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Abstract

Since 2002, the Gravity Recovery And Climate Experiment (GRACE) and its Follow-On (GRACE-FO, hereafter GRACE) missions

have offered global observations of total water storage (TWS). However, the relatively short record of GRACE data poses a signi-

ficant challenge for researchers to investigate the full range and long-term variability in TWS. In this study, we present RecGAN, a

novel Conditional Generative Adversarial Network (CGAN) comprising a RecNet generator and pixel discriminator. Our approach

aims to generate long-term GRACE-like TWS observations by calibrating the WaterGAP Global Hydrology Model (WGHM). The

generator is trained to produce observations conforming to the distribution of GRACE data, while the discriminator is trained to

assess whether each generated pixel resembles GRACE data. Our results show that RecGAN effectively enhances the consistency

between GRACE observations and WGHM-derived TWS changes, achieving improved correlation coefficients, Nash-Sutcliffe Ef-

ficiency, and Normalized Root-Mean-Square Error. In addition, RecGAN is robust to different GRACE mascon data, crop sizes

used during the training period, and hydrological models targeted for calibration. This study illustrates a promising application of

employing CGANs to fine-tune the WGHM output to match GRACE observations. This approach enables the generation of long-

term TWS change datasets, which are invaluable for evaluating long-term water storage fluctuations, allocating water resources,

and forecasting future hydrological extremes.

1. Introduction

Since 2002, the Gravity Recovery And Climate Experiment

(GRACE) and its Follow-On (GRACE-FO, hereafter referred

to as GRACE unless explicitly stated otherwise) missions have

provided valuable observations for monitoring global as well

as regional total water storage (TWS) changes (Awange et al.,

2016). TWS changes reflect surface water, snow, ice, soil mois-

ture, and groundwater changes, influenced by both anthropo-

genic activities and climate variability (Rodell et al., 2018;

Rodell and Li, 2023; Rodell and Reager, 2023). GRACE-

derived TWS data have been extensively used to explore cli-

mate changes and variability (e.g., Awange et al., 2013), es-

timate hydrological flux, and detect trends of human-induced

groundwater depletion (Agutu et al., 2019; Tapley et al., 2019).

However, the limited GRACE data, spanning roughly 20 years,

has hampered its use in investigating the complete range and

long-term variability in TWS, impeding our ability to evaluate

long-term water storage changes needed to enhance water re-

source management practices.

Before the GRACE era, TWS retrievals relied on hydrological

models or in-situ water level measurements (Huang et al.,

2013). Nevertheless, these methods have inherent limitations.

For instance, hydrological models generally inadequately rep-

resent certain water components (e.g., groundwater) due to data

availability or uncertainty (Scanlon et al., 2016), while in-situ

observations lack the same spatial resolution as GRACE (Li et

al., 2021, 2020). Therefore, numerous studies have sought to re-

construct historical TWS data by learning its empirical relation-

ship with various explanatory variables (e.g., Humphrey and

Gudmundsson, 2019; Li et al., 2021; Wang et al., 2023; Yin et

al., 2023). Wang et al. (2023) proposed a deep learning model

called RecNet to reconstruct past centenary TWS changes over

the Yangtze River Basin, China. Using a set of machine learn-

ing models (e.g., random forest and neural networks), Yin et

al. (2023) prolonged GRACE-derived TWS changes to 1940.

Jing et al. (2020) reconstructed the Nile River Basin’s TWS data

from 1979 to 2013 using a bias-corrected approach. Specific-

ally, they applied two ensemble learning algorithms, namely

random forest and the extreme gradient boost, to align the out-

put of the land surface model with GRACE.

WaterGAP Global Hydroloy Model (WGHM) is a global hy-

drological model that quantifies human use of groundwa-

ter and surface water, as well as water flows and storage

(Müller Schmied et al., 2021). Since 1996, it has been

constantly improved and showed improved consistency with

GRACE-derived observations (Müller Schmied et al., 2021).

However, a relatively large discrepancy still exists because of

uncertain climatic forcings and unconsidered hydrological pro-

cesses in WGHM’s simulation (Scanlon et al., 2016).

In this study, we propose a conditional generative adversarial

network (CGAN) to calibrate WGHM-derived TWS changes

based on GRACE observations. GANs, initially developed by

Goodfellow et al. (2014), consist of two neural networks: the

Generator and Discriminator. The Generator’s objective is to

learn to generate a fake sample distribution to deceive the Dis-

criminator, while the Discriminator aims to learn to distinguish

between real and fake distribution generated by the Generator.

