
Maritime Behaviour Anomaly Detection with Seasonal Context 
 

 

Travis Rybicki1, Martin Masek2, Chiou Peng Lam2
  

 

1
 School of Science, Edith Cowan University, Joondalup, Western Australia – trybicki@our.ecu.edu.au 

2
 School of Science, Edith Cowan University, Joondalup, Western Australia – (m.masek, c.lam)@ecu.edu.au 

 

Keywords: Maritime Traffic Patterns, Seasonal Context, Trajectory Clustering, Anomaly Detection, Spatiotemporal Data. 

 

 

Abstract 

Monitoring maritime traffic has become an important task for ensuring the safety of vessels, as well as the goods, and persons that they 

may be transporting. An active area of research is the modelling of expected normal vessel behaviour so as to detect subsequent 

anomalies in new data. Anomalies indicate that a vessel is not behaving in an expected manner and their detection can be flagged for 

further investigation to identify whether the vessel needs assistance or intervention.  An important factor for some vessels in determining 

normal behaviour is seasonal context. However, current approaches typically do not incorporate seasonality into the model. 

In this paper, an approach is presented where seasonal context is incorporated into the behaviour model. Seasonal context is first 

incorporated into vessel trajectory data by encoding the month of year into a historic dataset. Following this, a model of normal 

behaviour is generated using a clustering approach, with DBSCAN used in this paper. Details of setting the DBSCAN parameters 

appropriately for vessel trajectory data are provided and four distance metrics explored. Resulting cluster models are evaluated in the 

context of using the model to classify previously unseen data as either fitting the model or constituting an anomaly. The experiments 

focus on using fishing vessels within two identified seasons to build the normal model, which is evaluated with a mixture of in season 

and out of season fishing and non-fishing vessel behaviour. 

 

1. Introduction 

The monitoring of maritime vessel traffic is essential so that 

goods, animals, and people onboard a vessel are kept safe. 

Consequently, the International Maritime Organization (IMO) 

enforces relevant vessels to carry onboard tracking devices which 

broadcast a vessels navigation trajectory and identity through the 

Automatic Identification System (AIS) (IMO., 2015; Riveiro et 

al., 2018). The AIS data allows the operators of vessels to 

maintain an awareness of other vessels around them and allows 

the monitoring of shipping channels to help prevent and respond 

to incidents. 

Besides real-time use of AIS, the information is collected and 

curated by several organisations that make the data accessible for 

maritime data analysis applications. An emerging use of the large 

archive of historical AIS data is to model the expected behaviours 

of certain vessel types and subsequently use this information to 

detect abnormal behaviour in newly observed traffic (Zhao and 

Shi, 2019; Masek et al., 2021). Such modelling has the potential 

to provide human operators with tools to better manage the large 

quantities of real-time data from busy shipping channels. 

To date, most studies on maritime behaviour modelling focus on 

the kinematic characteristics of vessel trajectories but ignore the 

seasonal context of vessel behaviour. This can affect the accuracy 

of models by limiting their sensitivity when a vessel type displays 

different ‘normal’ behaviour in different seasons. A clear example 

is that of fishing vessels. As shown by Guan et al. (2021), 

different sub-types of fishing vessels, and thus different fishing 

behaviour, might be dominant in different seasons. Nguyen et al. 

(2021), in their work on automated model development without 

taking season into consideration acknowledge that this lowered 

performance of their model on fishing boats and proposed that in 

future work this could be addressed by having separate models 

for each season. 

In this paper, an approach is presented that integrates kinematic 

characteristic with seasonal characteristics in a unified model for 

the detection of anomalies in maritime vessel behaviour. 

Clustering of historical data using spatial and temporal 

information is used to discover behavioural clusters. The 

resultant model is then tested using by testing its proximity to the 

nearest spatiotemporal clusters and determining whether it 

matches the behaviour expected or whether it is anomalous. 

In evaluating the approach, we explore four alternatives to 

measuring distance between trajectories to form the cluster 

models. Evaluation is performed using the fishing boat class 

within two defined seasons to define normal behaviour and tested 

on a combination of out of season fishing and cargo, tanker, and 

passenger shipping to represent abnormal behaviour. The 

remainder of this article is organized as follows: Section 2 

presents related work. Section 3 presents details of the proposed 

approach. Section 4 evaluates the effectiveness of the proposed 

approach through a set of experiments, and Section 5 draws 

conclusions. 

