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Abstract 

 

Traditional indoor positioning technologies mostly require advanced installation of hardware devices, resulting in high costs and long-

term maintenance. With advancements in image recognition and deep learning technologies, indoor visual positioning based on image 

recognition has become increasingly mature. This method offers the benefits of low cost and does not require additional hardware 

installation. However, it still has inherent defects, such as cumbersome data collection, complex algorithms, and universality. To 

minimize indoor information pre-collection cost, improve versatility, and enable rapid deployment in low-performance mobile devices, 

this paper proposes a lightweight indoor positioning system based on multiple self-learning features and key frame classification. The 

system is divided into two stages: preprocessing and real-time positioning. In the preprocessing stage, image information is collected 

for the entire indoor environment, and a key-frame recognizer is trained based on the image information. Simultaneously, an 

environmental feature information database is established. In the real-time positioning stage, the system first uses mobile devices such 

as smartphones to obtain real-time video streams. A key frame recognizer based on convolutional neural networks identifies key frames 

in each video stream frame, thereby obtaining approximate positions for rough positioning. Second, feature points are identified in 

each frame of the video stream and matched with feature points with location information in the built environmental feature information 

database to calculate precise positions for fine positioning. It has significant optimizations compared with conventional visual solutions 

in terms of preprocessing data collection, algorithm performance consumption, and versatility. 

 

 

1. Introduction 

Recently, location-based services have received widespread 

attention and promoted the rapid development of positioning 

technology. The inability of the global navigation satellite system 

(GNSS) technology to solve the positioning problem in indoor 

scenarios has led to the emergence of indoor positioning 

technology, with potential applications influencing people's daily 

lives, including exhibitions, airports, train stations, and large 

shopping malls. The currently main indoor positioning 

technologies mainly include Wi-Fi, Bluetooth beacons (Yang et 

al., 2022), pedestrian dead reckoning (PDR), geomagnetism, and 

ultra-wideband (Yao et al., 2022). Wi-Fi primarily uses 

fingerprint comparison algorithms, which require equipment 

deployment in advance and collecting a large amount of 

fingerprint information (Gholami et al., 2019). The latest solution 

is to adopt crowdsourcing of signal sources and add location 

semantics to reduce the preprocessing of signal fingerprint 

collection; however, it is still limited by uneven crowdsourcing 

locations; therefore, it cannot solve the precision problem of all 

locations. Bluetooth uses fingerprint matching or similar base 

station signal trajectory matching methods with higher precision 

but still requires equipment deployment. Although the PDR 

algorithm does not require advanced equipment deployment, a 

cumulative error occurs that cannot be eliminated, and it must be 

combined with Bluetooth or Wi-Fi for absolute position 

correction (Huang et al., 2022). 

 

Visual-based indoor positioning technologies have matured with 

image recognition and deep learning development. It is 

inexpensive and does not require additional equipment, making 

it more advantageous than traditional solutions. However, there 

are also specific defects in current visual-based indoor 

positioning, such as the indoor positioning algorithm based on 

simultaneous localization and mapping (SLAM) and fusing 

visual odometry, which have high complexity and low efficiency 

and cannot meet real-time requirements (Mansour et al., 2023). 

Schemes based on feature point recognition and position 

conversion through homography require large amount of image 

data in advance; their universality is not high, and positioning 

continuity cannot be guaranteed (Hung et al., 2019). Schemes 

based on deep learning object recognition have no additional 

hardware dependencies but cannot accurately estimate positions 

(Ciou and Lu, 2019). Therefore, to address the limitations of 

existing indoor positioning technologies, this study proposes a 

lightweight indoor positioning technology based on multiple self-

learning features and key frame classifications. This technology 

only requires video stream images captured by mobile terminals 

to obtain real-time and accurate indoor positions and optimizes 

performance consumption and universality efficiently (Basri and 

Elkhadimi, et al., 2020). 

 

2. System Process Overview and Core Steps 

The implementation process of the indoor positioning system 

based on the vision mentioned in this paper is shown in Figure 1, 

which is divided into a data preprocessing stage (blue part on the 

right) and a real-time positioning stage (green part on the left). In 

the data preprocessing stage, key frame positions within the 

indoor environment are carefully selected, and an adequate 

number of images are captured at these positions. After 

processing, classifier models and feature point descriptions for 

each key frame are obtained. During the real-time positioning 

stage, the key frame classifier is used to identify the matching 

key frame in the current frame for rough localization. Precise 
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current position is then determined through feature point 

matching and triangulation principles for fine localization. 

