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Abstract 

 

In recent years, 3D LiDAR (Light Detection and Ranging) has become a crucial sensor in various applications such as autonomous 

vehicles, robotics, object detection, precision forestry, and agriculture. However, specific LiDAR sensors, such as Velodyne VLP16, 

exhibit some drawbacks, such as a limited field of view and sparse data density, making them inadequate for certain specific 

applications. Hence, this research proposes a method for calibrating two VLP16 LiDAR sensors to improve coverage and reduce blind 

spots. The pipeline for performing the calibration begins with mounting LiDARs correctly in a rod at a specific orientation and distance, 

followed by the selection of multiple sites for data collection, then performing a registration algorithm for estimating calibration 

parameters, and then an accuracy assessment of the calibrated point clouds. The registration algorithm used here is a modified version 

of ICP (Iterative Closest Point), which overcomes the need for initialization and eliminates manual intervention in installing targets or 

retro-reflectors. Finally, we evaluated the accuracy of the fused point cloud collected in an open environment using two calibrated 

Velodyne VLP16 sensors. For accuracy assessment, we used the PCA eigenvalue and RMSE value to observe how tightly point clouds 

are fused. As a calibration result, we got the orientation and translation parameters, which are used to achieve the common coordinate 

system, and accomplished calibration accuracy up to single-digit precision from all the experimental sites. Now the system of two 

calibrated VLP16 sensors will provide higher coverage and increased data density and might be useful for forest applications. 

 

 

1. Introduction 

Over the last few decades, LiDAR has become an emerging 

sensor for a wide range of applications, including autonomous 

vehicles, robotics, object identification, mapping, precision 

agriculture, and forest biomass estimation for accurate horizontal 

and vertical distance measurement (Jiao et al., 2019). 

Nevertheless, a single low-cost LiDAR is insufficient for these 

applications due to its limited vertical field of view and sparse 

data density. As a result, it becomes important to calibrate 

multiple sensors to obtain optimum coverage of the surroundings. 

There are two types of calibration performed in LiDAR: extrinsic 

and intrinsic calibration. Intrinsic calibration mainly focuses on 

the internal characteristics of the LiDAR sensors, which ensure 

that each horizontal beam of the LiDAR, vertical angle, and range 

offset are properly calibrated. Here, we assumed that intrinsic 

calibration is performed during the manufacturing process (Lee 

and Chung, 2022). Extrinsic calibration is the method of 

determining the relative position and rotation between the 

sensors. To fuse the sensor information into a single coordinate 

system, all sensors have to be calibrated relative to the chosen 

common frame. Through the calibration of two sensors' 

measurements, we align each sensor's coordinate system with a 

common reference frame and fuse the point cloud of both sensors 

(Heide et al., 2018). 

 

Numerous studies explored LiDAR-camera calibration and 

camera-camera extrinsic calibration, reflecting a significant 

amount of research in these areas. However, there is increased 

demand for research addressing extrinsic multi-LiDAR 

calibration for various applications. Extrinsic calibration is 

categorized into two categories, i.e., offline and online. Offline 

calibration is considered a registration problem where a cost 

function is minimized (Heide et al., 2018; Maye et al., 2016). It 

involves estimating the extrinsic parameters of multiple LiDARs, 

either through manual interventions or automated processes. 

Calibration methods using artificial calibration objects require 

manual processes for making the objects and for placing them in 

the scenes(Gao and Spletzer, 2010; Pusztai et al., 2018; 

Underwood et al., 2007). Additionally, we must create a 

calibration room each time calibration work is conducted. 

Consequently, automatic registration is employed to estimate the 

calibration parameter, which involves the registration of point 

clouds based on surrounding features as well as removing the 

need to find an initial set of parameters. Researchers leverage 

linear or planar features, and any objects lie in the surrounding 

environment where sensors are kept. A number of registration 

algorithms have already been developed in the market, such as 

Normal Distributions Transform (NDT), Iterative Closest Point 

(ICP), and its different versions, which can be implemented for 

extrinsic calibration. In contrast to offline calibration, where 

calibration is performed separately and applied later (Besl and 

McKay, 1992; Gao and Spletzer, 2010). 