2. Related Work 

Various approaches are found in the literature to modelling of 

normal maritime vessel traffic. Many of these techniques are 

based on clustering approaches. Among other similar approaches, 

Olesen et al. (2023) proposed a two-step modelling approach, 

first clustering based on location, then further refining by other 

kinematic variables. In evaluating their work on a dataset from 

Danish waters, it is reported that their approach competes with 

deep learning neural networks with an Area Under the Curve 

(AUC) value of 0.79. 
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In Xie et al. (2024), maritime vessel trajectory modelling has also 

been explored using clustering, followed by using a probabilistic 

attention-based transformer for anomaly detection by analyzing 

the clustered data made up of the latitude, longitude, speed, and 

course-over-ground, applying the method to an inland river 

system. 

Zhao and Shi (2019) modelled cargo and tanker trajectories 

navigating the Beilun-Zhoushan port, China. After this, the 

remaining clustered trajectories were used to train a Long Short-

Term Memory (LSTM) neural network for detecting anomalous 

trajectories not following these defined routes. 

3. The Approach 

The proposed approach consists of two steps. First, a model of 

expected vessel behaviour in a particular region of interest of the 

ocean is built through the spatiotemporal clustering of historical 

vessel data. Second, new vessel trajectories are classified as 

either fitting the model or representing anomalous behaviour. In 

this section we overview the data representation used in the 

proposed approach in 3.1, followed by details of the model 

development using a clustering approach is discussed in 3.2 and 

details of the classification step in 3.3. 

3.1 Data Representation 

In this work, the trajectory for a particular vessel is represented 

as a time series of multi-dimensional points. Each point within a 

trajectory consists of a set of values, each normalized in the range 

[0, 1], corresponding to kinematic parameters: Latitude, 

Longitude, and Speed, and a temporal parameter to enable 

seasonality awareness: Month-of-Year. Latitude and Longitude 

are each normalized using min-max normalization of the region 

of interest boundaries. Speed values are normalised through 

division by the maximum observed speed in the historical dataset 

from the area of interest, which in our experiments was 50 knots. 

The raw Month-of-Year (MoY) variable repetitively cycles 

between 1 and 12, therefore a representation is needed to model 

that, for example, month 12 (December) is as close to month 11 

(November) as it is to month 1 (January). This is achieved by 

Equations (1) and (2), transforming the raw MoY values using 

cosine and sine transformation (Petneházi, 2019) and scaling the 

result between 0 and 1.  

𝐶𝑜𝑠𝑥 =  0.5( 𝑐𝑜𝑠 (
2× 𝜋 ×𝑥

max(𝑥)
) + 1)   (1) 

𝑆𝑖𝑛𝑥 =   0.5(𝑠𝑖𝑛 (
2× 𝜋 ×𝑥

max(𝑥)
) + 1)   (2) 

3.2 Modelling through Spatiotemporal Clustering 

The proposed approach builds a model of expected vessel 

behaviour by taking historical trajectories of vessels and 

separating them into distinct clusters. The aim is to group vessel 

trajectories by similarity in terms of their kinematic properties 

and the season in which the behaviour occurs. 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) (Ester et al., 1996) was chosen as the clustering 

algorithm in the proposed approach. DBSCAN does not need the 

number of clusters to be known a priori and has seen use 

previously in the maritime domain (Zhao and Shi, 2019; Olesen 

et al., 2023; Xie et al. 2024).  

The DBSCAN algorithm groups a set of points into clusters using 

two parameters, ε, and n, and also needs a metric to define 

distance between a pair of data points. The selection of ε and n 

will be discussed next in 3.2.1, followed by a discussion on 

distance metrics explored in 3.2.2. 

3.2.1 DBSCAN Parameter Setting: As noted in previous 

work (Zhao and Shi, 2019), the wide range of vessel behaviours 

presents a challenge in selecting appropriate values for the 

DBSCAN parameters. Han et al. (2021) proposed a heuristic for 

estimating the ε parameter using the kth nearest neighbours 

distance distribution of the dataset, setting ε as 1.5 times the 

interquartile range plus the third quartile (referred to as the IQR 

rule). Though their promising results are not based on seasonal-

aware data, utilising only kinematic parameters (Latitude, 

Longitude, Speed Over Ground, Course Over Ground, and 

Heading), we have adopted their approach for our data which 

includes Month of Year to model seasonality. 