The detailed steps are as follows (Section 2.1 and Section 2.2). 

 

 
Figure 1. Workflow chart of indoor positioning system based on deep learning and feature point recognition. 

 

 

2.1 Data Preprocessing Stage: 

2.1.1 Original Image Acquisition and Preliminary 

Processing: The indoor scene was comprehensively imaged 

using video equipment. However, too many images were not 

required. Only 3-4 repetitions at the same location were required. 

After the acquisition, the video stream was divided into frames, 

and the SuperPoint (a self-supervised method for interest point 

detection and description, published in 2018) feature points and 

vector of locally aggregated descriptors (VLAD) global feature 

descriptors were extracted from each frame. Finally, N key 

frames with distinct and evenly distributed features were selected, 

and the camera poses information was recorded during key frame 

capture (Jégou et al., 2010). 

 

2.1.2 Key Frame Recognizer Training: For each key frame, 

global matching was performed on the original image set to 

obtain a similar image set that belonged to each key frame. All 

image sets were subjected to augmented transformations (such as 

grayscale, filtering, rotation, and affine transformation) to obtain 

the expanded training set. The training set was used for transfer 

learning on MobileNet V3-Small to obtain a key-frame 

recognizer. 

 

2.1.3 Environmental Feature Information Database 

Construction: The feature points from all frames in the original 

image acquisition were imported into the initial SuperPoint 

model for enhanced training and fine-tuning, resulting in the 

creation of a new model named New-SuperPoint This model 

represents a feature point recognition system achieved through 

targeted multi-round self-learning tailored specifically for indoor 

scenes, marking a notable innovation within this paper. New-

SuperPoint proves to be more apt for the current indoor 

environment compared to directly using SuperPoint. New-

SuperPoint was used to identify and describe all keyframes, and 

the camera pose of each keyframe was added to form an 

environmental feature information database. 

 

2.2 Real-Time Positioning Stage: 

2.2.1 Rough Localization: Based on the real-time video 

stream, each image frame was sent to the trained key-frame 

recognizer to obtain the approximate position of the frame and its 

corresponding key-frame image. 

 

2.2.2 Fine Localization: Each video stream frame was 

processed using New-SuperPoint for feature point recognition 

and description and matched the corresponding key frame in the 

environmental feature information database. Accurate positional 

information was obtained through affine transformation and 

homographic decomposition. 
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3. Detailed Explanation of Key Technologies 

3.1 Key Frame Recognizer Construction 

3.1.1 Feature Point Recognition Based on Convolutional 

Neural Networks: Traditional feature point extraction was 

performed manually using fixed algorithms (such as SIFT, etc.). 

Due to the difficulty in fixed-algorithm optimization, most have 

poor general adaptability and are only suitable for partial scenes. 

Moreover, if more accurate feature points are desired, the 

algorithm's complexity becomes extremely high, making it 

challenging to satisfy the performance requirements of mobile 

terminals. To solve these problems, this study adopted 

SuperPoint, a feature-point recognition algorithm based on 

convolutional neural networks. SuperPoint is a feature point 

detection and description method based on self-supervised 

training. It consists of an encoder and two decoders and can 

simultaneously produce feature points and descriptors (DeTone 

et al., 2018), as shown in Figure 2. 

 

1) The feature encoder: This encoder utilizes a structure similar 

to a VGG (the network model proposed by the Visual Geometry 

Group at the University of Oxford in 2014) for feature extraction 

and dimensionality reduction. It comprises convolutional layers, 

spatial downsampling through pooling, and nonlinear activation 

functions. Conv2d in Figure 2 stands for 2D convolution. The 

encoder uses three max-pooling layers, which results in a two-

fold downsampling in the spatial dimensions three times. 

Assuming that the input image size is 𝐻 × 𝑊 , the tensor map 

after the encoder has dimensions of 𝐻𝐶 × 𝑊𝐶 × 𝐹, where 𝐻𝐶 =
𝐻/8 , 𝑊𝐶 = 𝑊/8 , and 𝐹  is the number of channels. This 

indicates that each pixel point on the tensor map represents a 

local image block of 8×8 pixels in the original image. 

