanation, presupposes group-
ing the points into voxel-like structures called superpoints (SP)
V , whereby V has not only a geographic coordinate but also a
subset XV of the original point set assigned to it. For each of
these SP V , the dominant plane is computed using the points
in XV and the well-known RANSAC algorithm (Fischler and
Bolles, 1981). Those superpoints, which are not inliers of their
planes, are set to inactive. This result is refined using a clus-
tering method whereby superpoints forming too small clusters
are set to inactive as well. Inactive SP are supposed to be those
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lying in vegetation regions, while clustering results may mean
some occasionally planar regions, such as tree crones. Finally,
for each point x ∈ X , we take the corresponding superpoint
and a few neighboring ones (in the sense of k nearest neigh-
bors). From the information about how many RANSAC-planes
corresponding to active SP x is inlier of, we decide whether x
is a ground point.

4.3.2 Burn Severity Mapping In the next step, we compute
the biomass loss. To speed up computation, we only investigate
areas, classified as burned in the 2D step. We voxelize the non-
ground-points in pre- and post-event ALS point clouds. The
voxel size r must be higher than possible displacements caused
by wind. Contrarily, a cell has a dimension of several meters (in
our case: 10m) and signifies the relevant for damage assess-
ment area. For each cell, we count the number of voxels that
have been filled in pre- but not in post-event point cloud. The
absolute (#B · r3) and relative (#B/#V ) measures, whereby
#V is the total number of voxels in the cell, are used to assess
the results on upsampling burning area mapping.

5. Results

To assess the accuracy of 2D burned area mapping (Section 5.1,
we use Omission Error (OE), Commission Error (CE), and Di-
ce Coefficient (DC), calculated from True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN)
values in a confusion matrix (Padilla et al., 2015). For 3D
burn severity mapping, we subdivide the corresponding section
5.2 into two parts. Namely, in Section 5.2.1, we evaluate our
ground filtering method using LAStools (LAStools, 2022) as
the reference data, since it is an industrial standard tool. Due to
the absence of reference data on burn severity levels, our evalu-
ation will be limited to qualitative assessment (Section 5.2.2).

5.1 Burned Area Mapping

According to our observation that burned area candidates de-
rived from the clustering results of CIR data and PlanetScope
dNDVI incorrectly classified water bodies and roads as burned
areas, we have incorporated a refinement module to mitigate in-
terference from these two types of objects, thereby enhancing
the performance of our 2D burn mapping results. As shown in
Figure 3, the pre-trained UNetFormer, assisted by SAM, exhib-
its satisfactory performance on post-event RGB data, especially
in segmenting these two categories: water and roads, demon-
strating a superiority over the segmentation of other categories
and fulfilling the requirements of our unsupervised model.

As mentioned before, some sites (site 1: 1705 px × 1187 px;
site 2: 1691 px × 1201 px; site 3: 831 px × 518 px) are chosen
for manual labeling, and the accuracy of the burned area map-
ping is assessed for these sites. We experiment with different
input data sources, which include PlanetScope MS imagery,
aerial CIR + RGB data, and fusion of PlanetScope and aerial
2D data. Figure 4 provides an overview of their prediction
maps. Our UsBA detection model, solely based on aerial 2D
data, tends to exhibit more detailed and extensive burned areas
than the dNDVI baseline (dNDVI + PCA) derived from Planet-
Scope data. By combining aerial 2D with PlanetScope data, this
model achieves more accurate segmentation of burned areas.
The quantitative analysis results computed for the burned area

detection are presented in Table 1. For the PlanetScope data, the
dNDVI + PCA method results in the worst OE of 25.0% and DC

road

water

barren

forest

agriculture

background

(a)

(b)

Figure 3. Semantic segmentation results based on SAM-assisted
UNetFormer. The model has been pre-trained on target-style

rural LoveDA dataset. (a) post-event RGB tiles (1024 px); (b)
corresponding semantic segmentation results.

of 85.1%. Our model solely using aerial 2D data achieves bet-
ter DC (87.4%) with a reduced OE (21.0%), indicating its pro-
ficient capability in accurately identifying burned areas. More
outstanding improvements in DCs of fusion inputs are observed
over every case site. Moreover, our model with the combina-
tion of Aerial 2D and PlanetScope data considerably improves
the detection of burned areas, reducing omission errors and in-
creasing the accuracy of detection correctness compared to us-
ing each data source individually. (Total OE: 9.0%; total CE:
2.8%; total DC: 94%).