The use of the IQR rule still relies on the setting of one parameter, 

k, which we have tuned in our experiments by examining results 

for various k values. From these results, the k that corresponds to 

the minimum outliers in the clustered data is chosen, similar to 

the approach in Han et al. (2021). The chosen k is also used as 

the parameter n for DBSCAN and used to calculate ε using the 

IQR rule. 

3.2.2 Calculating Trajectory Similarity: To measure 

distance between two trajectories, a metric is needed that is 

applicable to multi-dimensional time series data. Previous works 

have explored several measures that are suitable for maritime 

trajectories that include kinematic parameters such as geographic 

coordinates, speed and heading (Li et al., 2017; Han et al., 2021). 

We explore some of the established measures with our dataset, 

which has the addition of the temporal Month of Year parameter 

to each data point in the trajectory time series.  

For this article, four measures are investigated, three of these are 

based on Dynamic Time Warping (DTW) (Sakoe and Chiba, 

1978), with the original DTW distance and two varieties that 

employ separate forms of trajectory length normalisation. The 

fourth distance is the Hausdorff distance (Huttenlocher and 

Kedem, 1990; Huttenlocher et al., 1993). Both DTW and 

Hausdorff metrics have been employed in maritime trajectory 

comparisons (e.g., Olesen et al. 2023 among others), though they 

both have challenges. The Hausdorff distance does not consider 

direction due to being a min-max function (Shen et al., 2022). 

And DTW is known to have issues with trajectory lengths where 

extreme differences lead to a higher distance value regardless 

how similar (Shen and Chi, 2017). 

Distance normalization seeks to remove the influence of differing 

trajectory lengths. In this way, a dataset can have a relative 

distance value for each trajectory pair. This article employs two 

techniques, one from Shen and Chi (2017) shown as Equation (4) 

and another from Tao et al. (2021) shown as Equation (5).  

𝐷𝑇𝑊𝑛𝑜𝑟𝑚1(𝐴, 𝐵) =  
𝐷𝑇𝑊(𝐴,𝐵)

𝑁+𝑀
    (4) 

where  DTW(A,B) = the DTW value of two trajectories A and 

B, which have N and M points respectively,  
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𝐷𝑇𝑊𝑛𝑜𝑟𝑚2(𝐴, 𝐵) = √
𝐷𝑇𝑊(𝐴,𝐵)

max (𝑁,𝑀)
    (5) 

3.3 Classification of New Vessel Trajectories 

Once the model of normal vessel behaviour is built, new 

trajectories can be classified as either fitting the model or as 

anomalies. For this, a k-Nearest Neighbour (kNN) classifier was 

used to determine the cluster that is closest to the trajectory being 

classified. A threshold, determined from statistical properties of 

the nearest cluster, is then used to determine whether the 

trajectory belongs to that cluster or is an outlier. 

The following outlines the classifier approach. Let D denote the 

dataset of vessel trajectories, where each trajectory is assigned a 

cluster label Ci, i ∈ [1…n], where n is the number of clusters. 

Let p be an unseen trajectory to be evaluated. 

Given new trajectory p, the distance between p and a trajectory o 

∈ D is denoted by dist(p,o). Whereby dist(:,:) defines some 

similarity measure. It is reasonable to assume that the best 

candidate for a similarity measure for the classification step is the 

particular measure that was used in the clustering step. Thus, we 

explored here the same four similarity metrics used in the 

clustering approach (i.e., Hausdorff distance and the three DTW-

based metrics).  

Given the trajectory p, and positive integer k. The candidate 

cluster label Ci for p is assigned by using a majority vote from 

the set of cluster labels of the k-nearest neighbouring trajectories 

of p. If a tie occurs, k is increased by one until no tie occurs. 

In determining the distance threshold, T, to decide whether the 

trajectory p does belong to its candidate cluster Ci the respective 

ε value from clustering was used. If the distance between 

trajectory p and the closest trajectory in Ci > T then p is an outlier 

with respect to Ci. 