 

Initially, the calibration of LiDAR sensors was performed using 

retro-reflectors and manual targets within scenes, referred to as 

the manual registration approach(Jiao et al., 2019; Zhou et al., 

2018). Gao and Spletzer, (2010) proposed an algorithm to 

calibrate multiple LiDARs using point constraints provided by 

retro-reflective tapes. For LiDAR-camera calibration, (Zhou et 

al., 2018)demonstrated a technique to establish line and plane 

constraints between the two sensors using a chessboard, while 

Liao et al., (2018) introduced a toolkit using an arbitrary polygon, 

offering greater versatility. However, some studies have opted to 

use surrounding features instead of manual targets or 

retroreflectors to solve the multi-LiDAR calibration problem. For 

example, Xie et al., (2018) presented a general solution to jointly 

calibrate multiple cameras and LiDARs in environments with 

pre-built features, such as Apriltags. Choi et al., (2016) 

determined the spatial offset of dual 2D LiDARs by leveraging 

the appearance of two orthogonal planes. Lee and Chung., (2022) 

employed orthogonal planes for registration and automated the 

registration method to address multi-LiDAR calibration 

challenges. 
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The current state of research in the field indicates a significant 

gap regarding LiDAR-LiDAR automated calibration, with just a 

few works addressing this topic. Furthermore, comprehensive 

accuracy assessments have been largely overlooked, leaving 

uncertainties regarding the reliability of fused data obtained 

through multi-LiDAR systems. The first objective of the study is 

to perform an offline automatic calibration of two low-cost VLP 

16 LiDAR to achieve enhanced coverage of the surroundings. 

The calibration output will be the calibration parameter and the 

fused point cloud from both sensors. The outcome of the 

calibration task will be referred to as either a calibrated point 

cloud or a fused point cloud derived from two synchronized and 

calibrated sensors. The second objective of the paper is to 

evaluate the accuracy of the estimated calibration parameters 

through the accuracy evaluation of the fused point cloud. The 

following section explains the experimental setup and 

methodology adopted. This is followed by results and an accurate 

evaluation of the estimated parameters. Finally, the conclusions 

of the paper are presented in section 4. 

 

2. Datasets and Methodology  

2.1  Hardware setup 

We mounted two low-resolution Velodyne VLP16 for this study 

on a rod (Figure 1). This was done to improve the effective 

coverage of the two sensors combined. This is only one of the 

specific configurations, and any other configuration could also be 

used here, depending on the intended application. The two 

sensors are connected to a common Computer, and a software-

based time synchronization is performed. We propose an 

automatic calibration process that relies on the presence of 

external features for successful calibration. The type and 

distribution of these features affect the calibration performance. 

To analyze the calibration performance in different conditions, 

we select five different environments, of which four are indoors, 

which is used for estimation of calibration parameters, and one is 

an outdoor environment, which is used for validation. The 

following section provides the details of the experimental sites. 

 

 
 

Figure 1. Experimental Setup for two VLP16 sensor. 

2.2 Data collection 

As explained earlier, five experimental sites were chosen. It is to 

be noted that no artificial targets are installed by the authors at 

any of these sites, and data is collected in their natural conditions. 

These sites are enclosed rooms containing engineering features 

such as chairs, tables, almirahs, and walls, representing planar, 

linear, or edge structures. Further, to implement calibration 

parameters and fuse the measurements, we again collected 

datasets in an open environment where we witnessed cars, trees, 

walls, and poles.  Four indoor environment sites were used to find 

the best calibration parameter, and an open environment site was 

used to implement the calibration parameter. Measurements are 

taken from two low-cost Velodyne VLP16 synchronized sensors 

by keeping the sensors at the center of the enclosed space. Data 

collection was done using the Robot Operating System (ROS) 

platform. Following data collection, it was processed and 

converted into standard point cloud format using MATLAB and 

Cloud Compare. The specification of Velodyne LiDAR Puck™, 

is described in the datasheet (Velodyne LiDAR, 2019). The 

sensors' specifications and their setup are mentioned below in 

Table 1. 

