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Abstract

Accessibility analyses quantify the level of access to certain areas or opportunities, such as employment and healthcare facilities.
Since public data is often aggregated at the level of regions, such as administrative units, it is useful to quantify accessibility between
regions. Many factors influence inter-regional accessibility, most notably the accessibility metric used, and the way in which regions
are chosen. This paper investigates the effects of road network structure on accessibility, using a previously developed inter-regional
accessibility model that bases its accessibility metric on travel distance via the road network. This paper considers an area within the
City of Tshwane municipality in South Africa. We investigate the effects of road structure in two ways. Firstly, regions are chosen
based on the road network structure, which is done by extending a previously developed road network clustering algorithm for this
novel use. Different spatial scales of regionalisation are considered, and the accessibility between these regions is compared to the
accessibility between administrative units within the study area. Secondly, the effect of road network homogeneity on accessibility
is investigated, where homogeneity corresponds to a uniform concentration of roads across a region. The results show that although
road network homogeneity does not significantly correlate with accessibility, the way in which regions are chosen and their spatial
scale has a strong effect on the results of the accessibility model. Our novel method of obtaining regions thus provides fresh insights
into road-based accessibility within the City of Tshwane.

1. Introduction

Accessibility analyses provide insight into access to employ-
ment, urban green areas, healthcare facilities, and other utilities
(Netrdová and Nosek, 2020; Wigley et al., 2020; Quatrini et al.,
2019). As such, they are a crucial part of sustainable urban de-
velopment planning. UN Sustainable Development Goal (SDG)
9 on Industry, Innovation and Infrastructure1 and SDG 11 on
Sustainable Cities and Communities2 emphasise the need for a
better understanding of accessibility to ensure equitable access
to opportunities.

Transport infrastructure presents a growing problem in the de-
veloping world, particularly in urban areas. The United Na-
tions estimate that 66% of the global population will reside in
urban areas by 2050 (Ajami et al., 2019). As of 2018, two
thirds of the population in the global south lived in informal
settlements (Runsten et al., 2018), which form when a gov-
ernment is unable to provide the housing and infrastructural
needs of its population (Kohli et al., 2012). In South Africa,
the population living in informal settlements is growing at a
faster rate than the population living in formal settlements and
towns (Runsten et al., 2018). The creation of informal settle-
ments leads to the formation of informal roads. These roads
are created naturally through human and vehicle movement,
and are not planned or approved by the government (Thiede
et al., 2020). Informal roads in South Africa fill a void created
by the legacy of apartheid, during which the transport network

1 https://unstats.un.org/sdgs/metadata/?Text=&Goal=9&

Target=9.1
2 https://sdgs.un.org/goals/goal11

was designed to segregate the population rather than integrate
it (Giddy, 2019). Figure 1 shows a formal and informal settle-
ment bordering on each other. The informal network exhibits
unique spatial characteristics that distinguish it from the formal
road network. These include a more irregular pattern, a lack
of strictly parallel roads, as well as roads that are shorter and
closer together.

Figure 1. An informal settlement (bottom of the image)
bordering on a formal settlement (top). The road network is

indicated in orange.

Since the characteristics in terms of width, surface type, and
network pattern of informal roads differ from formal roads
(Nobrega et al., 2006; Thiede et al., 2020), the presence of in-
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formal roads is likely indicative of inequitable accessibility.

Since municipal community development initiatives typically
target regions within the municipality, rather than individual
point locations, it is pertinent to study accessibility between re-
gions. Thiede et al. (2023c) developed a model to quantify the
relative accessibility between spatial areal units, based on the
road network. That study estimated the level of access afforded
by an existing road network. The methodology was applied to
electoral wards, which are sub-municipal administrative units,
in the City of Tshwane municipality, South Africa. However,
the boundaries of electoral wards are not designed around the
structure of the road network. In reality, people do not con-
sider ward boundaries when travelling. Therefore, the applica-
tion of (Thiede et al., 2023b), while interesting in its own right,
provided a limited understanding of the true state of accessib-
ility in the municipality. Spatial analyses based on regions, or
areal units, are typically sensitive to spatial scale and the choice
of region boundaries (Viegas et al., 2009), as per the Modifi-
able Areal Unit Problem (MAUP) (Wong, 2004). This has been
shown to affect transport and accessibility studies (Javanmard et
al., 2023; Viegas et al., 2009; Clark and Scott, 2014). Alternat-
ive regionalisations of the study area, aside from administrative
units, should thus be considered for accessibility modelling.

