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Abstract

In a 3D voxel-based digital urban model - or digital urban twin, the semantics of each cell is typically visualized using RGB values
to give a realistic impression. However, due to measurement uncertainties or incompleteness, some voxel occupancy might be
less likely than others. This paper suggests computing an occupancy grid map using an inverse sensor model and embodying the
obtained occupancy probabilities into the urban digital twin.

This article then presents visualization of additional information, in this case the uncertainty in space occupancy, in a 3D voxel-based
urban model. To this end, a concept is proposed, in which static visual variables are complemented by dynamics. It suggests to
utilize the visual variables transparency, size, and color, supplemented by animation. The main idea is to communicate occupancy
uncertainty information and enhance its perception via visual variables while visually inspecting a digital twin in an animation

mode, observing the occupancy uncertainty without losing the perception of the urban environment.

1. Introduction

Intensive improvement in technologies, methodologies, and in-
struments for data collection and 3D city modeling has created
various opportunities for applications addressing challenges, in-
cluding those related to urban planning, infrastructure organiz-
ation, disaster management, and beyond. In this context, the
concept of the smart city became popular in the 2010s, which
involves administration and citizens working together with new
technologies to make the city more efficient, smarter, more sus-
tainable and safer, and cities were equipped with sensors (Ar-
roub et al., 2016).

Modern smart cities are functioning by integrating data from
different sensors and semantic, geospatial properties of city ob-
jects into the 3D city model, creating a precise digital replica,
termed an urban digital twin (Juarez et al., 2021; Tomko and
Winter, 2019; Castelli et al., 2019). The continuous data ex-
change ensures that the model within the digital twin closely
reflects the real city and its systems, providing a highly accurate
representation. This interactivity has the potential to offer sub-
stantial advantages in the management and operation of urban
infrastructure (Ferré-Bigorra et al., 2022).

Nowadays, several urban digital twins are operating. For in-
stance, German 3D Spatial Base Data provides 3D city mod-
els with the Level of Detail 1 (LoD1) and 2 (LoD2) (Gruber,
2020). The digital twin of Vienna, Austria, focuses on the geo-
detic and geometric aspects of semantic geo-objects (Lehner
and Dorffner, 2020). The Helsinki digital twin, Finland, com-
prises 3D city models, the utility of which can be expanded to
assess solar energy potential, conduct noise emission simula-
tions, or test the impact of flooding, allowing for linkage with
supplementary data and information such as census data, socio-
economic data, energy consumption data, maintenance man-
agement data, and more (Ruohomiki et al., 2018).

The majority of modern urban digital environments consist of
3D city models realized within the Building Information Mod-
elling (BIM) or CityGML framework (Gobeawan et al., 2018;

Schrotter and Hiirzeler, 2020; Yang and Kim, 2021; Dembski
et al., 2020). Although these types of models can be highly ac-
curate, keeping them consistently updated to reflect real-time
changes in the city poses a considerable challenge (Tang et al.,
2018).

Data reliability and correct alignment of virtual urban indoor
and outdoor environments, also under real-time conditions are
crucial for services such as emergency operations, navigation,
autonomous vehicle route planning, and smart space manage-
ment. Therefore, a voxel-based representation method for
urban digital twins has been recently proposed by Mortazavi
et al. (2023). The fundamental idea behind this project is to
capture high-resolution 3D features of the urban environment
using diverse sensor systems and partitioning the data into bil-
lions of voxels that can be systematically updated, potentially
in a decentralized way (Mortazavi et al., 2023). Additionally,
the developments in data transmission technologies, such as
5G, promise real-time update applications for digital twins in
the near future, leading to dynamic urban information. In the
voxel representation, the necessary supplementary information
is linked not to the 3D model objects, but to each voxel, thereby
making an urban model more flexible for real-time changes due
to the possibility of direct voxel update without a preprocessing
step. Moreover, voxel-based models are actively employed in
several areas and disciplines, e.g. to define the unexplored
space for autonomous vehicles and smart space management,
robotic operations, navigation, and route planning, computer
graphics, rendering techniques, classification, localization and
3D reconstruction tasks that can significantly extend the range
of urban digital twin applications in the future (Agus et al.,
2010; Heajung et al., 2023; Hiibner et al., 2022; Deng et al.,
2024; Mortazavi et al., 2023).