 
Figure 2. Feature point extraction and description process using SuperPoint. 

 

 

2) Feature-detection decoder: The tensor map output from the 

encoder passes through two layers of convolutional modules in 

the decoder. The intermediate tensor has a dimension of 

𝐻𝐶 × 𝑊𝐶 × 65, where the first 64 channels are used to predict the 

probability of each pixel in the 8×8 local region of the original 

image being a feature point, and the last channel represents the 

probability of there being no feature points in this region. The 

intermediate tensor undergoes a Softmax operation, removing the 

last channel, and the reshape operation is used to change the 

tensor's dimension from 𝐻𝐶 × 𝑊𝐶 × 64 to 𝐻 × 𝑊 , obtaining a 

confidence score map of feature points of the original image size. 

According to the confidence scores 𝑠, pixels with scores greater 

than the threshold 𝑠𝑡ℎ are designated as feature points, and the 

corresponding pixel positions are set as the coordinates 𝑥 of the 

feature points. 

 

3) Feature description decoder: This decoder consists of two 

basic convolutional layers, and the output tensor has dimensions 

𝐻𝐶 × 𝑊𝐶 × 256. By directly utilizing bilinear interpolation, the 

dimensions were changed to 𝐻 × 𝑊 × 256 . Finally, L2 

normalization was applied to the channels of each pixel point to 

obtain the normalized descriptors. Sampling-based on feature 

point locations yields features point descriptors 𝑑. 

 

3.1.2 Global Feature Description and Matching: It was 

necessary to retrieve frame sets with high similarity to each key 

frame from the original image set as the training set to train the 

key-frame recognizer. Similar frame retrieval based on simple 

feature points is insufficient, and each frame's features must be 

clustered into a single global descriptor vector. This study used 

the VLAD algorithm for global descriptor generation and similar-

frame retrieval. 

 

The VLAD algorithm assumes that each frame image has 𝑁 × 𝐷-

dimensional local feature points (where 𝑁  may be relatively 

large and the number of features in each image varies). It is 

necessary to obtain a 𝐾 × 𝐷-dimensional feature (where 𝐾 is a 

specified number, such as 128 dimensions) representing the 

global image from the 𝑁 × 𝐷-dimensional features. The main 

process is as follows. 

 

1) K-means clustering is performed on all 𝑁 × 𝐷-dimensional 

local features to obtain 𝐾 cluster centers, denoted as 𝐶𝑘. 
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2) The 𝑁 × 𝐷 -dimensional local features are encoded into a 

global feature 𝑽 with a feature vector dimension of 𝐾 × 𝐷, where 

𝑘 ∈ K and 𝑗 ∈ D. The formula used is as follows: 

 

𝑽(𝑗, 𝑘) = ∑ 𝑎𝑘
𝑁
𝑖=1 (𝑥𝑖)(𝑥𝑖(𝑗) − 𝑐𝑘(𝑗))                  (1) 

 

Where        𝑥𝑖 is the 𝑖-th local image feature 

                   𝑐𝑘  is the 𝑘-th cluster center 

                   𝑥𝑖 and 𝑐𝑘 are 𝐷-dimensional vectors 

                   𝑎𝑘(𝑥𝑖) is a binary function that equals 1 if and only 

if 𝑥𝑖 belongs to the cluster center 𝑐𝑘, and 0 otherwise 

 

Finally, the global features of the image after dimension 

reduction can be obtained, and all images similar to the key frame 

can be retrieved by setting a suitable Euclidean distance threshold. 

All retrieved frame sets will be utilized as a training dataset for 

the training of the key frame recognizer. 

 

3.1.3 Key Frame Recognition Model: The main system in 

this study was deployed on mobile devices, and the time required 

by the algorithm was high; therefore, MobileNet V3-Small was 

selected as the basic network structure. MobileNet V3, with 

network structure optimization, achieves higher accuracy than 

most large neural networks, with fewer parameters and lower 

computational cost (Shi et al., 2020). The latest version of 

MobileNet, V3-Small, has a computational speed of 22 ms, 

significantly faster than most large neural networks. MobileNet 

V3-Small has 12 unique Bneck layers, one standard convolution 

layer, and two pointwise convolution layers. It has the following 

characteristics (Howard et al., 2019). 

