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Abstract

In recent years, the evolution of digital twin technology has paved the way for the construction of intelligent holographic inter-
sections. This can be facilitated by utilizing precise point clouds from roadside lidar. With its capability of real-time monitoring,
lidar plays a crucial role in enhancing intersection perception, enabling precise detection and tracking of road objects, as well as
providing accurate speed estimates. Despite the introduction of few roadside lidar datasets aimed at enhancing supervised learning
algorithms, their applicability to intelligent intersection monitoring remains limited. To address this, this paper presents an Intel-
ligent Intersections (Int2sec) dataset, which exhibits several salient features: 1) it encompasses a broad array of urban intersection
scenarios accompanied by a substantial quantity of object annotations; 2) the deployment of dual lidar stations facilitates a thorough
scanning of scenes, thereby ensuring expansive scene coverage and mitigating the mutual occlusion phenomenon amongst objects;
and 3) the dataset not only catalogues the coordinates, dimensions, and orientations of objects but also encompasses additional
attributes such as tracking IDs and real-time motion statuses. Furthermore, the paper evaluates the efficacy of various prominent
benchmarking networks, providing a critical analysis and prospective for future research.

1. Introduction

With urbanization rapidly advancing worldwide, road intersec-
tions face escalating challenges, including increased complex-
ity in traffic conditions, frequent congestion, and heightened
accident rates. The coexistence of motor vehicles and non-
motorized vehicles at intersections often leads to intricate traffic
signal configurations and markings, exacerbating congestion
and safety risks. European Road Safety Observatory (European
Commission, 2018) reports in 2018 that 39.6% of traffic acci-
dents in European cities occur at intersections, underscoring the
pressing need for effective interventions in intersection man-
agement.

Efforts to address these challenges have seen the emergence of
intelligent holographic intersections (Kušić et al., 2023; Thon-
hofer et al., 2023), which leverage multiple sensors for real-
time detection of vehicles and pedestrians, enabling precise
monitoring of intersection activity. Additionally, digital twin
technology, as highlighted by Zio and Miqueles (2024), offers
promising avenues for enhancing risk assessment and emer-
gency management at intersections. By integrating real-time
data from holographic intersections with digital twin techno-
logy, it becomes feasible to achieve accurate perception and
prediction of intersection traffic conditions, mitigating visibil-
ity blind spots for both vehicles and pedestrians and reducing
the occurrence of accidents.

Lidar, renowned for its precise 3D perception capability (Li
and Ibanez-Guzman, 2020), stands as a key technology in the
development of digital twins to facilitate intelligent intersec-
tions. By leveraging its advantages of precise sensing and im-
munity to lighting conditions (Zhang et al., 2022a), lidar is
pivotal for continuous data acquisition and intersection mon-
itoring, crucial components of digital twin frameworks. Bai et
al. (2022) demonstrated that employing roadside lidar deployed

at intersections can accurately capture the position and velocity
of objects, thereby enhancing the precision of the digital rep-
resentation of the intersection. By strategically optimizing the
placement of roadside lidar units at the intersection, Jiang et
al. (2023) enables them to achieve more comprehensive mon-
itoring of the intersection. Therefore, roadside lidar can serves
as a robust and accurate perception component integrated into
intelligent intersection systems, contributing to the fidelity and
effectiveness of digital twins in urban traffic management.

In light of the diminished detection efficacy observed in a single
roadside lidar when confronted with object occlusion (Wu et
al., 2020), the integration of multiple roadside lidars emerges
as a viable strategy to enable comprehensive and precise per-
ception for intersection monitoring. Placing several lidar units
at distinct locations covering road intersections significantly al-
leviates the detrimental impact of object occlusions on perform-
ance (Wang et al., 2021; Busch et al., 2022). This strategic de-
ployment not only addresses the shortcomings inherent in rely-
ing solely on a single lidar unit but also ensures comprehensive
coverage crucial for intersection safety and traffic management.