Since their inception, GANs have achieved impressive perform-

ance across various tasks, including image processing, video

generation and prediction, and spatiotemporal series forecasts

(Dash et al., 2024). GAN represents unsupervised learning,

where the model learns to generate data without explicit su-

pervision. In contrast, CGAN is supervised learning where the

model is conditioned on additional information, typically labels

or context, to generate more targeted outputs (Mirza and Osin-
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dero, 2014). Therefore, we design a novel CGAN architecture,

expecting that our Generator can generate long-term GRACE-

like TWS data by learning the relationship between GRACE-

derived TWS changes and those simulated by WGHM.

2. Datasets

2.1 GRACE and GRACE-FO Data

GRACE is a twin satellite mission jointly implemented by

US NASA and the German Aerospace Centre (Chen, 2020).

Since being launched in 2002, GRACE has enabled unpreced-

ented observations of Earth’s gravity field via tracking the inter-

satellite range and range rate. At a monthly scale, changes in

this field primarily reflect large-scale mass transport and re-

distribution within the atmosphere, hydrosphere, ocean, cryo-

sphere, and solid Earth (Rodell and Reager, 2023). GRACE

was decommissioned in November 2017, while GRACE-FO

was launched in 2018 to continue the scientific tasks of the

GRACE mission.

This study employs the gridded monthly global water stor-

age/height anomalies from the Jet Propulsion Laboratory (JPL)

Mascons with the Coastal Resolution Improvement (CRI) fil-

ter. Compared to conventional spherical-harmonic solutions,

this dataset has a higher signal-to-noise ratio due to a pri-

ori information derived from near-global geophysical models

(NASA/JPL, 2019). The GRACE data from April 2002 to June

2017 and GRACE-FO data from June 2018 to December 2019

are used here, both of which are presented as anomalies relative

to the 2004-2009 time-mean baseline. Except for the data gap

between GRACE and GRACE-FO, missing months are filled

using linear interpolation using the mean values determined in

the months before and after the missing month. We also test

the robustness of the choice of mascon datasets, including CSR

(Save et al., 2016) and GSFC mascon solutions (Loomis et al.,

2021).

2.2 WGHM Data

Based on the intricate water balance theory, WGHM is one

of the most widely utilized models for assessing both human-

induced and natural water storage variability. It simulates daily

water flows and ten water components, such as lakes, reservoirs,

and groundwater (Müller Schmied et al., 2021). Nevertheless,

due to errors in climate forcings and incomplete realism of pro-

cess representations, WGHM-derived TWS changes are con-

sidered less reliable than those derived from GRACE. For this

study, the simulated TWS data from WaterGAP 2.2d for 1901-

2019 are used here, with a spatial resolution of 0.5 degrees. We

also use the TWS data from the Global Land Data Assimilation

System (GLDAS) (Rodell et al., 2004) to check the robustness

of our main results.

2.3 Precipitation and Temperature Data

While precipitation and temperature have been considered the

inputs in WGHM’s simulation, we utilize them as the context

to help train our CGAN. Monthly precipitation and temperature

data from 1901 to 2019 are obtained from Climatic Research

Unit Time Series (CRU TS v. 4.07) high-resolution (0.5 de-

grees or finer) gridded datasets. This dataset is created by inter-

polating monthly climate anomalies from extensive networks of

weather station observations (Harris et al., 2020).

3. Methods

3.1 RecGAN

We introduce a deep generative model called RecGAN (Figure

1) to calibrate WGHM-derived TWS changes. The generator G

of RecGAN is RecNet developed by Wang et al. (2023), while

the discriminator D is a pixel discriminator proposed by Isola

et al. (2017). The goal of G is to learn a mapping from observed

data x (WGHM data) and context vector z (precipitation and

temperature) to the target y (GRACE data), G : {x, z} → y.

The generator G is trained to produce outputs (TWS data) that

cannot be distinguished from “real” images (GRACE data) by

an adversarially trained discriminator, D, which is trained to

recognize whether the data is from G or from GRACE. The

objective of RecGAN can be expressed as

LRecGAN =Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z)))],
(1)

where G tries to minimize this objective function, while D tries

to maximize it. RecNet has demonstrated its reconstructive

capability in the Yangtze River Basin by Wang et al. (2023),

whereas the pixel-discriminator is used to determine whether

each pixel generated by G is ‘similar’ to GRACE.