 

1) With the depth-wise separable convolution of MobileNetV1, 

the number of parameters and computations is lower than that of 

the standard convolution while maintaining a similar accuracy. 

 

2) With the linear bottleneck inverse residual structure of 

MobileNetV2, this structure can reduce the number of parameters 

and convolution calculations compared to the standard 

convolution, optimizing the network in both spatial and temporal 

dimensions. 

 

3) By adding lightweight attention models (squeeze-and-

excitation modules), the network can assign larger effective 

weights to the input features and smaller weights to ineffective or 

less effective features. 

 

4) Use the h-swish activation function. Using this activation 

function in experiments with Google AI improved the efficiency 

by approximately 15%. 

 

 
Figure 3. The unique bneck structure of MobileNet V3. 

 

3.1.4 Key Frame Recognition Transfer Learning: In this 

study, the pretrained model parameters were obtained by 

transferring the well-trained weights of MobileNet V3 to the 

ImageNet dataset. The pretrained model parameters were fine-

tuned by training specific layers and freezing other layers to 

obtain the desired keyframe recognizer. 

 

3.2 Environmental Feature Information Database 

Construction 

3.2.1 Multiple Self-Learning Reinforced Training for 

New-SuperPoint: Although the original SuperPoint recognition 

model has significantly improved efficiency compared with 

traditional algorithms, it still has poor detection results in indoor 

areas that have not been learned because of its deep learning 

approach. To solve this problem, this study will continue to use 

all the feature points obtained from the original SuperPoint 

recognition of indoor area images as the training set input to the 

model for parameter fine-tuning and obtaining a more targeted 

new SuperPoint. As SuperPoint is a self-learning model, the new 

SuperPoint used in this study is a multiple self-learning model. 

 

3.2.2 Environmental Feature Information Database 

Construction: Using New-SuperPoint to identify feature points 

in all key-frame images, we obtained the corresponding feature 

points and descriptive information. By combining the positions 

of the key-frame images and the pose information of the camera 

at the time of capturing each key-frame, we obtained the final 

environmental feature information database. 

 

3.3 Indoor Coordinate Calculation 

In the rough localization stage, a key-frame recognizer is used to 

determine the approximate position of each frame in the video 

stream and to obtain the corresponding key-frame images. In the 

fine localization stage, to calculate precise coordinates, it is 

necessary to recognize and describe the feature points for each 

frame in the video stream. After obtaining the feature points of 

each frame in the video stream, they were matched with the 

feature points in the environmental feature information database 

of the corresponding key frame, and the precise position was 

calculated accordingly. 

 

3.3.1 Feature Point Matching: In this study, the SuperGlue 

method was used for feature-point matching. Published in 2020, 

SuperGlue is a deep learning network framework designed for 

graph matching of large-scale feature points. It utilizes the 

attention mechanism of Transformer to adaptively enhance the 

global information of feature points, thereby improving both the 

number and accuracy of matches. The self-crossing mechanism 

unique to SuperGlue is superior to traditional feature-matching 

algorithms in terms of efficiency and accuracy. 
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3.3.2 Accurate Position Calculation: Stable point pairs were 

selected from the matched point pairs, and the homography 

matrix 𝐻  (Equation (2)) was calculated. The rotation and 

translation matrix are obtained through SVD decomposition, and 

the camera attitude angle 𝜃𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 is obtained. The stable feature 

point sets were randomly jumped, and the differences were 

calculated. The reverse weights are assigned based on the size of 

the differences, and the weighted average of the feature point 

position distance difference between the template image and the 

video stream image δ𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  is obtained. The known camera 

focal length 𝑓, camera attitude angle 𝜃𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒, template image 

position coordinates 𝑃0, and template image shooting distance 𝑧0  

are used to calculate the distance between the mobile phone and 

the current template image, and the precise position 𝑃 (Equation 

(3)) is obtained. 

 

 
Figure 4. Camera pose estimation based on homography matrix 

computation. 