In this paper, we obtain partitions of the municipality based on
characteristics of the road network. In particular, this is done
using the road network clustering algorithm of (Thiede et al.,
2023b). This algorithm divides a spatial area into regions based
on the homogeneity of the road network, where a road network
is considered homogeneous if its midpoints are distributed with
even density across the region under observation (Thiede et al.,
2023a). Homogeneity thus encompasses concepts such as uni-
form road density and length. We propose that obtaining re-
gions based on homogeneity, and then quantifying the accessib-
ility between these regions, will provide new insights into inter-
regional accessibility.

Once the study area is subdivided into regions based on the road
network, inter-regional accessibility will be estimated using the
road network-based accessibility model proposed by (Thiede et
al., 2023c). This model makes use of Markov chain theory to
reduce the computational cost of traditional network analysis,
providing an efficient, computationally simple solution. The
model represents the regions as states in a Markov chain, and
obtains the probabilities of moving between regions based on
the inverse distance via the road network. Relative accessib-
ility from one region to every adjacent region is stored in a
Markov chain 1-step transition probability matrix (TPM). In ac-
cordance with Markov chain theory, this matrix can be raised to
the power n to quantify the accessibility between any two re-
gions in n steps. Letting n tend to infinity results in a matrix
with identical rows. This row represents the accessibility of a
region regardless of origin, and is called the prominence index
(Bavaud, 1998). Finally, accessibility between these regions
will be compared to the accessibility between electoral wards,
as in (Thiede et al., 2023b).

This paper proceeds as follows. Section 2 describes the data
and the nature of the study area. Section 3 outlines the method-
ology. Section 4 presents and discusses the results, and Section
5 provides the conclusion.

2. Study Area and Data

The study area is the western region of the City of Tshwane
municipality in the Gauteng Province, South Africa. The west-
ern region consists of mostly urban areas, relevant to this in-
vestigation of urban accessibility. The road network within
this region is highly diverse, and contains formal and informal
urban roads. Informal roads are created by human movement
without government permission or planning, and occur mostly
in and around informal settlements. The road network data is
from Open Street Map. Figure 2(a) shows the road network
within the western region of the City of Tshwane municipal-
ity. For the sake of comparison to the regions obtained by
the homogeneity-based clustering algorithm, we also model ac-
cessibility between electoral wards. The region under consid-
eration contains 95 wards, shown in Figure 2(b). The ward
boundary data was obtained from the Humanitarian Data Ex-
change, contributed by the OCHA Regional Office for Southern
and Eastern Africa under the Creative Commons Attribution for
Intergovernmental Organisations license3.

a)

b)

Figure 2. The study area, in the western region of the City of
Tshwane municipality. a) The road network. b) Electoral ward

boundaries within the study area.

An individual road is defined as a stretch of road between either
an endpoint and an intersection, or two intersections. Thus,
we consider each road segment individually, and represent each
road segment by its midpoint. This holds for formal and in-
formal roads.

3. Methodology

This section develops the methodology to identify homogen-
eous regions and quantify the accessibility between them. Sec-
tions 3.1-3.3 provide the required background theory, and Sec-
tion 3.4 presents the proposed method.
3 https://creativecommons.org/licenses/by/3.0/igo/

legalcode
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3.1 Road Network Homogeneity

The homogeneity of a road network is tested using the method
of (Thiede et al., 2023a), which extended the spatial point pat-
tern homogeneity test of (Kraamwinkel et al., 2018) to line
patterns. The road network is represented as a line pattern
L = {l1, l2, ..., ln}, where each line li represents a road in the
network. Then, the line pattern representation is converted to
a point pattern representation X = {x1, x2, ..., xn}, where xi

corresponds to the midpoint of li. Each road is thus represented
by its midpoint, and these midpoints constitute a point pattern.