WGHM

Context

Generator

GRACE/
WGHM

DiscriminatorRandom
Crop Real/fake

a

b c

3×3 SConv + LRelu+ LN 3×3 SConvG + LRelu+ LN

Downsample SconvT ConcatenationNormalization 1×1 SConv

Inputs OutputDropout

RecGAN

RecNet Generator Pixel Discriminator

Figure 1. (a) The architecture of RecGAN consists of (b)

RecNet generator and (c) pixel discriminator. The arrows

indicate the different operations performed. SConv for spectral

normalization convolution; SConvG, spectral normalization

grouped convolution; LN, layer normalization; SConvT, spectral

normalization transposed convolution.

3.2 Training Details

Considering the water accumulation time-lag effect, the precip-

itation and temperature data from the current month and the

previous 11 months are used as the context variables, and the

WGHM data from the current month is used as the observed

variable. Both the input and target data are resampled into 1-

degree grid, and during the training and validation periods, a

random crop size of 64x64 is employed. These choices allow

RecGAN to fit within memory. Furthermore, the Greenland and
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Antarctic regions are excluded due to the relatively high uncer-

tainty associated with ice sheets and glaciers.

Training GANs is widely acknowledged as challenging due to

their adversarial nature (Ravuri et al., 2021). Following the

study of Zhang et al. (2019), we use spectral normalization in

the generator and discriminator. In addition, the two-timescale

update rule is applied specifically to address slow learning in

regularized discriminators. We adopt the Wasserstein distance

with gradient penalty as the loss function (Liu et al., 2019). In-

stead of batch normalization use in RecNet (Wang et al., 2023),

layer normalization is used in RecGAN.

3.3 Evaluation Metrics

Since our primary objective is generating the historical TWS

changes by adjusting WGHM TWS data, we attempt to test

RecGAN’s reconstructive capability. The latter part of GRACE

data from November 2004 to December 2019 is used as the

training (70%) and validation sets (15%), whereas the earlier

part (15%) from April 2002 to October 2004 is left as the test-

ing set. The performance of RecGAN is evaluated using the

correlation coefficient (CC), normalized root-mean-square error

(NRMSE), and Nash-Sutcliffe efficiency (NSE). CC measures

how future outcomes are likely to be predicted by the model.

NSE is used to quantify the predictive skill of the model rel-

ative to the mean of observations, with a negative NSE value

indicating the mean observed value is a better predictor than

the forecasting model, while NRMSE describes the global fit-

ness of the predictive model (Wang et al., 2024). These metrics

are calculated as follows:

CC =

∑n

t=1
(ot − ō)(pt − p̄)

√
∑n

t=1
(ot − ō)2(pt − p̄)2

;

NSE = 1−

∑n

t=1
(ot − pt)

2

∑n

t=1
(pt − p̄)2

;

NRMSE =

√

∑n

t=1
(ot − pt)2

n
,

(2)

where o and p are the observed and predicted values, respect-

ively; the overbar denotes mean values; n is the number of tar-

get data for testing.

4. Results

4.1 Comparing RecGAN with WGHM

To validate whether the reconstruction generated by RecGAN

exhibits improved consistency with GRACE observations when

compared to WGHM, we compute the CC and NSE values

between GRACE observations and RecGAN’s reconstruction

or WGHM during the testing period (i.e., from April 2002 to

October 2004). This method treats the GRACE data as the

ground truth.

As shown in Figure 2a, the original output of WGHM data dis-

plays satisfactory CC values with GRACE observations, while

relatively low CC values are generally observed in arid regions

(e.g., Africa and Australia). This is likely attributed to limited

precipitation, leading to weak TWS changes signal. However,

after calibrating WGHM-derived data, RecGAN’s reconstruc-

tion reveals improved CC values compared to WGHM (Figure

2d). This is also evident in Figure 2j, which shows the cumu-

lative distributions of the CC values obtained by RecGAN out-

performs WGHM.

In regard to the NSE values, the reconstruction from RecGAN

also enhances the consistency between WGHM and GRACE

observations, especially evident in the western hemisphere

(Figures 2b and 2e). Notably, RecGAN achieves positive NSE

values across most Canadian regions, where negative NSE

values are observed in the comparison between WGHM and

GRACE observations. The cumulative distributions of the NSE

values further indicate RecGAN’s superior performance (Fig-

ure 2k).