Aside from 3D modeling, visualization is another crucial com-
ponent of urban digital representation. Visualization plays a
substantial role in ensuring the digital twin’s realism, interactiv-
ity, and scalability (Martella et al., 2023). The visualization of
the urban 3D model should not only display the model itself but
also be tailored to meet the specific requirements of the applic-
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ation, filtering out unnecessary details while emphasizing key
information (Somanath et al., 2023). Therefore, the proposed
3D voxel-based urban environment requires adequate semantic
information visualization and data integration methods for po-
tential use cases. As the model will be continuously updated,
corresponding visualization of the dynamic urban environment
according to the real-time changes is required as well.

In the voxel representation, each cell contains information
about its status. Typically, this relates to the objects and their
semantics, e.g. a building and its usage. In the context of urban
space management, it is also very important to know, if a space
is occupied or not. This is e.g. necessary, to assign a space to
be used for a farmer’s market on Thursday and Saturday after-
noons; similarly, spaces can be allocated for parking of courier
vehicles at their delivery times. Another usage of the occupancy
of space is to determine if a vehicle can pass through a narrow
passage.

Thus, our research is directed toward exploring the integration
and visualization of such additional data into the 3D voxel-
based urban model. We aim to investigate how such addi-
tional information can be effectively incorporated and perceived
within the urban digital twin. This paper presents a design
concept and initial results for the visualization. It is proposed to
communicate the occupancy status of the space and its uncer-
tainty using static visual variables such as transparency, color,
and size. These variables are supplemented by animation,
which assists users in observing the urban environment and the
occupancy space uncertainty at the same time.

2. State of the Art of Visualization and Uncertainty
Visualization

2.1 Visual Variables

A voxel-based urban digital twin embodies geodata collected
by sensors and can be readily interpreted as a 3D georeferenced
map. Therefore, in our research, we focus on the visualiza-
tion aspects utilized in geospatial information representation
techniques. Geovisualization provides intuitive and practical
methods for abstract geographic information understanding and
communication through graphical symbols. Acting as an inter-
mediary between users and geospatial data, a reliable visualiza-
tion system should help users efficiently and accurately identify
target symbols within a visual context (Swienty et al., 2007).

Bertin’s visual variable theory posits that graphical symbols
can be represented by seven fundamental visual variables:
position, size, shape, color, orientation, and texture (Bertin,
1987). Further, the research of Koussoulakou and Kraak (1992)
showed that animation assists in comprehending message con-
tents more effectively than employing traditional static maps.
Consequently, six dynamic visual variables were proposed by
DiBiase et al. (1992) and MacEachren (2004), denoted as mo-
ment, duration, frequency, order, rate of change, and synchron-
ization. Since then, with the advancement of technologies,
these variables have been expanded and enhanced across vari-
ous platforms, including immersive maps, augmented reality,
virtual reality systems, and gamification engines. For instance,
Zhang et al. (2023) proposed extending visual variables such as
color and size using natural material color, illuminating mater-
ial color, linear and angular sizes. Additionally, they conduc-
ted research involving AR geovisualization user experiments,
where dynamic variables like vibration and flicker were found

to offer the highest guidance. Mao et al. (2020) mixed the HSL
color space visual variable and transparency to visualize the
heat level and energy loss respectively, for an energy simulation
online framework based on a 3D city. Gautier et al. (2020) used
a 3D point cloud with varying point sizes and densities, along
with animation, to display the different temperature degrees in
a 3D city model.