4. Experiments, Results and Discussion 

Evaluation of the proposed approach was performed in the 

context of creating models for fishing boat trajectories within two 

identified fishing seasons and evaluating the models by using 

them to classify trajectories from fishing vessels out of season 

and of non-fishing vessel types. An accurate model would be 

expected to lead to a normal classification for previously unseen 

fishing vessels within the seasons. Abnormal classification would 

be expected for out of season fishing (i.e., a seasonal anomaly) 

and non-fishing vessel types (a mixture of seasonal and spatial 

anomalies due to their different behaviour). 

A dataset of vessel trajectories from a section of the Western 

Australian coastline was used in the evaluation. The basis of our 

dataset was the Open Maritime Traffic Analysis Dataset 

(OMTAD) (Masek et al., 2021), which consists of curated and 

pre-processed AIS data sourced from the Australian Maritime 

Safety Authority (AMSA) (Australian Maritime Safety Authority, 

n.d.). The region of interest, along with examples of one month 

of cargo vessel trajectories are shown in Figure 1. 

 

  

Figure 1. This image shows the location of interest, where the 

red lines are those of one months of cargo trajectories during 

January 2019 operating off the coast of Western Australia. 

Figure adapted from: Masek et al. (2021). 

 

To provide more data evaluation, the original OMTAD dataset, 

which covers the years 2018-2020 was extended, using the same 

selection and pre-processing rules to also include fishing vessel 

trajectories across 2021-2023. From the expanded dataset, the 

fishing vessel class was isolated and inspected manually, 

revealing two main periods of fishing activity within each year – 

February, and May through to July. From these two seasons, 176 

trajectories formed a set of candidates for modelling normal 

behaviour through the clustering approach, the trajectories are 

depicted in Figure 2(a). 

Testing data for the classification step consisted of normal fishing 

vessel data, where four-fold cross validation was performed, 

using 132, (i.e., three quarters of the 176) seasonal fishing 

trajectories to form clusters and the remaining quarter (44 

trajectories) as a test set, repeated four times. Two test sets of 

abnormal data were used. The first test set consisted of 44 fishing 

vessel trajectories from outside of the two identified seasons, 

designed to represent seasonal anomalies in otherwise normal 

spatial behaviour. The second abnormal test set also included the 

out of season fishing set and in addition included 44 trajectories 

from each of the other vessel classes: cargo, passenger and tanker 

randomly selected from the OMTAD dataset to represent a mix 

of spatial and spatiotemporal anomalies (with respect to in-

season fishing vessel behaviour) – i.e. 176 abnormal trajectories 

in total. 

The details of the clustering experiment and results are presented 

in Section 4.1, with experiments and results of the classification 

stage presented in Section 4.2. 
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4.1 Trajectory Clustering Experiments 

For these experiments, the DBSCAN parameter ε was set using 

the IQR rule, described in 3.2.1, through which the optimal value 

for k, and therefore also the DBSCAN parameter n, was 

determined to be 2. A baseline result of clustering all 176 fishing 

trajectories was undertaken using each of the four candidate 

distance metrics. In addition, clustering was repeated for each 

fold in the four, for further analysis and for subsequent use in 

classifier evaluation. 

Table 1 summarises the clustering results for the complete data 

set baseline and each of the four-folds. The non-normalised DTW 

produced a lower number of clusters than other metrics, the 

clusters upon inspection had spanned larger subregions. The non-

normalised DTW algorithm was the only measure that assigned 

trajectories from separate seasons to a single cluster. This 

occurred in two of the experiments, indicated in orange shading 

in the table. Again, this can be related to the relative distances of 

trajectory pairs within a cluster and their lengths causing wider 

distance distributions. The normalised versions of DTW and 

Hausdorff distance clustered trajectories without any seasonal 

mixing in the clusters. The Hausdorff distance was the most 

consistent for the number of clusters and outliers between the 

baseline and each of the four-folds’ results. 

As an example of clusters produced, Figure 2(b) shows the 

cluster locations of the complete 176 trajectory dataset when 

using the normalized DTW distance by Tao et al. (2021). As can 

be seen multiple clusters are found across the region. Manual 

inspection showed that the clustering was successful in 

separating trajectories from the two identified seasons. Ten of the 

trajectories were not assigned to a cluster, indicated in red colour.  