Currently, several roadside lidar datasets have emerged, such as
LUMPI (Busch et al., 2022), IPS300+ (Wang et al., 2021), and
TUMTraf (Zimmer et al., 2023). While LUMPI and IPS300+
datasets deploy multiple lidars at road intersections, they only
support a single object detection or object tracking task. In the
TUMTraf dataset, the placement of two lidar sensors side-by-
side does not allow for monitoring the intersection from mul-
tiple angles, thus failing to effectively mitigate occlusion issues
between objects. The latest HoloVIC (Ma et al., 2024) supports
object detection and tracking tasks by placing multiple lidars
and cameras aligned to each other without specifying the lidar
data range. The number and type of scenarios are also lim-
ited. To address the shortcomings of existing roadside multi-
lidar datasets, we have created and benchmarked a new dataset
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for intelligent intersections, named Int2sec1, which is a large-
scale, multi-task, multi-lidar dataset for roadside real-time per-
ception. Our main contributions in this work are as follows:

• A new Int2sec roadside lidar dataset for both single-
and dual-sensor 3D object detection and tracking learning
tasks is released, with annotations of 10 different intersec-
tion scenes and distances up to 220 m.

• To showcase the challenge of the data, a benchmark ana-
lysis of point-based, voxel-based, and point-voxel fusion-
based methods for multi-class object detection are conduc-
ted, based on which multi-object tracking are also bench-
marked using the tracking-by-detection strategy.

2. Related work

2.1 Perception Based On Roadside Lidar

Roadside lidar has emerged as a useful tool for enhancing per-
ception levels at road intersections (Sun et al., 2022). Existing
research demonstrates various methods and frameworks utiliz-
ing roadside lidar for precise detection and tracking of pedestri-
ans and vehicles, as well as for vehicle classification and speed
estimation. For instance, Zhao et al. (2019) utilized roadside
lidar to enhance intersection perception levels through precise
detection and tracking of pedestrians and vehicles. Similarly,
Zhang et al. (2020) proposed a tracking framework based on
roadside lidar, enabling accurate vehicle speed estimates and
enhancing perception of vehicle speeds at intersections or on
highways. Moreover, Wu et al. (2019) introduced a method
for vehicle classification using roadside lidar technology. Ad-
ditionally, recent advancements include the construction of a
deep learning-based real-world object perception platform us-
ing roadside lidar, as demonstrated by Bai et al. (2023). These
studies collectively underscore the significance of roadside lidar
in advancing perception capabilities at intersections.

2.2 Existing Roadside Lidar Datasets

In recent years, the number of vehicle-based lidar datasets has
grown rapidly, effectively contributing to the development of
autonomous driving technology. Compared to autonomous
driving datasets, the number of roadside lidar datasets is still
insufficient. DAIR-V2X (Yu et al., 2022) dataset focuses on
the vehicle-infrastructure cooperative task, and does not imple-
ment the multiple roadside lidars perception. Datasets such as
TUMTraf (Zimmer et al., 2023), IPS300+ (Wang et al., 2021),
and LUMPI (Busch et al., 2022) all use two or more roadside
lidars to collect the data. The TUMTraf has two lidars installed
side-by-side on the road gantries for collection. IPS300+ (Wang
et al., 2021) and LUMPI (Busch et al., 2022) both chose to use
intersections as their acquisition scenarios. However, they only
collected data in a single scenario, without considering the di-
versity of traffic intersections. Furthermore, IPS300+ dataset
has less representation of the truck and bus categories. LUMPI
dataset employs five random combinations of placed lidars, the
initial labeling results are obtained through traditional opera-
tions such as background filtering, but the labeling information
and benchmark results for this dataset are not publicly avail-
able. HoloVIC (Ma et al., 2024) present a new data support-
ing for infrastructure-based roadside perception and vehicle-
infrastructure cooperative perception. It benchmarks detection
1 https://github.com/Geo3DSmart/Int2sec

and tracking tasks using a combination of multiple cameras and
two lidars. It has four intersection and one straight road scenes.
While each dataset mentioned above offers unique advantages,
they also have limitations. This highlights the need for further
development and exploration of roadside lidar datasets to ad-
dress these limitations.