2.2 Visualization of Geospatial Information Uncertainty

In recent decades, scholars in geographic information science
have designed and assessed visualizations of uncertainty across
various contexts (McKenzie et al., 2015). MacEachren et al.
(2005) describe in detail the fundamental aspects of uncertainty
visual representation, considering combinations of visual vari-
ables, glyphs, dynamic changes in data colors, uncertainty in
3D bars, and other methods. Brodlie et al. (2012) compiled
a catalogue of visualization techniques, detailing the research
efforts dedicated to expanding each method’s capability to ad-
dress uncertainty. In their book, the authors acknowledge that
historically, the geovisualization community was perhaps the
first to realize the importance of uncertainty, providing ex-
amples such as the visualization of Digital Elevation Models
(DEMs) uncertainty using animation, counter uncertainty visu-
alization for oceanography maps, texture-based approaches for
representing surface velocity effects in ocean maps, among oth-
ers. Kinkeldey et al. (2014) conducted an extensive review of
user studies on geospatial uncertainty visualization. Their work
concluded that the majority of the studies are based on the ma-
nipulation of existing map content to represent uncertainty by
utilizing color hue, color value, color saturation, and transpar-
ency.

Furthermore, visual variables were extensively extended for
the 3D uncertainty visualization techniques including opacity,
pseudo-coloring, fuzziness, side-by-side comparison, and vari-
ous animations. For example, Huang et al. (2019) intro-
duced an approach combining realistic visualization of a nat-
ural forest environment with uncertainty information. Their
method, termed the “slide-and-show” technique, enables users
to explore the uncertainty of the model by adjusting a slider in-
terface, which dynamically represents the corresponding dens-
ity of trees. The study of Diibel et al. (2017) introduced a range
of design options enabling the generation of prioritizing visual
representations of 3D terrain models and uncertainty informa-
tion. These options include the utilization of a continuous color
scale, color-coded triangular glyphs and circles integrated into
the terrain, transparency adjustments, phong illumination, am-
bient occlusion, ambient aperture lighting, realistic surface tex-
ture, and other techniques. O’Banion et al. (2019) presented an
interactive visualization of 3D coordinate uncertainties of ter-
restrial laser-scanning point clouds using OpenGL shader lan-
guage for uncertainty and point cloud colors blending.

3. Occupancy Map Modeling

Occupancy information is an important knowledge that is
widely used in the mobile robotics field and utilized for local-
ization, path planning and space management applications. In
the last decades, occupancy grid maps have become a prevailing
approach for modeling environments. These maps serve as spa-
tial representations of the environment, employing a grid struc-
ture where each cell denotes qualitative information regarding
its state, which indicates the certainty of occupancy based on
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sensor measurements (Thrun, 2003; Dia et al., 2018). The con-
ventional approach for constructing occupancy grid maps often
involves the method proposed by Elfes (1987), which leverages
inverse sensor models. In this method, the mapping problem
is approached inversely to the generation of sensor data as fol-
lows:

p(M|z1.7,x1.7), (n
where M = entire map
z1.7 = complete set of measurements
x1.7 = corresponding poses

To simplify the mapping problem, two assumptions are made.
The first assumption is that cells are conditionally independent
given measurements and the trajectory of the robot. The second
assumption, known as the static world assumption, considers a
measurement at time 7 to be conditionally independent of previ-
ous measurements given the map knowledge. Considering the
assumptions and Bayes’ rule, the log odds [ of the probability
of occupancy for all grid cells 7, including updates for the cells
within the sensor range of the measurement z;, can be computed
as follows:

p(m[|Z[,xt) _ p(ml) +llt'71, (2)
1 - p(m;lze, x;) 1= p(m;)

I =log

where i = prior of occupancy of the cell

p(m;) = probability term

r_ p(milzi,X1r)

li _1 log 1=p(milz1:,%1:0)
-1 _ p\m;

L7 =logtots

The computation of the log-odds occupancy representation for
cells within the sensor measurement coverage cone is straight-
forward. As a result, the desired occupancy probability of these
cells can be obtained as follows:

1

t
1+ ek

3

p(milzi,x14) =1 -

An occupancy value close to zero indicates the high probabil-
ity that the corresponding area is free from obstacles. Hence, a
value close to one signifies that the area is occupied. The occu-
pancy value of 0.5 indicates an equal likelihood of occupancy
or vacancy and can be interpreted as an unknown space.

4. Concept for Visualization of Occupied Voxels and their
Uncertainty

The problem when conveying the occupancy status of voxels
is that the information should not be confounded with the (se-
mantic) object information. Thus a mix of static variable and
dynamic animations is proposed.