When examining the trajectories not assigned to clusters by 

DBSCAN, there was mostly consistency across the metrics in 

which trajectories were not clustered. An example of a notable 

exception was a relatively long trajectory that navigates from the 

lower port regions on the map and travels toward the top before 

returning to the source, unlike any other trajectory in the dataset. 

This trajectory was successfully identified as being too different 

to be assigned to any cluster by the non-normalised DTW metric, 

however the normalised DTW – Tao et al. (2021) grouped it into 

a cluster. The variety of results indicates that there are different 

strengths and weaknesses in various measures and in 

normalisation. It may be beneficial in building a model of 

normality to use a number of metrics to generate separate models 

to capture the overall behaviour. 

 
(a) 

 
(b) 

Figure 2. (a) Locations of the seasonal fishing vessel trajectories, blue details those of season one, and green of season two. (b) 

Clustering results of all 176 fishing trajectories when minimum points set to 2 using DTW - Tao et al. (2021). Ten unique clusters are 

found, and 10 trajectories are deemed as not belonging to any cluster (identified by the red trajectory lines). 
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Similarity Measure Baseline 1st fold 2nd fold 3rd fold 4th fold 

DTW – Non Normalised 5 (11) 5  (6) 4 (10) 3 (12) 5 (14) 

DTW - Shen and Chi (2017) Normalisation 13 (16) 11 (6) 7  (4) 10 (9) 7  (9) 

DTW - Tao et al. (2021) Normalisation 10 (10) 9  (3) 8  (4) 9 (11) 8  (5) 

Hausdorff 11 (8) 12 (6) 10 (7) 9  (4) 10 (8) 

Table 1. Results of clustering the entire 176 fishing vessels trajectory dataset and each of the 4-fold subsets. The number of resultant 

clusters is shown, with the number of trajectories not assigned to a cluster in brackets. Experiments where trajectories from different 

seasons were grouped into the same cluster are indicated in orange shading. 

 

4.2 Trajectory Classification Experiments 

The cluster models from each of the four distance metrics were 

each evaluated for accuracy in classifying unseen trajectories. 

This was done using a kNN method, as outlined in 3.2.2. The 

experiments included an investigation of the effect of the kNN 

parameter k on the classifier accuracy. 

4.2.1 Temporal Anomaly Detection: A set of experiments 

on purely temporal anomalies was conducted by using the normal 

fishing vessel test dataset (the quarter of the trajectories held out 

for each fold) and a set of fishing vessel trajectories from outside 

of the two defined seasons. The results of this temporal anomalies 

experiment are shown in Figure 3 (a), in terms of classifier 

accuracy as a function of k. Each data point represents the 

average accuracy for the four folds of normal data used in the 

clustering. It can be seen from these results that the DTW 

distance normalised using the approach in Tao et al. (2021) 

produced the highest accuracy. The non-normalised DTW 

performed significantly worse than the other metrics. 

Going into more detail on the temporal anomaly experiment, 

Table 2 shows the confusion matrices for the 1st Fold, with k set 

to 3. This shows similar performance in correctly classifying 

normal and abnormal trajectories for all but the non-normalised 

DTW metric where the only difference in vessel activity was 

seasonal context. The non-normalised DTW metric results show 

that the poor overall performance results from miss-classification 

of the abnormal data (fishing out of season) with normal 

trajectories being classified on-par with the other metrics. 

4.2.2  Spatiotemporal Anomaly Detection: The 

spatiotemporal anomaly detection experiments were run 

similarly to the temporal anomaly experiments but using the 176 

abnormal trajectories test set described earlier (in addition to the 

normal trajectories). 

Figure 3 (b) shows the spatiotemporal experiment results in terms 

of kNN classifier accuracy for each of the four cluster models as 

a function of k. Similarly to the temporal anomaly experiments, 

DTW-Tao et al. (2021) produced the highest overall accuracy, 

with the non-normalised version of the DTW producing the 

lowest accuracy. 