Data Method Site OE CE DC
1 21.1% 0.7% 87.9%

PlanetScope dNDVI 2 28.6% 2.2% 82.6%
+ PCA 3 25.3% 0.8% 85.2%

Total 25.1% 1.3% 85.1%
1 24.5% 2.2% 84.3%

Aerial 2D Ours 2 19.5% 0.3% 89.1%
3 17.5% 4.2% 88.7%

Total 21.0% 1.7% 87.4%
1 11.4% 2.4% 92.9%

Aerial 2D + Ours 2 7.4% 1.9% 95.2%
PlanetScope 3 8.1% 4.2% 93.8%

Total 8.9% 2.3% 94.3%

Table 1. Quantitative analysis results for burned area mapping
using different datasets.

5.2 Analysis of 3D data

5.2.1 Ground Filtering: Assessment of SiRP The result
of evaluation using LAStools as the reference looks promising,
with an overall accuracy of around 90% in the confusion mat-
rices in Figure 5. It is comparable to the previous works, such
as of Bulatov et al. (2021). Qualitatively, LAStools and SiRP
correctly classify points that are clearly soil or high vegetation.
However, there are noticeable differences, especially in grass-
covered fields (Figure 5, top). SiRP allows for greater uneven-
ness in the ground, which results in low vegetation often being
classified as ground. This key difference is evident in the confu-
sion matrices in Figure 5. In the forest, this behavior is also ob-
served (Figure 5, bottom). Comparing the confusion matrices,
one notes that the best result of ground filtering is obtained im-
mediately after the bushfire on 01/26/2020, because the fire des-
troys a lot of low and medium vegetation. Conversely, after new
vegetation grows, the performance of SiRP regarding reference
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(1)

(2)

(3)

Post-event CIR Post-event RGB Reference data
dNDVI + PCA 
(PlanetScope)

UsBA_detection
      (Aerial 2D)

UsBA_detection
 (Aerial 2D + PlanetScope)

Confusion image 
(Aerial 2D + PlanetScope)

TP TN FP FN

Figure 4. Comparison of 2D prediction results for burned area mapping using different datasets. The final column is confusion images
for our model prediction results using aerial 2D and PlanetScope data.

provided by LAStools degrades again (shown in confusion mat-
rix on 09/09/2020, Figure 5).

Figure 5. Confusion matrix comparison of ground filtering, with
number of points in millions; Qualitative evaluation with images

from 09/09/2020 (post-event): Top: Nadir view, bottom: side
view.

5.2.2 Burn Severity Mapping As no change in volume is
to be expected for the ground, we remove the corresponding
points from future analysis. The ash produced by a fire should
also not be included in the volume difference. Therefore, we
consider it useful to use the ability of SiRP to remove soil and
low vegetation in order to obtain exactly the volume of the large
plants, which make up the majority of the biomass in the forest.
We note that the biggest obstacle on the way to an objective
damage grading is that the only pre-event data was taken four
years and not immediately before the event. During this time,
vegetation is very likely to be subject to many changes. Actu-
ally, Dixon et al. (2023) have mentioned a threshold of three
years. Thus, we can only provide a lower bound on the burn
severity by comparing the biomass using the method of Sec-
tion 4.3.2 because we basically estimate what is lacking in 2020
compared to 2016.