 

Specification Velodyne VLP16 

Channels 16 

Range 100 m 

Vertical FOV -150 to + 150 (300) 

Horizontal FOV 3600 

Vertical angular resolution 2.00 

Horizontal angular resolution 0.10 – 0.40 

Range accuracy ±0.03 m 

Point per second 396, 000 

Table 1 Specification of Velodyne VLP 16 sensor. 

2.3  Pre-processing of the point cloud 

Datasets obtained from two synchronized VLP16 are represented 

as the source and target point clouds. The sensor kept at the top 

of the rod is called the target sensor, while another sensor kept at 

inclination is considered as the source sensor (Figure 1). In this 

study, we solved the calibration problem using an automatic 

registration problem where we did not use any retroreflector or 

physical targets. After data collection, we removed the noise and 

outliers in the point cloud due to dust, smoke, or other 

environmental conditions. For pre-processing, we used statistical 

and radius noise removal filters as well as voxel grid down-

sampling. We followed the tutorial on point cloud outlier removal 

provided by Open3D documentation. Voxel grid sampling down 

sampled the point cloud to reduce the number of points. It is 

implemented in the raw point cloud obtained from synchronized 

LiDAR sensors, which contain a large number of data points, all 

of which may not be useful for registration. We created a voxel 

of the point cloud of size 5 cm for light sampling. Further, having 

a large number of data points in the point cloud may significantly 

increase the computation time. Further, a statistical outlier 

removal (SOR) filter was implemented to the downsampled point 

cloud to remove the outlier. The SOR filter, as described in the 

Point Cloud Library documentation, is used to remove outliers 

from point cloud data. It removes points that are further away 

from their neighbors compared to the average for the point cloud. 

It takes two input parameters: nearest neighbor and standard 

ratio. The number of neighbors is taken as 10, and the standard 

ratio is selected as 2.0. As number of neigbour increase in 

statistical outlier, no. of outlier decreases. Nearest neighbor 

allows to specify how many neighbors are taken into account to 

calculate the average distance for a given point, and standard 

ratio allows setting the threshold level based on the standard 
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deviation of the average distances across the point cloud. The 

lower this number is, the more aggressive the filter will be. 

Additionally, a radius outlier is performed to remove the points 

with few neighbors in a given sphere (Uddin et al., 2022).  

 

Furthermore, the K-dimensional (K-D) Tree is also applied to the 

denoised point cloud to find the correspondence pair of the point 

cloud. KDTree queries involve searching for the nearest 

neighbors of a specified point within a K-D Tree data structure. 

It is a binary tree data structure commonly used in Computer 

science to search k-dimensional points efficiently. The K-D Tree 

is constructed by recursively splitting the space into two regions 

based on the median of the points in that region along a certain 

dimension. It is used to perform a nearest-neighbor search, which 

helps us find the correspondence between two point clouds. 

Correspondences refer to the set of similar point pairs in the two 

point clouds. Once the correspondence is identified, an iterative 

process reduces the distance between these points. Accurately 

identifying and matching these unique correspondences is 

important for precise registration. 

 

2.4 L-M optimization 

After correspondence is identified and matched, the result of 

registration is optimized using Levenberg-Marquardt (L-M) 

optimization. The L-M algorithm is utilized in point cloud 

registration to solve the challenges of accurately aligning two-

point clouds, which have limitations such as low overlap, noise 

and outliers, and complex surroundings. The L-M algorithm also 

overcomes the problem of local minima created during ICP 

registration by obtaining global minima. The algorithm enhances 

the results of point cloud registration by providing a robust and 

efficient approach to solving non-linear least squares problems, 

which are common in aligning point clouds (Fitzgibbon, 2003). 