Now, a road network is considered homogeneous if its midpoint
pattern X representation is homogeneous. A point pattern is
considered homogeneous if it has constant intensity across the
spatial domain, where the intensity of a point pattern is the ex-
pected number of points per unit area. In other words, a point
pattern is homogeneous if points are distributed across an area
with more or less equal density throughout. Figure 3 shows an
example of homogeneous roads in (a), with their correspond-
ing point pattern in (b), and inhomogeneous roads in (c), with
their point pattern representation in (d). With few exceptions,
the homogeneous point pattern in (b) exhibits the same level of
density throughout, corresponding to roads of generally equal
spread and length in (a). The inhomogeneous point pattern in
(b), however, exhibits sparser and denser areas, corresponding
to roads that are further apart and longer, or closer together and
shorter, respectively.

a) b)

c) d)

Figure 3. Examples of homogeneous and inhomogeneous road
networks with their point patterns. a) A homogeneous road

network, with its point pattern in b). c) An inhomogeneous road
network, with its point pattern in d).

The hypothesis of homogeneity is tested using the approach
of (Kraamwinkel et al., 2018), which modifies the Pearson χ2

goodness-of-fit test (Potthoff and Whittinghill, 1966) to account
for spatial dependence. The spatial area is divided into a grid
of m×m quadrats, where the quadrats act as the categories of
the χ2 test, and the number of points in each quadrat is equi-
valent to the number of observations per category. In order to

overcome the spatial dependence inherent to spatial point pat-
terns, a sample of 50% of the quadrats is used to calculate the
test statistic. Figure 4 illustrates how an area containing a point
pattern can be divided into quadrats.

Figure 4. A point pattern domain divided into a grid of 5× 5
quadrats. The numbers in each quadrat shows the number of

observed points in that quadrat. The figure was first presented in
(Kraamwinkel et al., 2018).

The result of a homogeneity test is given as a p-value. Here, a
point pattern is considered homogeneous if its p-value is greater
than 0.05, and inhomogeneous if its p-value is less than 0.05.

3.2 Homogeneity-Based Clustering

The unsupervised clustering method of (Thiede et al., 2023b)
clusters roads according to their midpoint-based homogeneity.
The method requires an initial network distance-based cluster-
ing of the roads, provided by a method such as network k-
means, and proceeds to merge adjacent homogeneous clusters
based on their homogeneity.

3.2.1 Initial Clustering (Thiede et al., 2023b) used net-
work k-means to determine the initial clustering. The number
of clusters was determined as k = number of points per quadrat

(m×m)×5
. Here,

m×m are the dimensions of the grid used for the homogeneity
test (Section 3.1), and 5 is the minimum number of expected
points per quadrat for the homogeneity test to be valid, under
the assumptions of the χ2 test.

For the dataset herein, however, network k-means was imprac-
tical. Firstly, there were over 80 000 points in the dataset, and
therefore calculating the network distance between these points
and k was incredibly computational for any reasonable value of
k. Secondly, network k-means clustering on this dataset, calcu-
lating k as recommended in (Thiede et al., 2023b), resulted in a
large number of uninformative clusters.

We therefore developed a novel method of initial clustering,
called isochrone clustering, which incorporates the network dis-
tance and remains computationally simple. First, the points are
clustered using Euclidean k-means clustering, where k is de-
termined as described above. The centroids of these clusters
are then calculated, and isochrones are determined around the
centroids, to replace the initial Euclidean k-means clusters. The
isochrones are calculated such that they create a partition of
the road network domain. The midpoints falling within an iso-
chrone are assigned to the same cluster.

3.2.2 Cluster Merging Once the initial clustering is ob-
tained, the clusters are merged iteratively based on their ho-
mogeneity. This method is developed and discussed in full in
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(Thiede et al., 2023b). For the sake of completeness, we provide
a summary of the steps below.

1. Let C = {c1, c2, ..., ck} be the initial clustering.

2. Obtain the set of convex hulls H = {h1, h2, ..., hk} of the
clusters, such that hi is the convex hull of cluster ci.

3. Calculate P = {p1, p2, ..., pk}, the set of homogeneity p-
values. The p-value pi is calculated for each ci using hi as
the cluster domain, i = 1, 2, ..., k.

4. Obtain E = {(ci, cj)}, the set of all pairs of adjacent ho-
mogeneous clusters. Two clusters ci and cj are considered
adjacent if their convex hulls overlap, i.e. if hi ∩ hj ̸= ∅,
and ci is homogeneous if pi > α, where α is the signific-
ance level.