Overall, higher accuracy was observed in the spatiotemporal 

experiments than the temporal experiments. An examination of 

the results showed that this was due to the high performance on 

correctly classifying non-fishing vessel types as abnormal. 

Performance on normal fishing and out of season fishing was 

identical to the temporal experiments, as the same models and 

settings were being used. For the non-fishing vessels, 

classification using the Hausdorff and both normalised versions 

of DTW models correctly classified all cargo, passenger and 

tanker trajectories as abnormal. The non-normalised DTW 

cluster model resulted in accuracies for cargo, passenger and 

tanker of 93%, 80% and 100% respectively.  

DTW – Tao et al. (2021) Actual 

k = 3, 1_Fold_Temporal Normal Abnormal 

Predicted 
Normal 41 2 

Abnormal 3 42 

  

DTW-Shen-and-Chi-(2017) Actual 

k = 3, 1_Fold_Temporal Normal Abnormal 

Predicted 
Normal 39 2 

Abnormal 5 42 

  

DTW-Non-Normalised Actual 

k = 3, 1_Fold_Temporal Normal Abnormal 

Predicted 
Normal 40 17 

Abnormal 4 27 

  

Hausdorff Actual 

k= 3, 1_Fold_Temporal Normal Abnormal 

Predicted 
Normal 38 2 

Abnormal 6 42 

Table 2. Confusion matrices examining the 1st fold Temporal 

Experiment dataset with k set to 3. 
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(a) 

 
(b) 

Figure 3. Classification results: (a) Temporal experiments for seasonal, and non-seasonal fishing trajectories, and (b) Spatiotemporal 

experiments where the inliers are the respective k-folds seasonal fishing vessels and outliers are off-season fishing, cargo, passenger, 

and tanker vessels.

4.2.3 Discussion: It is interesting to note that though the 

different metrics used to produce clusters resulted in different 

numbers of clusters, they all showed promise in producing a 

model that could be used successfully in anomaly detection. 

Whilst the non-normalised DTW model showed lower overall 

performance, this should not discount the prospect of its use, 

alongside the other models, in a more comprehensive approach. 

For example, though not the focus of this study, it may also be 

considered anomalous is the length of a trajectory overly large 

compared to the expected trajectory length. In that case, the 

length-normalised distance measures would hide such a 

discrepancy in trajectory lengths. 

In terms of the number of neighbours, k, for the kNN approach, 

the results show that this is not such a crucial in the dataset that 

was investigated. It should be noted that as the DBSCAN 

parameter of n was set to 2, which may naturally bias the optimal 

k to be close to 2. Results however showed similar performance 

up to a value for k or 5-8. Beyond k of 8, performance steadily 

decreased. A factor in this may be the low number of data points 

in each cluster, which could be mediated by using a larger 

historical dataset for training. Some support for this is seen as 

performance in the non-normalised DTW model did not see as 

large a drop in performance with larger k. This measure resulted 

in a lower number of clusters, each with more data points, so 

more possible neighbours to match to a new trajectory being 

classified. 

5. Conclusion 

In conclusion, this article presented an approach for modelling 

normal behaviour of vessels with seasonal context integrated into 

the model. The approach uses a clustering technique on a 

historical dataset of normal trajectories to build the model. 

Seasonality was incorporated by taking vessel trajectories and 

adding month of year information to each data point in the 

trajectory time series to augment the kinematic data. Four 

distance metrics were investigated within the clustering approach, 

three were versions of dynamic time warping and the fourth was 

Hausdorff distance. 

Models were evaluated for their ability to discern between 

temporally abnormal behaviour (i.e., not occurring in the correct 

season). Further evaluation was performed with a mixture of 

spatial and temporal abnormalities by using trajectories of vessel 

types that did not correspond to the behaviour the model was 

trained with. 

Results showed that in the context of a model of fishing vessel 

behaviour for specific seasons, out of season fishing and vessels 

not engaged in fishing could be identified based on their 

spatiotemporal behaviour. These results are promising, leading to 

prospects of further research in terms of scaling up the approach 

to a wider range of vessel types and a larger dataset. In particular, 

the different characteristics of clusters resulting from the various 

metrics raise the prospect of a multi-model approach and an 

investigation of which type of model is better suited to specific 

sub-types of spatiotemporal anomalies. 
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