 

The update formula for the parameters p in the LM algorithm is: 

 

                    𝑝𝑘+1 = 𝑝𝑘−  (𝐽𝑡𝐽 + λ𝐼)−1𝐽𝑇𝑟                          (1) 

 

Where:  

pk+1 = Updated parameter vector at iteration k+1 

pk+1 =  Parameter vector at iteration k 

I = Identity matrix 

J = Jacobian matrix of derivatives of the residuals with 

respect to the parameters 

r = Residual vector 

λ = Damping parameter 

 

2.5  Accuracy assessment for the registration result  

After solving the calibration problem using the registration 

method, we obtained a transformation matrix, a registered/fused 

point cloud from the calibrated sensor, and a Root Mean Square 

Error (RMSE) value from each experimental site (enclosed 

indoor environment). As we are solving the calibration problem 

using the registration method, the transformation matrix will also 

be referred to as the calibration parameter. Since the calibration 

parameters are computed from four indoor sites, it is possible to 

estimate the variation in these parameters. Note that the 

calibration parameters should ideally be constant, irrespective of 

where the data is collected, as long as the hardware configuration 

remains the same. However, we may get slightly different 

calibration parameter values due to the range error, perturbation 

of the sensor, non-ideal environmental conditions, and 

calibration algorithm. Additionally, to assess the calibration 

parameter variability across different experimental sites, the 

standard deviation, along with the mean, is computed.  

RMSE  

RMSE is a metric used to quantify the accuracy of the registration 

process by measuring the differences between corresponding 

points in two point clouds (source and target point cloud).  

RMSE can be calculated as, 

              RMSE = √
1

𝑛
∑ (𝑠𝑖  −  𝑡𝑗)

2𝑛
𝑖=1  < σ, (1 ≤j≤m)               (2) 

 
where si is the nearest point in the target dataset of tj in 

the source dataset,  
 
m and n are the numbers of points of Source and Target 

point cloud, respectively, and  
 
 σ is the threshold for the minimum distance between 

the two datasets.                      
 

2.6 Assessment of fused Point Cloud Accuracy in Open 

Outdoor Environments 

We used Principal Component Analysis (PCA) eigenvalues and 

RMSE to evaluate the fused point cloud of an open outdoor 

environment using four sets of calibration parameters achieved 

from four enclosed indoor sites. For this, individual features such 

as poles, tree trunks, and walls have been segmented. A line and 

a plane have been fitted for the linear and planar features. A line 

has been fitted to the pole (as the pole is the linear feature), and 

a direction vector has been calculated along the fitted line to 

know the maximum variance along the fitted line. For the wall, a 

plane fitted to the segmented wall point cloud to know how well 

points are spread in x, y, and z directions. For this, eigenvalues 

as  λ1, λ2, and λ3 are calculated for pole and wall. We could not 

fit a cylinder or other shape to the tree trunk due to the partial 

scanning by both sensors. Apart from the eigenvalues, we also 

calculated the direction vector for each point cloud collected 

from each sensor after applying the calibration parameter. The 

direction vector determines how well sensors are calibrated in the 

angular direction. Furthermore, we calculated RMSE for the 

segmented features using the K-D Tree as well. 

PCA eigenvalue and eigen vector computation 

 

The PCA eigen values derived from the data's covariance matrix, 

obtained through eigen decomposition or singular value 

decomposition, capture the optimal fitting directions (principal 

components) that are orthogonal to each other. In this study, PCA 

eigenvalues were employed to evaluate the rotational alignment 

of point clouds collected from individual sensors after 

calibration, while RMSE determined the effectiveness of 

fusion/calibration in terms of translational shift.  