To convey the occupancy state of the environment to users, the
following static visual variables are selected: transparency, size,
and color (hue). The idea is to communicate the certainty of
an occupied space to the user, whereby unsafe spaces should
be perceived as less prominent by applying transparency and
size visual variables, while the opposite effect of emphasizing
and signaling the uncertainty of occupied space is obtained with
color visual variable. This is achieved by the following means
and effects:

Transparency: uncertain spaces have low opacity

. Size: uncertain spaces have small voxel size

3. Color: uncertain spaces are emphasized with yellow, or-
ange, and red colors (whereas certain ones are given in
green)

N =

The choice of visual variable type can be applied depending
on the specific use case. Therefore, the transparency variable
aims to gradually decrease the opacity level as the probability
value of voxels decreases. Similarly, the size variable decreases
the size of the voxel as the probability value decreases. The
color variable is employed to inform users about the certainty of
voxel occupancy, displaying occupied voxels with high probab-
ility in green, transitioning through yellow, orange, and finally
red as the probability decreases. Due to the substantial volume
of data, probability thresholds are categorized into four levels:
very high probability, exceeding 0.9; high probability, ranging
from 0.7 to 0.9; low probability, between 0.6 and 0.7; and very
low probability, higher than 0.5 but lower than 0.6. Corres-
ponding values for each threshold, opacity levels for the trans-
parency variable, scale values for the size variable, and colors
are detailed in Table 1.

Probability | Opacity | Scale | Color (Hex)
0.9< I I 008000
0.7-0.9 0.5 0.5 FFFF00
0.6-0.7 0.25 0.25 FFA500
0.5 < 0.1 0.1 FF0000

Table 1. The values for opacity levels of the transparency
variable, scale values of the size variable, and colors specified
according to the probability thresholds.

The primary concept for representing occupancy information
in the urban environment is to ensure that users can compre-
hend the occupancy situation without losing the perception of
the urban environment - and not confounding the occupancy
status with the object information. For this reason, we augment
the static visual variables with dynamic variables such as dur-
ation. In this way, users can observe the urban environment
while the visual variables are animated according to the follow-
ing function:

value + (1 —value) - (sin(animationtime /duration - r)), (4)

where value = opacity or scale value (Table 1)
animation time = animation time span
duration = period of a visual variable

sin = periodic function of visual changes

The animation time refers to the time from the start of the an-
imation, while the duration is an adjustable time parameter that
determines the appearance time of the visual variable for the
user. The sin function provides an option to gradually decrease
opacity level and voxel size until reaching the threshold value
over the duration time and then repeat the animation. In the case
of the color visual variable, the voxels are changing the initial
RGB colors to the occupancy status colors (see Table 1) over
the defined duration time, using an overlaying technique.

5. Implementation of the Concept
5.1 Data

The dataset for voxel-based urban model generation comprises
a sample point cloud and trajectory information, which includes
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time, location, and rotation of the laser scanner obtained by the
Riegl VMX-250 system (MMS) mobile mapping system in the
city of Hannover. The point cloud and the trajectory are repres-
ented in Figure 1.

Figure 1. The point cloud measured by the Mobile Mapping
System, with the trajectory of the sensor movement, represented
by the magenta line.

5.2  Occupancy Grid Computation

The 3D occupancy grid is generated based on the point cloud
dimensions with a resolution of 10 cm. Further, the inverse
sensor model, described in Section 3 is utilized to calculate the
log odds values for each voxel in a grid cell based on the sensor
data according to 2. In the next step, the log odds values are
converted to the probabilities following 3. Figure 2 represents
the obtained 3D occupancy grid.

5.3 Voxel-based Urban Model Visualization

Due to the utilization of point cloud coordinates in the grid gen-
eration process, the cell indices are interpreted as geographical
coordinates of 3D voxels. RGB color information is derived
by averaging the color values of points within each voxel, en-
abling the representation of the voxel-based urban environment.
The probability values of the grid are saved for all voxels as at-
tributive information.

For the urban model visualization, the voxels of the grid res-
olution size are generated using the cross-browser JavaScript
library " Three.js”” and positioned according to the geographical
location. To accommodate the rendering scene, the voxel co-
ordinates are adjusted through scaling and a 90-degree rotation
around the X-axis. Furthermore, the urban environment is rep-
resented in a web browser using a Python HTTP local server.