2.3 Lidar-based 3D Object Detection

3D object detection predicts the 3D bounding box from a sparse
point cloud containing information such as the center coordin-
ates, dimensions, and angles of the detected objects. Some rep-
resentative methods utilize different feature expressions for 3D
object detection. IA-SSD (Zhang et al., 2022b) directly learns
fine-grained features of points and utilizes semantic informa-
tion of the points for key point sampling, which leads to better
single-stage 3D object detection. While PV-RCNN (Shi et al.,
2020) utilizes the point and voxel fusion strategy for two-stage
3D object detection, which are the generation of the initial de-
tection frame in the first stage and the key point feature extrac-
tion and refinement operation of the initial detection frame in
the second stage. CenterPoint (Yin et al., 2021) method repres-
ents the 3D object as a centroid and uses a heatmap detector to
detect the center of the object, then it uses the centroid features
to regress the 3D bounding box of the object. In this paper, we
have selected some of the above methods to be trained on our
dataset as the baseline.

2.4 Lidar-based 3D Object Tracking

Multi-objective tracking (MOT) plays an important role in
autonomous driving and digital twins. Existing 3D MOT
approaches are mainly based on the “tracking by detection”
strategy, which consists of trajectory prediction, data associ-
ation, trajectory state update, and trajectory life management
(Weng et al., 2020). Results of the tracking depend on power-
ful detectors (Yin et al., 2021; Wu et al., 2022) and effect-
ive data association strategies. For the data associate process,
some methods utilize deterministic trajectories and detection
results for association. AB3DMOT (Weng et al., 2020) util-
izes 3D Kalman filtering and Hungarian algorithms for traject-
ory prediction and data association based on 3D detection res-
ults from lidar point cloud data. PC-TCNN (Wu et al., 2022)
utilizes the spatial-temporal features of tracklet proposal for re-
finement. Some methods consider the uncertainty of trajectory
and detection results, and UG3DMOT (He et al., 2023) real-
izes data correlation between detection and trajectory results
based on Jensen-Shannon divergence. In this paper, we provide
a 3D multi-object tracking task based on a 3D object detection
benchmark models.

3. Int2sec Dataset

Table 1 has listed related roadside lidar datasets and Int2sec
to ease comparison. Although there are some data targeting
at the emerging need of infrastructure-based road monitoring,
they have not be able to cover a variety of scenes where lidars
are placed accordingly. In contrast, the Int2sec dataset includes
up to 10 scenes and 8 classes, and supports both 3D object de-
tection and object tracking tasks at a long distance. In addition,
labels for single lidar data (Int2sec-S) and that for the integ-
rated dual-lidar data (Int2sec-D) are both annotated to allow for
a flexible usage of the data.
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Dataset Year Beam Frame 3D boxes Tracks Range Classes Scenes
Task

Detection MOT

DAIR-V2X-I 2021 300 71k 1.2M - 100 10 - ✓ ✗

IPS300+ 2022 80 14.1k 4.5M - 150 7 1 ✓ ✗

LUMPI 2022 16/64 90k - - 200 6 1 ✗ ✓

TUMTraf 2023 64 5.3k 71.9k 506 140 10 1 ✓ ✓

HoloVIC-I* 2024 150 63k 1.3M - - 3 5 ✓ ✓

Int2sec-S (Our) 2024 80 12k 338k 1988 220 8 10 ✓ ✓

Int2sec-D (Our) 2024 80 6k 198k 1034 220 8 10 ✓ ✓

Note: * Represents the infrastructure part of HoloVIC, four of scenes are at intersections, and one is along a straight road.

Table 1. Information of our Int2sec dataset and related roadside lidar datasets.