The eigenvalues and eigenvectors of a matrix A can be 

calculated using the characteristic equation: 

                          det(𝐴 − 𝜆𝐼) = 0                                          (3) 

where λ is the eigenvalue, I is the identity matrix, and 

det denotes the determinant of the matrix. 

Once the eigenvalues are obtained, the corresponding 

eigenvectors can be found by solving the equation: 

                                (𝐴 −  𝜆𝐼)𝑣 = 0                                      (4) 
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Where 𝑣 is the eigen vector corresponding to the 

eigenvalue λ. 

The overall methodology is presented using a flowchart, showing 

the different steps for finding the best calibration parameter 

(Figure 2).  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart showing the overall method for finding the 

best calibration parameter. 

3. Result and discussions 

3.1 Pre-processing result 

The synchronized point cloud data from two LiDAR sensors 

were collected across four different experimental sites, all of 

which were enclosed indoor environments. These sites included 

a Lab, a Computer room, an Instrument room, and an Office 

room. The raw data from these sensors consisted of a dense 

collection of 3D points, representing the surfaces within these 

environments. 

Once the data was collected, it underwent pre-processing to 

eliminate the noise and outliers. Figure 3 illustrates the 

significant reduction of unwanted noisy points following the 

preprocessing steps across all four site measurements. The bar 

graph depicts the reduction of point cloud data for two sensors in 

four different rooms after pre-processing, which removes noise, 

outliers, and unwanted points, which is not useful for the 

registration. The Lab and Computer rooms show higher data 

density both before and after pre-processing than the Instrument 

and Office room due to the larger room size. 

 

 
 

Figure 3. Comparison of point cloud density before and after 

pre-processing from two LiDAR sensors. 

3.2 Calibration result 

The automatic registration algorithm was implemented in the 

denoised point cloud, which yielded four sets of transformation 

matrices, also called calibration parameters. Moreover, the 

registered point cloud and its corresponding RMSE were 

determined, with the RMSE providing a measure of the 

registration or calibration accuracy with which the point clouds 

from the synchronized sensors were registered.  

Table 2 shows that the RMSE value was lower for the Instrument 

room and Office room at 0.068 m and 0.062 m, respectively; this 

suggests a more accurate registration of the point cloud data and 

better calibration of the sensors. This could be attributed to 

specific characteristics of the rooms, which may have facilitated 

a more precise calibration parameter because these rooms are of 

small size, and features and objects of the room can be identified 

easily by the sensor.  

 

Conversely, the Computer and Lab rooms recorded slightly 

higher RMSE values of 0.072 m and 0.078 m, indicating a lesser 

degree of registration accuracy. These differences may come 

from the different features that were scanned through the sensor 

and the larger size of the room, due to which few features 

couldn’t be identified due to the limited range of the sensor. 

Understanding these variances is crucial for improving point 

cloud registration techniques and adapting them to the unique 

conditions presented by each experimental site. 

 

In an ideal condition, the optimal site of the best calibration result 

comprises an enclosed space with distinguished features and 

objects that can be completely scanned by the sensors.  

 

Experiment

al site 

Instrument 

room 

Office 

room 

Lab 

room 

Compute

r room 

RMSE (in 

meters) 

0.069 0.062 0.078 0.072 

Table 2. RMSE value (in meters) computed during registration 

for each indoor experimental site. 

In Figure 4, the RMSE value is plotted with respect to the number 

of iterations for four sets of experimental sites. The plot indicates 

that the RMSE values varied from 0.13 to 0.06 m throughout the 

iterations. Furthermore, it was noted that all experimental 

locations had many local minima and fluctuations up to the 17h 

or 18th iteration, but after that, the RMSE values get saturated. 

This pattern indicates that using a registration procedure and LM 

optimization helps achieve the global minimum. Throughout the 

process, the Instrument and Office rooms consistently 

demonstrate lower RMSE values, indicating a more accurate 

registration compared to the Lab and Computer rooms results. 
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Figure 4. RMSE variation with respect to the number of 

iterations across four sites. 