5. Calculate the homogeneity p-value, pij , for each pair of
adjacent homogeneous clusters, (ci, cj) using the convex
hull around both clusters, hij , as the cluster domain.

6. Merge the pair of adjacent homogeneous clusters (ci, cj)
with the highest associated p-value pij , given pij > α.

7. Repeat steps 3-6 until no more adjacent clusters can be
merged.

3.3 The Markov Chain-Based Geographical Accessibility
Model

A summary of the steps to construct the Markov chain-based
accessibility model is presented below, referring the reader to
(Thiede et al., 2023c) for further details. The input to the ac-
cessibility model consists of a road network represented as a
spatial linear network L, and some partition of the road net-
work’s domain, say V = {V1, V2, ..., Vn}. Accessibility is then
quantified between the Vi’s.

1. For i = 1, 2, ..., n, intersect each Vi with the road network
L to obtain li, the road network within Vi.

2. Obtain representative nodes within each road sub-network
li via Louvain clustering (Blondel et al., 2008), as ex-
plained in (Thiede et al., 2023c). These representative
nodes are called the Louvain nodes.

3. Calculate the average inverse distance between all pairs
of Louvain nodes within each area Vi, based on the road
network li.

4. For each pair of adjacent areas Vi and Vj , calculate the
average inverse distance between each Louvain node in Vi

and each Louvain node in Vj , based on the combined road
network lij = li ∪ lj . Two areas Vi and Vj are considered
adjacent if they share a boundary.

5. Create a matrix containing all the average inverse distances
between adjacent Vis.

6. Row-standardise the inverse distance matrix to create the
1-step transition probability matrix (TPM).

Raising the 1-step TPM to the power n > 0 gives the n-step
TPM, which quantifies the relative accessibility between areas
Vi and Vj in n steps. Letting n tend to infinity results in the
prominence index, which quantifies the accessibility of the Vi’s
for an infinite journey, regardless of the Vi in which the journey
originated.

3.4 Proposed Approach

The previous subsections provided the necessary theory to ex-
plain each component of the proposed approach to quantify ac-
cessibility between homogeneous regions. Figure 5 now out-
lines this proposed approach. The method takes a road network
as its input, and outputs a 1-step TPM between the most ho-
mogeneous subdivision of the road network’s domain, based on
the initial clustering.

Figure 5. Flowchart illustrating the process for obtaining the
1-step TPM, n-step TPM and prominence index.

The method begins by obtaining the midpoints of the road net-
work. These midpoints are then clustered using the isochrone
method. Once the initial clustering is obtained, it is used as the
basis for the homogeneity-based clustering method outlined in
Section 3.2. This clustering method results in clusters that may
overlap, or have gaps between them; the convex hulls of the
final clusters thus do not create a strict partition of the road net-
work’s domain. In order to create a partition, overlaps between
the convex hulls are removed, and the convex hulls are extended
until there are no gaps between their boundaries.

Finally, the homogeneity-based partition and the road network
are fed into the Markov chain accessibility model, resulting
in the 1-step TPM between the homogeneity-based partitioned
areas. This also allows for the calculation of the n-step TPM
and the prominence index.

4. Results and Discussion

The proposed approach is now applied to the road network in
the western City of Tshwane. This section presents and dis-
cusses the results, and discusses limitations and future work.

4.1 Initial Clustering

For the initial clustering, the choice of k was determined as spe-
cified in Section 3.2.1, namely k = number of points per quadrat

(m×m)×5
. The

number of points per quadrat is influenced by the choice of m,
which is the number of quadrats. The values of m considered,
along with the resulting value of k, before and after data clean-
ing, is given in Table 1. Data cleaning was required since most
of the initial clusters contained too few points for the homogen-
eity test, and others overlapped to such degree that they were
combined.
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m k (initial) k (after cleaning)
4 1130 384

5 720 279

6 502 202

7 370 159

Table 1. Number of initial clusters k for the dataset as
determined by the choice of m.

a) b)

c) d)

e) f)

Figure 6. Results of the clustering process for k = 159 ((a)-(c))
and k = 384 ((d)-(f)). a) Original clusters based on isochrone

method for k = 159. b) Clusters after homogeneity merging for
k = 159. c) Results of tessellation for k = 159. d) Original
clusters based on isochrone method for k = 384. e) Clusters

after homogeneity merging for k = 384. f) Results of
tessellation for k = 384.