3.1 Data acquisition

A roadside data acquisition device was assembled, comprising
an 80-beam lidar, a Jetson Orin Nano minicomputer, a mobile
power source, a tripod, a GNSS receiver, and a monitor. De-
tailed specifications of each component are outlined in Table 2.
By leveraging lidar and the diagonal arrangement of the dual ac-
quisition device at intersections (Figure 1), our dataset achieves
higher point density and an extended sensing range. This ar-
rangement optimizes data collection coverage and enhances the
dataset’s utility for intersection monitoring. Both data collec-
tion devices utilize GNSS timing and record timestamps into
the collected point clouds, which are used to synchronize the
point clouds during the process of integrating multiple lidar
datasets.

The dataset was acquired in an urban area of China, encom-
passing 19 point cloud sequences from 10 intersections with
diverse characteristics. Covering a total area of 49 square kilo-
meters, including 4 square kilometers of campus roads and 45
square kilometers of urban roads, it ensures a variety of traffic
scenarios and conditions. The dataset spans three weather con-
ditions (sunny, rainy and cloudy), two lighting scenarios (day-
time and nighttime) and four-time slots (morning, noon, after-
noon and evening) to cover different traffic conditions, ensuring
data diversity and representativeness.

To comply with local laws and regulations, the dataset will
not include any location information, such as road names,
GNSS coordinates, or map data. Each sequence folder con-
tains metadata to describe scene category, weather condition,
detection IDs and track IDs.

Equipment Detail

Lidar Sensor 80 beams, 10Hz frame rate,
905 nm laser wavelength
360◦horizontal FOV, −40◦

to 0◦ vertical FOV, ≤ 230 m
range, GNSS time transfer

Computing Unit 8 GB 128-bit LPDDR4x , 6
core NVIDIA Car-mel 64-bit
CPU

Table 2. Key specifications of roadside data collection units.

(a) Crossroad (b) T-junction (c) H-intersection

Figure 1. Dual-lidar placement at three typical junctions.

3.2 Registration

The registration process of the two lidar point clouds from
Int2sec-D is divided into two main phases: coarse and fine
alignment. In the coarse alignment phase, using the feature of
the elevation formed by the roadside and the road, first, the road
surface in the scene is extracted and the elevation points in the
point cloud are projected onto the road surface, which enhances
the features of the road edge lines. Next, the projected point
cloud is processed using the RANSAC (Fischler and Bolles,
1981) algorithm to identify the main line features in the scene.
Finally, these line features are used to perform a preliminary
alignment, a step that involves picking out pairs of straight lines
in the source and object point clouds whose angle exceeds a cer-
tain threshold, and applying the RANSAC algorithm to remove
those incorrect matches and obtain the correct matching pairs.
The purpose of this step is to provide a good initial orientation
for the fine alignment. In the fine alignment stage, the classical
ICP algorithm is used to further optimize the alignment results,
which ensures that the point cloud datasets can be accurately
aligned with each other (Figure 2).

3.3 Data annotation

From the 11,076 frames of lidar point cloud data, we iden-
tified eight types of objects commonly found in road scenes:
cars (including small cars and SUVs), vans (including minivans
and box trucks), pedestrians, cyclists, motorcyclists, tricycles,
trucks (including lorries, vans, and small construction trucks),
and buses (including buses, coaches, fire trucks, and large
construction trucks). The SUSTechPOINTS open-source an-
notation tool (Li et al., 2020) was utilized for data annota-
tion. It enables efficient annotation of continuous sequences of
point clouds semi-automatically, allowing objects to be tracked
across all frames of the point cloud sequence, followed by
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manual fine-tuning. Furthermore, to minimize human errors,
the data underwent multiple cross-checks.