3.2 Analysis of the variation in translation and rotation 

parameter 

We computed the variation in translation and rotation derived 

from the transformation matrix result of four experimental sites. 

In Table 3, we depicted the mean and Standard deviation (SD) of 

translation along the x, y, and z axes, as well as the roll, pitch, 

and yaw values.  

 

The statistical analysis indicates minimal dispersion in 

translation across the x, y, and z axes, suggesting precise 

consistency in these measurements as observed by SD. However, 

there is a minor variation in the rotational values (roll, pitch, and 

yaw), which could potentially be attributed to constraints in the 

quality of the point cloud from the VLP 16 sensor or calibration 

algorithm. 

 

 tx ty tz Roll Pitch Yaw 

 In meters In degrees 

Mean 0.0

54 

0.200 0.349 9.704 0.434 2.583 

S.D. 0.0

01 

0.005 0.014 1.185 0.480 0.877 

Table 3. Mean and SD for the translation and rotation values. 

Figure 5.a and b display the values of tx, ty, tz, and roll, pitch, 

and yaw in meter and degree, respectively, in the form of a bar 

graph so that we can visualize the similarity of the translation and 

rotation values computed for four experimental sites. Here, tx, ty, 

and tz are translations along the x, y, and z-axis, and roll, pitch, 

and yaw are the rotations along the x, y, and z directions, 

respectively. In Figures 5a and b, the x-axis depicts the 

translation values in meters and rotation values in degrees, 

respectively.  

 

From Figure 5a, we can observe that translation along the x, y, 

and z axes is consistent for all the experimental sites; however, 

for the rotation parameter, the computer room depicts a slight 

variation in roll value, while the computer room and Lab room 

represent slight variation in yaw value (Figure 5b). 

 

Ideally, consistent translational and rotational values are 

expected across all experimental sites. However, we observed 

some noticeable discrepancies in rotational values computed for 

the Laboratory and Computer rooms. This discrepancy may be 

contributed from the critical selection of correspondences 

necessary during registration, which is influenced by the 

available features and the size of the rooms as well as the 

extrinsic perturbation. The computer room and Lab room were 

larger in size compared to the Instrument room and Office room, 

due to which a few features, which were present at a farther 

distance from the sensor, could not be captured well, which 

affected the registration and consequently led to the observed 

rotational variations.  

 

 
(a) 

 

 
(b) 

 

Figure 5. Translation (a) and rotation values (b) variation across 

four experimental sites. 

3.3 Analysis of the fused point cloud for the open 

environment from calibrated sensors 

Finally, after getting transformation matrices from four 

experimental sites, we implemented these calibration parameters 

to the point cloud of the open environment collected from the 

setup of two synchronized Velodyne VLP16 sensors. Here, to 

avoid confusion, we will refer to the transformation matrix as the 

calibration matrix as we are performing the calibration problem 

by means of the registration method. In this study, a calibrated 

point cloud using one of the experimental site’s calibration 

parameters is presented only to visualize the differences in data 

appearance in a single sensor and a calibrated sensor. 

Additionally, the shift in the point clouds resulted from two 

individual sensors before and after calibrations are also 

presented.  

 

3.3.1 Comparison of single sensor and dual sensors 

measurement 

 

Analysis of the single sensor point clouds (figure 6a) reveals a 

notably low data density, which significantly improves after 

calibration (figure 6b). Consequently, adopting a multi-sensor 
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approach facilitates enhanced data collection, offering improved 

detail and mitigating issues associated with occlusion.  

 
(a) 

 

 
(b) 

 

Figure 6. Point cloud from the one sensor (a) and dual calibrated 

sensor (b). 

3.3.2 Detailed analysis of the fused point cloud from the 

calibrated sensor 

 

To show the shift between the sensor's data before and after 

calibration, in Figure 7, a few features from the fused point cloud 

of the open environment were highlighted. The pre- and post-

calibration shifts are most effectively depicted in a 3D visualizer. 