4.2 Analysis

In the interest of brevity, we analysed only the finest and
coarsest clusterings, namely k = 159 and k = 384. Presenting
the results for all clusterings would not necessarily add value to
the discussion. Figure 6 shows the clustering steps for k = 159
and k = 384. Figure 6(a) and (d), respectively, show the convex
hulls of the initial clusters, obtained via the isochrone method.
Figure 6(b) and (e) respectively show the convex hulls of the
clusters after homogeneity-based merging. For k = 159, the
number of clusters reduced by 5%, and for k = 384, by 4%.

a) b)

Figure 7. Results of homogeneity clustering. a) The p-values
associated with the clusters for k = 159. A lighter colour

corresponds to a more homogeneous region. b) The p-values
associated with the clusters for k = 384.

Figure 7(a) and (b) show the p-values of the regions, for k =
159 and k = 384 respectively. Recall that a p-value greater
than 0.05 indicates homogeneity, while a p-value less than 0.05
indicates inhomogeneity.

In both cases, there is a concentration of homogeneous wards in
the northern central area, in the southeast, and in the northeast.
The areas of homogeneity for k = 159 generally agree with the
areas of homogeneity for k = 384. However, for k = 159, the
homogeneous regions generally have lower p-values than for
k = 384. This stands to reason, as larger areas may be expected
to contain more roads and hence more diverse road networks,
leading to a lower p-value. The finer partition of k = 384 allows
for smaller areas, each containing fewer roads and thus having a
higher chance to contain less diverse, more homogeneous road
networks.

In both cases, more homogeneous areas coincide with less pop-
ulated, more rural regions. These tend to have sparse, spread
out roads. Furthermore, the most homogeneous areas in both
cases are some of the smallest. This may in part be due to ac-
tual homogeneity of the road networks in these areas, but could
also be caused by the low number of roads and hence points
within these small regions. The fewer points there are in a re-
gion, the smaller the number of possible quadrats. The fewer
quadrats there are, the less the influence of spatial dependence is
accounted for, thereby potentially inflating the p-value (Kraam-
winkel et al., 2018). Although we found no significant cor-
relation between the number of points and homogeneity, the
number of quadrats should still be taken into account when in-
terpreting homogeneity p-values.

Figure 8(a) and (b) show the prominence index values of the
regions for k = 159 and k = 384 respectively. Recall that
a higher prominence index indicates that a region is more ac-
cessible, regardless of the origin of the journey. Here, there is
very little agreement between the cases where k = 159 and
k = 384, unlike for the homogeneity. For k = 159, the most
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a) b)

c)

Figure 8. Results of accessibility modelling. a) The prominence
index for k = 159. A lighter colour corresponds to a more

prominent region. b) The prominence index for k = 384. c) The
prominence index calculated on the wards.

accessible regions are one in the southwestern area, and two
in the southeastern area. The southwestern region corresponds
to an area called Elarduspark, a growing residential and com-
mercial centre. Its high accessibility is thus expected. The
two southeastern regions contain mainly motorways or primary
roads, and few other roads. Thus, they are well-connected, and
contain few nodes.

For k = 384, there are two sets of adjacent regions in the upper
middle of the study area with a very high prominence index.
The more western regions coincide with the Tshwane Univer-
sity of Technology, which should indeed be easily accessible to
students and staff. As with the accessible southeastern regions
for k = 159, all of these regions contain mainly motorways or
primary roads, and few other roads. It is of note that the two ad-
jacent regions in the southwest, with a prominence index of ap-
proximately 0.08, intersect the area covered by the Elarduspark
region in (a). This confirms the prominence of Elarduspark in
terms of accessibility.

The scale of the prominence index is similar for both regional-
isations, ranging from just over 0 to just over 0.16 for k = 159,
and 0.15 for k = 384.

Figure 8(c) shows the prominence index calculated on the ad-
ministrative units (electoral wards). This differs from the prom-
inence index calculated on the homogeneity-based regionalisa-
tions. Firstly, the scale of the prominence index is greater, ran-
ging from just over 0 to nearly 0.5. Here, all the wards have
a prominence index well below 0.2, except two wards in the
south, with a prominence index of nearly 0.5. These wards con-
tain part of Centurion, a residential and economic hub within
the area, well-connected to the rest of the study area via resid-
ential and major roads.