All objects containing five or more points were annotated,
reaching a maximum range of 220 meters. The object annota-
tion includes the 3D bounding box, object category, instance
ID, and motion state, as detailed in Table 3. Each 3D bound-
ing box comprises seven parameters: the coordinates of the ob-
ject’s geometric center in the lidar coordinate system, its length,
width, height, and rotation angle. During the creation of the
dual lidar dataset labels, the distances between the same object
and the two individual lidars are calculated, and the label from
the lidar closer to the object is adopted as the reference, fol-
lowed by manual fine-tuning. Additionally, our dataset annot-
ates the motion status of objects, distinguishing between global
static, local static, and moving states, indicating its potential
to support the moving object segmentation (MOS) task in the
future. Figure 2 visualizes the dataset annotation.

Parameter Detail

center Bounding box location in
meters in the global frame:
center x, center y, center z.

size Bounding box size in meters:
width, length, height.

rotation Bounding box orientation in
radians in the global frame:
angle.

id ID that identify the same ob-
ject in a sequence.

state Identify the state of motion of
an object.

Table 3. Annotation information.

Figure 2. Visualisation of data annotation.

3.4 Data statistics

The number of object instances of the Int2sec-S and Int2sec-
D are depicted in Figures 3, exhibiting similar distributions in
terms of numbers. The dataset comprises 1988 single lidar ob-
ject trajectories spanning a total length of 60.1 km. The average
trajectory length is 30.23 m, with the maximum trajectory ex-
tending to 178 m. Figure 4 and Figure 5 illustrates the distribu-
tion of labels across eight categories in Int2sec-S and Int2sec-
D respectively. The primary road users are cars and pedestri-
ans, with motorcycles following closely behind. This trend can
be attributed to the inclusion of scenarios encompassing cam-
puses and suburbs. The counts for bus and bicycle categories
are slightly lower in comparison.
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Figure 3. Number of instances of Int2sec-S (left, empty column)
and Int2sec-D (right, dashed column).

Figure 6 and Figure 7 illustrates the distribution of various
classes across different distances in Int2sec-S and Int2sec-D re-
spectively, with annotated objects reaching distances as far as
220 meters. Across all categories, a consistent trend emerges
where the frequency of occurrences decreases with distance,
with greater numbers observed at closer proximities. Notably,
classes such as cars, pedestrians, and motorcycles exhibit their
highest frequencies within the 30 to 60 m range, whereas trucks
demonstrate peak occurrences between 60 to 90 m. Further-
more, our annotations encompass eight categories beyond the
120 m mark, thus introducing a novel challenge to long-distance
3D object perception.

4. Multi-task Benchmarking

4.1 Benchmarking for 3D Object Detection

4.1.1 Baseline Methods In this paper, point-based method,
voxel-based method and point-voxel fusion-based method are
all tested to benchmark their performance on the data. Three
representative methods from each of the category are IA-SSD
(Zhang et al., 2022b), CenterPoint (Yin et al., 2021) and PV-
RCNN (Shi et al., 2020), respectively.

During the training process, the size of the voxel is set to
[0.2,0.2, 0.2], the detection distance of x is from -100m to
100m, the detection distance of y is from -75m to 75m, and
z is from -5m to 3 m. The other training parameters are kept the
same as the original model, and six Nvidia RTX3090 GPUs are
used for training. The results of the experiments on the test set
and the training set are shown in Table 4 and Table 5.

4.1.2 Evaluation Evaluation metrics are crucial for charac-
terizing different 3D object detection methods. This paper ad-
opts the same evaluation metric of AP3D based on 3D IoU with
orientation as used in the ONCE dataset (Mao et al., 2021) for
the 3D object detection benchmark. The predictions are ini-
tially sorted based on their prediction scores. Prediction boxes
with lower 3D IoU values compared to all ground truth boxes of
the same category are labeled as false positives. Additionally,
if the orientation of a prediction result falls outside the range of
±90◦ from the orientation of the matched ground truth box, it is
also classified as a false positive. The remaining matched pre-
dictions are considered true positives. Subsequently, we define
50 score thresholds ranging from a recall rate of 0.02 to 1.00 in
steps of 0.02 and calculate the corresponding precision rates to
construct the precision-recall curve p(r). The formula for the
direction-aware AP3D is:

AP3D = 100

∫ 1

0

max{p(rc′|rc′ ≥ rc)}drc. (1)
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Figure 4. Number of objects in different categories in Int2sec-S.
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Figure 5. Number of objects in different categories in Int2sec-D.
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Figure 6. Distribution of objects at different distances in
Int2sec-S.
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Figure 7. Distribution of objects at different distances in
Int2sec-D.