However, due to the constraints of this paper, we are limited to 

exhibit them solely through 2D photographs. Figure 7a presents 

a segmented wall pre- and post-calibration side by side for direct 

comparison, while Figure 7b shows a top view of three 

segmented cars (before and after calibration), demonstrating the 

improved alignment of the point cloud after calibration. Further, 

Figure 7c compares the tree trunk before and after calibration to 

showcase that, there is no shift in the fused point cloud after 

registration. Figure 7d also illustrates the same pattern for linear 

feature as pole as found in walls, cars, and trees. For the 

calibration of the sensors, the Instrument room calibration 

parameter.  

 

The visual comparison in Figure 7 confirms the effectiveness of 

sensor calibration, showing minimal or no shifts in segmented 

features after calibration, indicating successful alignment and 

effective calibration of the setup of two synchronized sensors 

which increases the coverage and data density. 

 
   (a) 

 
                  (b) 

 
                                                  (c) 

 
                                                 (d) 

Figure 7. Segmented features such as Wall (a), Cars (b), part of 

the tree trunk (c), and Pole (d) before (left) and after (right) 

calibration. 

3.4 Accuracy assessment for the calibrated point cloud 

We evaluated the calibrated point cloud quality through two 

methods: RMSE, for segmented point clouds of features present 

in the surroundings of an open environment, indicates alignment 

precision in translation, while PCA eigenvalues and eigenvectors 

assess angular discrepancies between the two point clouds.  

 

3.4.1 RMSE Analysis 

 

RMSE values for the segmented Wall, Pole, and Tree are shown 

in the form of a bar graph (Figure 8). and the direction vector 

between the source and target segmented point clouds (Pole and 

Wall) obtained from the source sensor (kept at an incline) and the 

target sensor (positioned at the top) after the calibration process, 

as shown in Table 4. 

 

In Figure 8, RMSE value is shown for various features as Pole, 

Wall, and Tree trunk, segmented from calibrated sensors. Fusion 

of the point clouds for two sensors was performed using the 

calibration result of four experimental sites, which shows the 
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lowest RMSE value for the Instrument room and Office room and 

a higher value for the Lab room and Computer room for all the 

segmented features.      

 
 

Figure 8. RMSE values for segmented features (Pole, Wall, and 

Tree) across four different environments (Instrument room, 

Office room, Lab room, and Computer room). 

3.4.2 Eigenvalue eigenvector analysis 

 

In Table 4, the value computed from PCA and the angle between 

the direction vector are shown for a linear feature as a pole and a 

planar feature as a wall. Eigenvalues are unitless, while the angle 

is shown in degrees. λ1, λ2, and λ3 are variance of points in x, y, 

and z direction, respectively. Segmented Pole point clouds 

exhibit the maximum variation in the x direction as it is a one-

dimension feature for the Instrument and Office room. However, 

for the Lab room and Computer room, we observed a nonzero 

value in λ2, which means that the fused point cloud exhibits a 

slight deviation in the y direction. Additionally, the angle 

between the direction vector is the least for the Instrument room 

and Office room, while for the Lab room and Office room, a 

higher value is witnessed. Ideally, the angle between the direction 

vector of the target and the transformed source point cloud is 

zero, but since there is a small shift in the orientation, it is 

computed as a small non-zero value. Further, the segmented wall 

is a planar feature, it should show a non-zero value in the x and y 

directions and 0 in the z direction if it is a perfect plane. However, 

we observed a significant non-zero value in the z-direction for 

the Lab room and Computer room, indicating that points of the 

segmented wall are not fused properly (Table 4). 