We found no significant linear correlation between the promin-
ence index and homogeneity for either k = 159 or k = 384.
Choosing a homogeneous region as the origin of a journey also
did not result in faster convergence to the prominence index.
Figure 9 shows the top 10 most accessible regions for the case
where k = 159, for n = 5, 2000, 3000. In Figure 9(a)-(c), the

results are given with respect to a homogeneous region, out-
lined in pink. Figure 9(d)-(f) shows the results with respect to
an inhomogeneous region, outlined in pink. This shows that the
rate and pattern of convergence is not influenced by the homo-
geneity of the origin region.

a) b)

c) d)

e) f)

Figure 9. Top 10 most accessible regions from homogeneous
and inhomogeneous regions. a) Top 10 most accessible regions

starting from a homogeneous region, for n = 5. The origin
region is outlined in pink. b) n = 2000. c) n = 3000. d) Top 10
most accessible regions starting from an inhomogeneous region,
for n = 5. The origin region is outlined in pink. e) n = 2000. f)

n = 3000.

For the case where k = 384, convergence to the prominence
index was also not influenced by whether or not the origin re-
gion was homogeneous. However, convergence to the promin-
ence index is much slower for this regionalisation. Figure 10
shows the convergence to the prominence index for k = 384.
At n = 2000 (Figure 10(a)), the most accessible regions are
still far from the prominence index.

These results thus demonstrate that the homogeneity clustering
method is able to obtain meaningful regionalisations of the road
network, and that these regionalisations, in conjunction with the
accessibility model, can provide new insights into the state of
accessibility via the road network.
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a) b)

c)

Figure 10. Top 10 most accessible regions for k = 384. The
origin ward is outlined in pink. a) n = 2000. b) n = 200000. c)

n = 500000. Even at n = 500000, the results have not yet
converged to the prominence index (Figure 8(b)).

4.3 Limitations and Future Work

The method has some limitations. Firstly, the accessibility
model assumes that the Markov property holds; this is a lim-
itation acknowledged in (Thiede et al., 2023c). Secondly, the
homogeneity clustering method is very sensitive to the initial
clustering. Lastly, neither the clustering method nor the access-
ibility model considered edge effects. In reality, road networks
do not terminate abruptly at the edge of any given area, nor is
travel confined by the borders of municipal areas (except where
these align with national borders).

Future work could address some of these concerns. Alternative
methods of initial clustering could be developed that explicitly
use homogeneity criteria to cluster. Edge effects should be ex-
plored and mitigated as far as possible.

The method could also be expanded in future. Homogeneity
is only one aspect of road structure; other characteristics such
as density, gridlikeness, connectivity and more could be con-
sidered during clustering and accessibility modelling. Work is
already in progress to incorporate traffic data into the accessibil-
ity model in order to base accessibility on travel time instead of
distance. Traffic data could also be incorporated into the clus-
tering steps. Finally, it should be acknowledged that the results
of the clustering and accessibility model are heavily dependent
on the geographical scale and level of aggregation, represented
here by the size of the initial clusters. This is a clear example
of the modifiable areal unit problem. Herein, we compared two
spatial scales: k = 159, which resulted in regions that were
comparable to the electoral wards within the City of Tshwane,
and k = 384, the finest subdivision that still allowed reason-
ably sound results for the homogeneity test. Future work could
further explore the effects of the spatial scale on homogeneity
and accessibility.

5. Conclusion

This paper considered the effects of the homogeneity of road
networks on inter-regional accessibility. This was done by
extending a homogeneity-based road network clustering al-
gorithm to subdivide a road network into regions. The homo-
geneity and accessibility of the regions was calculated. The
method was applied to the road network within the City of Tsh-
wane municipality, South Africa. The accessibility based on our
method of creating regions, at two spatial scales, was compared
to accessibility based on electoral wards. The results showed
that, although accessibility is not directly correlated with ho-
mogeneity, it is highly dependent on the way in which regions
are constructed. Our novel construction of regions provided in-
formation on accessibility within the municipality that comple-
ments the use of administrative units, and offers a broad range
of future research opportunities into the effects of road structure
on accessibility.
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