Mean AP (mAP) is thus obtained by averaging the scores of cat-
egories detected. The evaluation metric divides each category
into three parts by distance: 0-30 meters, 30-50 meters, and 50
meters and beyond, and calculates the mAP separately to ex-
amine the performance of the algorithms over different distance
ranges.

To avoid duplication, only the results on Int2sec-D are repor-
ted. Table 4 and Table 5 show the 3D object detection model
results on the Int2sec-D dataset. The three detection methods
have good performance on close range 0-30 m, but the highest
is only 27.84% overall AP on pedestrians and cyclists, and the
overall effect of detection accuracy at long range is not high,
and PV-RCNN is the lowest at 2.91% AP in the interval of 50-
100m. Figure 8 shows the results of the IA-SSD detection.

4.2 Benchmarking for 3D Object Tracking

4.2.1 Baseline Methods The common strategy of tracking-
by-detection relies on the results of detection, thus the 3D multi-
object tracking benchmark is using the 3D object detection res-
ults as input. In this paper, PC-TCNN (Wu et al., 2022) is adop-
ted as the tracking algorithm to associate the same object in the
sequence and generate the trajectory information of this object
in the scene. The input detection results of IA-SSD, PV-RCNN,
and CenterPoint are evaluated respectively.

4.2.2 Evaluation Given a point cloud sequence and the cor-
responding detection results, the goal of 3D object tracking is to
correlate the same object in different frames to obtain a tracking
ID that uniquely identifies each object in the sequence. We use
AMOTA (Weng et al., 2020), AMOTP, MOTA, and IDS metrics
to measure the tracking task.

AMOTA =
1

N

∑
i∈{ 1

N
, 2
N

,...1}

(1− fni + fpi + idsi
numgt

) (2)

Figure 8. The detection results of IA-SSD. The red boxes
represent the ground truth while the blue ones show the

predicted bounding boxes

where fni,fpi,idsi are the number of false negatives, false pos-
itives, and tracking id changes at recall value r. numgt is the
number of all truth objects.

Similarly, only the results on Int2sec-D are reported. Table 6
and Tabel 7 shows that different methods achieved different res-
ults in different metrics, with IA-SSD achieving the best 65.6%
AMOTA and 66.8% MOTA and CenterPoint scoring the best
79.7% AMOTP and 4 IDS. Figure 9 shows the results of IA-
SSD based tracking visualization.

5. Discussion

Due to the rotational scanning mechanism of the lidar device
itself, there is a slight time difference between the synchron-
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Method
Vehicle (AP@50)(%) Pedestrian (AP@50)(%) Cyclist (AP@50)(%)

mAP(%)
Overall 0–30 m 30–50 m 50 -100m Overall 0–30 m 30–50 m 50 -100m Overall 0–30 m 30–50 m 50 -100m

IA-SSD 28.34 78.22 31.61 14.67 17.94 24.53 13.90 11.66 20.11 31.30 11.30 13.33 22.13

PV-RCNN 26.84 75.64 30.12 13.40 16.07 32.38 8.15 10.94 21.84 50.89 15.40 2.91 21.58

CenterPoint 22.05 67.23 21.58 12.29 27.84 44.38 13.91 25.64 14.45 30.11 14.34 2.32 21.45

Table 4. Evaluation results of our model and baseline models on the Int2sec-D test set.