 

   Instrum

ent 

room 

Offic

e 

room 

Lab 

room 

Compu

ter 

room 

Pole λ1 0.543 0.54 0.537 0.541 

λ2 0 0 0.02 0.004 

λ3 0 0 0 0 

angle 

between 

directio

n vector 

0.725 0.647 1.412 0.856 

Wall λ1 4.256 4.374 4.481 4.462 

λ2 2.007 2.198 2.128 2.007 

λ3 0.001 0.002 0.021 0.047 

angle 

between 

directio

n vector 

0.434 0.606 1.696 1.596 

Table 4. Illustrates the eigenvalues and angle between the 

direction vector (in degrees) for line feature (Pole) and plane 

feature (Wall). 

3.4.3 Comparative analysis of the calibration parameter 

for four sites 

 

We performed the comparative analysis of the result of four 

experimental sites and for this, three distinct features: a pole, a 

vertical wall, and a section of a tree trunk segmented and from 

the measurements of the calibrated sensors and visualized (Figure 

9). All the segmented features reveal that, based on Instrument 

room and Office room calibration parameters, these segmented 

features are well aligned compared to the calibration result of the 

Computer room and Lab room, indicating that sensors are 

effectively calibrated using Instrument and Lab room calibration 

parameters. 

 

 
 

Figure 9. Segmented point clouds of a pole, shown in panels (a-

d). Panels (e-h) illustrate a wall's point cloud, presented 

horizontally and vertically, and Panels (i-l) feature a section of a 

tree trunk, fused with calibration parameters from Instrument 

room, Office room, Lab room, Computer room (left to right) 

In summary, the calibration parameters for the Instrument room 

and Office room prove to be effective, exhibiting minimal 

registration errors (see Table 2), the least spread of the point 

cloud in an incorrect direction, and small non-zero angles 

between vectors for all segmented features, compared to the Lab 

room and Computer room (refer to Table 4). Additionally, a 

similarity is observed between the translational and rotational 

parameters of the Instrument room and Office room, contrasting 

with those of the Lab room and Computer room (see Figure 5). 

Visualization of the segmented feature, as shown in Figure 9, also 

indicates the best result from the calibration parameter of the 

Instrument room and Office room. Consequently, either the 

Instrument room or Office room-based calibration parameters 

can be utilized to merge the point cloud collected from two 

synchronized sensors for further processing. 

 

4.  Conclusion and future works 

The paper presents a comprehensive study on the multi-LiDAR 

extrinsic calibration for improving coverage and data density in 

capturing the surrounding environment using two Velodyne 

VLP16 LiDAR sensors mounted in a rod. This study employed a 

modified version of ICP that significantly eliminates the need for 

manual intervention by employing an automated registration 

algorithm along with the LM optimization technique, which 

optimizes the result.  Data collection was performed across four 

enclosed indoor environments just to ensure that we were getting 

a b c d 

e f g h 

i j k l 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-37-2024 | © Author(s) 2024. CC BY 4.0 License.

 
43



 

a significantly similar value from each experiment site. Further, 

to assess the calibration's effectiveness in diverse conditions, we 

collected the dataset in an open environment. The results 

demonstrated a notable improvement in data density and 

coverage, particularly advantageous for forestry applications and 

other outdoor environments. 

 

Finally, to analyze the result from the calibration parameter, we 

did a thorough accuracy assessment using various statistical 

methods, including PCA eigenvalues and RMSE, which revealed 

minimal dispersion in translation and slight variations in rotation 

attributed to the quality of the point cloud data. These metrics 

confirmed the high accuracy of the calibration process, with 

particular success in the Instrument and Office rooms, suggesting 

that the calibration parameters are significantly reliable. The 

paper also discusses the challenges of capturing features at a 

distance in larger rooms, which can negatively impact 

registration and lead to errors in calibration parameters. 

 

In conclusion, this study advances the field of LiDAR sensor 

calibration by offering a robust and automated solution that 

enhances environmental coverage and point cloud density. This 

development holds great potential for improving the performance 

of multi-LiDAR systems in a wide range of applications. Future 

work may include the third sensor to get a complete view of the 

environment so that the final data comprised of the three sensors 

can be used for data collection in a forest environment.  
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