Figure 3 illustrates the urban digital twin fragment visualization
before the visual variables animation.

S g

Pim|z, )

s

Figure 2. The occupancy map of the urban environment, defined
by the probability values. The red color indicates the occupied
cells, grey color represents unknown space and blue corresponds
to free areas.

Figure 3. The fragment of the urban environment (Hannover)
before the visual variables animation.

Figures 4 to 6 show the performance of the visual concepts
introduced in Section 4: The results with the visual variables
transparency, size, and color are shown after 30% of animation
time and after 50% of animation time. It should be noted that
small videos have been included as supplementary materials for
this article to better convey the animation effect.

In Figure 4 it can be observed that as animation time progresses,
some voxels become less perceptible while others almost dis-
appear. For example, the green leaves near the tree trunk are
clearly visible in Figure 3, but after 30% of the animation time,
the leaves begin to become transparent, and at 50%, some leaves
are no longer visible. Additionally, it can be noticed that the
changing transparency of voxels over time during animation in-
troduces noise to the overall visual impression. Figure 5 illus-
trates how the voxels, which appeared as a complete area in
Figure 3, become more and more sparse, when applying size as
a visual variable. It can be noticed how the size of the voxels
representing the green leaves near the tree trunk changes with
the animation’s duration. Likewise, the road pavement around
the cars is depicted entirely in Figure 3, whereas in Figure 5,
we observe that as the animation progresses, the road pavement
becomes increasingly incomplete. Finally, Figure 6 illustrates
the effect of the visual variable color and shows how the initial
colors of voxels gradually turn to green, yellow, orange, and red
colors, communicating to the user the uncertainty level.

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-4-2024-311-2024 | © Author(s) 2024. CC BY 4.0 License. 314



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22—-25 October 2024, Fremantle, Perth, Australia

After 50% of animation time

Figure 4. Performance of visual variable transparency according
to the occupancy probability states.

After 50% of animation time

Figure 5. Performance of visual variable size according to the
occupancy probability states.

A first assessment of the effects shows that the visualization
using the color metaphor clearly conveys the intended informa-
tion, namely the fact that in most parts of the scene, the inform-
ation is certain (shown in green), and only in areas at the bound-
aries of the objects the information is less sure (as shown in red).
This clear communication comes at the expense of visualizing
the semantic information of the environment, which, due to an-
imation, allows for the analysis of occupancy uncertainty. The
changes in transparency and size allow the observer to clearly
perceive the space with the highest probability of occupancy.
This voxel space is always preserved in size and opacity, while
voxels with low occupancy probability become less perceptible

After 50% of animation time

Figure 6. Performance of visual variable color according to the
occupancy probability states.

during the animation due to a decrease in opacity and size, even-
tually almost disappearing from the scene in cases with lowest
probability. The benefit of such a communication is to allow the
identification of data in terms of occupancy uncertainty, without
disrupting the perception of the urban environment with real-
world RGB colors.

6. Conclusion and Outlook

The article outlines the initial results of an approach for in-
tegrating semantic information, such as occupancy uncertainty
and visualizing the occupancy-aware voxel-based urban envir-
onment. By leveraging point cloud and trajectory sensor data,
the inverse sensor model for computing occupancy grids is im-
plemented, and the resulting occupancy probabilities are integ-
rated into the urban model. To effectively visualize an occupied
environment, the utilization of static visual variables, such as
transparency, size, and color, along with animation, is proposed
to emphasize the occupancy status to the user while maintaining
the perception of the urban digital twin.

The next step is to evaluate the efficiency and effectiveness of
the proposed visual variables in terms of communicating appro-
priate occupancy awareness to users in a large-scale user study.
Additionally, the significance of preserving the exact represent-
ation of the urban environment for users during secondary in-
formation visualization is to be investigated. Moreover, future
research aims to explore additional static and dynamic visual
variables, such as texture, illumination, position, flicker, and
others, to visualize not only occupied but also unknown and
free spaces within the urban environment, based on the obtained
voxel occupancy probabilities.
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