Method
Vehicle (AP@50)(%) Pedestrian (AP@50)(%) Cyclist (AP@50)(%)

mAP(%)
Overall 0–30 m 30–50 m 50 -100 Overall 0–30 m 30–50 m 50 -100m Overall 0–30 m 30–50 m 50 -100m

IA-SSD 34.38 80.95 39.43 16.59 14.66 27.28 15.43 4.66 24.82 39.62 23.31 11.83 24.62

PV-RCNN 31.17 74.18 34.77 15.77 8.92 13.88 10.72 4.73 24.84 42.30 20.91 11.76 21.64

CenterPoint 26.93 70.16 20.62 17.86 12.36 23.03 11.85 4.29 25.31 41.80 22.64 12.34 21.54

Table 5. Evaluation results of our model and baseline models on the Int2sec-D validation set.

Figure 9. The tracking results are based on IA-SSD and
PC-TCNN.

Tracking Detection AMOTA% AMOTP% MOTA% IDS

IA-SSD 65.6 66.1 66.8 94

PC-TCNN PV-RCNN 54.7 71.4 56.7 6

CenterPoint 43.8 79.7 46.4 4

Table 6. Tracking results of baseline models on the Int2sec-D
test set.

Tracking Detection AMOTA% AMOTP% MOTA% IDS

IA-SSD 56.4 82.5 58.3 48

PC-TCNN PV-RCNN 50.9 80.1 53.6 1

CenterPoint 41.3 90.0 43.5 2

Table 7. Tracking results of baseline models on the Int2sec-D
validation set.

ized dual lidar frames, which may lead to ghosting phenomenon
when the vehicle speed is too fast in the road scene. For this

phenomenon, the labeling of the objects is taking the closer
lidar as the reference and the annotations are manually refined.
In addition, this paper also provides individual lidar labeling
to facilitate the needs for feature fusion detection from the two
lidars.

Table 4 and Table 5 indicate that the object detection models
perform better at close range compared to the distant range
on the Int2sec-D dataset. This is attributed to the diminishing
geometric features of objects with increasing distance, thereby
compromising the accuracy of detecting distant objects. In ad-
dition, some object instances are consistently situated in the dis-
tant range across the entire scene sequence. Although the detec-
tion models exhibit satisfactory performance in detecting large
objects such as vehicles in the close range, they struggle with
smaller objects like pedestrians and cyclists due to their less
pronounced geometric features, making them prone to back-
ground confusion. These factors collectively contribute to the
overall subpar detection accuracy of the object detection mod-
els on the Int2sec-D dataset. This demonstrates the challenge
of our data and the difficulty in real-world applications. Des-
pite the underperformance of the object detection models, Table
6 and Table 7 demonstrate that the object tracking model per-
forms well. This is attributed to the majority of object in-
stances being concentrated in the close range within a scene
sequence, with a significant proportion belonging to the cat-
egory of vehicles. Consequently, the performance of close-
range tracking significantly influences the overall tracking res-
ults.

For moving objects at high speeds, long-range object detection
and tracking is required to ensure adequate braking distance.
The number of point clouds of long-distance objects is low
due to the small number of lidar scanning beams and the oc-
clusion of objects, it is difficult to detect 3D objects at a long
distance. The longest detection distance of 150 m was achieved
on the IPS300+ dataset, but only 600 frames of label data were
publicly available on this dataset and tracking labels were not
provided. Our proposed Int2sec is labeled up to 220 m accord-
ing to the number of points on objects and contains both de-
tection and tracking labels, providing a database for subsequent
exploration of long-range detection and tracking tasks.
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6. Conclusion

This paper proposes the Int2sec roadside lidar point cloud data-
set, including annotations of both single and dual lidars. Com-
pared with existing roadside lidar datasets, Int2sec covers 10
intersection scenarios and provides multi-category labeling ran-
ging up to 220 m. Further benchmark analyses of dual-lidar
3D object detection and tracking tasks are conducted using rep-
resentative networks in different categories. Building upon ex-
isting lidar datasets, this roadside lidar dataset offers a more
diverse range of intersection scenarios for roadside lidar per-
ception and digital twin holographic intersection studies. This
enhancement presents new opportunities and potential for in-
depth investigation within this research field.
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