Following Hosseini and Lim (2022) and Tehrany et al. (2021),
damage is classified both in absolute and relative terms in five
classes, as depicted in the tables within Figure 6. The entire
area exhibits medium to severe relative destruction (> 25%),
as shown in Figure 6a, with only a few instances of minor de-
struction (≤ 25%). Particularly, the southern part of the area
is characterized by severe destruction, predominantly due to the
prevalence of medium vegetation, which is particularly suscept-
ible to fire damage. Conversely, the lower degree of destruction
observed in the northern half of the area can be attributed to the
presence of a large stand of trees, which exhibited greater resili-
ence to the fire. This observation supports the application of the
SiRP methodology, as, without it, regions characterized solely
by low vegetation would appear to sustain a high degree of re-
lative destruction, despite contributing minimally to the overall
volume of destroyed biomass.
While considering the absolute volume of destruction, as de-
picted in Figure 6b, the focus shifts to the northern area where
the forest is significantly taller compared to the southern part.
Notably, there is an east-west pattern in the results, where de-
struction is consistently higher. This pattern is a result of data
collection method (shown in Figure 1d), since the laser penet-
ration of vegetation varies depending on the scan angle. Nev-
ertheless, the results align well with the fire zone analysis. The
lighter areas in the southern part correspond to lower volume
loss. Along the forest aisle, heavy destruction is nearly continu-
ous due to the dense undergrowth and increased fire intensity at
the forest edge.
In summary, the fire has a significant impact, resulting in the
destruction of around 3 000 000m3 of biomass. On average,
this represents a 68% loss of biomass. These numbers include
fire destruction and biomass removed during possible post-fire
cleanup operations until 09/09/2020.

6. Conclusion

Fire is a major degradation component for the vegetation and
forests, not only threatening the bio-diversity and human lives,
but also contributing to significant emissions of carbon diox-
ide. Once such a bushfire happened, all available sensors have
to be employed to assess the damage and provide decision-
makers a picture of the situation as quickly as possible and as
comprehensively as necessary so that they can determine their

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-29-2024 | © Author(s) 2024. CC BY 4.0 License.

 
34



(a) percent (b) volume in cubic meters

Figure 6. Immediate fire damage on 01/26/2020 vs. 05/06/2016. Pixel size is 10m × 10m. PC is an abbreviation for point cloud.

options for action. In this paper, a combined 2D/3D pipeline
for assessing the burn severity is proposed. In 2D, the newly
developed UsBA detection model takes as input bi-temporal
medium-resolution PlanetScope data and post-event UHR aer-
ial imagery to identify regions for burn severity analysis. This
model encompasses a clustering module and a refinement mod-
ule for enhanced performance, and the mapping results demon-
strate the effectiveness of UsBA detection model and showcase
the utility of combined use of data for burned area mapping
with improved OEs, CEs, and DCs. In 3D, the hypothesized
burned areas are analyzed regarding biomass loss. We first per-
form ground filtering using the already available implementa-
tion of SiRP method and then grade the damage severity using
a straightforward approach based on change detection.
The advantage of the proposed methodology is that no train-
ing data has to be collected. However, three conceptual limit-
ations and areas for improvement have been identified: 1) In
2D, impact of shadows caused some false positives while there
were some missed detections of white ash. 2) In 3D, the pre-
event data might not be available, and even if it is, it may be
so outdated that merely a lower bound on biomass change can
be provided because a lot of vegetation could have grown in the
meantime. 3) The primary limitation is that spuriously detected
water bodies and roads are not analyzed by the 3D approach
as we process 2D and 3D data using a loosely connected ap-
proach to prevent an explosion in the number of network para-
meters. We are conscious that the current research trends fo-
cus more and more on the early fusion of data stemming from
different sensors – because different data sources could com-
plement each other and cope with each other’s insufficiencies.
Therefore, future research could beneficially explore the integ-
ration of 3D data into a semi-supervised or unsupervised deep
learning pipeline that utilizes optical imagery. This integration,
potentially through the generation of an additional layer, rep-
resents a promising extension of the approach presented herein.
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