 

𝑯 = 𝑲(𝑹 + 𝑻
1

𝑑
𝑵𝑇)𝑲−1                             (2) 

 

where        𝑲 represents the internal parameters of the camera 

𝑑 is the center distance 

 𝑵 is the normal vector of the camera plane 

 𝑹 is the external rotation matrix of the camera 

 𝑻 is the external translation vector of the camera. 

 

𝑷 = 𝑷𝟎 + [(δ𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑓 + 𝑧0 )𝑠𝑖𝑛𝜃𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒     (δ𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓 +
𝑧0 )𝑐𝑜𝑠𝜃𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒]𝑇                              (3) 

 

 

4. Experiment and Results 

4.1 Experimental Environment and Hardware Platform 

Experiments were conducted to validate the proposed indoor 

positioning technology and evaluate its feasibility and precision. 

Details of the hardware and software platforms used in the 

experiment, along with related parameters, are provided in Table 

1. 

 

Platform Model CPU GPU 

Training 

Platform 

Samsung 

Galaxy Z 

Flip5 

Qualcomm 

Snapdragon 

8 Gen 2 

Qualcomm 

Adreno 740 

Experimental 

Platform 

MacBook 

Pro 2020 

Intel Core i5 

1.4 GHz 

Intel Iris Plus 

Graphics 645 

Table 1. Parameters of the software and hardware used in the 

experiment. 

 

In this study, an Android phone was used as the positioning 

terminal, and all models were trained on the PC side and then 

migrated to the mobile side. Using TensorFlow, we obtained   the 

jar and pb files required for deployment to Android devices, and 

these files were placed in an Android project and configured with 

Gradle to deploy all models on the mobile Android side. 

 

Furthermore, this study did not conduct experiments using a wide 

variety of smartphone models, as the performance and image 

capture capabilities of most smartphones are similar. The test 

smartphone used in this study has average performance, making 

it representative of the majority of smartphones available on the 

market. 

 

4.2 Data Acquisition and Preprocessing 

1) Images were acquired throughout the experimental area and 

feature points were identified for each frame. 

 

2) Key frames with distinct and evenly distributed feature points 

were selected from the captured images, and the camera pose 

information was recorded when capturing the key frames. 

 

3) The key-frame recognizer and environmental feature 

information database were constructed according to the method 

introduced in Section 2. The training sets underwent a range of 

augmented transformations (grey scale, contrast, filtering, 

rotation, and affine transformation) to obtain more accurate 

models before training the model. 

 

 
Figure 5. Template image training set obtained through 

enhancement transformation. 

 

 

4.3 Experimental Result Analysis 

Real-time positioning experiments were conducted at the 

experimental site with 50 trials on the same route to reduce the 
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impact of accidental results. The average positioning trajectory 

of the experimental route is illustrated (Fig. 6). By comparison 

with the real trajectory; it can be observed that the positioning 

accuracy of the proposed method is relatively high, with more 

than 90% of the average error of the route controlled within 0.15 

m. The average error of the positioning experiment is 0.12 meters, 

achieving sub-meter level precision. Compared to conventional 

indoor navigation methods, such as WIFI-based approaches, the 

precision advantage is obvious. 

 

 
Figure 6. Comparison between ground truth and test track. 

 

 

5. Conclusion 

This study proposed an indoor positioning method based on 

multiple self-learning and key frame classification. This method 

utilizes a convolutional neural network-based key-frame 

recognizer and a feature point recognition model to achieve high-

precision and real-time positioning capabilities. Experimental 

results showed that the positioning error of the proposed method 

was generally within 0.15 m and can process at least 12 fps. 

Compared with traditional indoor positioning schemes, this 

method eliminates the need for advanced hardware installation. 

It achieves higher positioning accuracy with lower performance 

consumption, making it suitable for deployment on mobile 

phones. Therefore, indoor positioning based on images has more 

potential for exploration. 

 

In contrast to conventional vision-based indoor positioning, this 

study performs precise feature point matching after acquiring key 

frames. This approach results in more accurate positioning and is 

particularly well-suited for relatively similar indoor scenes. 

 

However, if the indoor areas are extremely similar, the accuracy 

of the algorithm may decrease to some extent. In the future, we 

will continue to conduct in-depth research and optimize the 

algorithm to enhance its generalizability. 
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