As for the NRMSE values, significant discrepancies between

WGHM and GRACE-derived TWS changes are observed in the

northern Africa and northwestern China (Figure 2c). Neverthe-

less, RecGAN effectively reduces these discrepancies (Figure

2f). This improvement is further highlighted by the cumulative

distribution of the NRMSE values (Figure 2l), indicating lower

NRMSE in RecGAN compared to WGHM.

We also compare RecGAN’s performance with RecNet, a deep

learning model developed by Wang et al. (2023). Figures 2g-

i indicate generally consistent performance between RecGAN

and RecNet. Specifically, RecGAN and RecNet demonstrate

similar CC values with GRACE observations (Figure 2j). How-

ever, RecGAN yields relatively low NRMSE and high NSE val-

ues compared to RecNet (Figures 2k-l). This is probably attrib-

uted to the adversarial structure of RecGAN, given the identical

RecNet structure and parameters applied in these two methods.

a
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b
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NRMSE

d
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NRMSE
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Figure 2. Evaluation of the reconstruction during the testing

period 2002-2004. Correlation coefficients (CC), Nash-Sutcliffe

Efficiencies (NSE), and Normalized root-mean-square error

(NRMSE) of WGHM (a-c), RecGAN’s reconstruction (d-f), and

RecNet’s reconstruction when compared to GRACE

observations. (j-l) Empirical cumulative distribution of these

performance metrics.

4.2 TWS Change Series over Example Basins

To illustrate the potential improvement brought by RecGAN on

the initial WGHM output, we select four river basins: Macken-

zie, Gobi Interior, Nelson, and Nile, as representative examples.

It is evident that RecGAN can improve the consistency between

GRACE observations and WGHM (Figure 3). Specifically, the
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CC values are increased by 13.8%, 162.5%, 15.1%, and 10.3%

in the Mackenzie, Gobi Interior, Nelson, and Nile basins, re-

spectively. Similar increases in the NSE values are also ob-

served. For example, the NSE value between GRACE obser-

vations and WGHM increases from 0.17 to 0.46 in the Nelson

River basin (Figure 3c) while increasing from 0.36 to 0.54 in the

Nile River basin (Figure 3d). In addition, the NRMSE values in

these basins decrease to varying extents.
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Figure 3. Time series of TWS changes derived from GRACE,

WGHM, and RecGAN over the Mackenzie, Gobi Interior,

Nelson, and Nile basins. The metrics in red and blue denote the

performance of WGHM and RecGAN, respectively.

4.3 Robustness Check

Our main results are derived using the CRU precipitation and

temperature data as the inputs and the JPL mascons data as the

target. In this section, we test the robustness of RecGAN’s per-

formance to different mascon solutions, hydrological models,

and crop sizes.

As shown in the first and second rows of Figure 4, RecGANs

trained with crop sizes of 32x32 and 96x96 display generally

consistent results, indicating RecGAN’s robustness to crop size

variations. We also train RecGAN using mascon data from CSR

and GSFC. The results, depicted in the third and fourth rows of

Figure 4, reveal RecGAN’s robustness to distinct mascon solu-

tions.

Finally, RecGAN is trained to calibrate GLDAS-derived TWS

changes instead of those from WGHM. Similar performance is

observed (the last row of Figure 4) compared to models trained

using WGHM-derived TWS changes (Figure 2), suggesting that

RecGAN has the potential to improve alternative hydrological

models.

5. Discussions

GANs facilitate a wide variety of applications, including image

generation and manipulation (Dash et al., 2024). They em-

body adversarial learning for image-to-image translation, with

the goal of translating an input image from one domain (e.g.,

WGHM) to another domain (e.g., GRACE), given input-output

image pairs as training data (Wang et al., 2018). This concept

aligns seamlessly with our primary objective: transforming

WGHM-derived TWS changes into GRACE-like observations.

Therefore, we design RecGAN to fulfill this task. Our results

have demonstrated RecGAN’s ability to generate GRACE-like

observations based on WGHM outputs. Nevertheless, several

key issues need to be highlighted.

32x32 32x32 32x32

96x96 96x96 96x96

CSR CSR CSR

GSFC GSFC GSFC

GLDAS GLDAS GLDAS
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0.0 0.4 0.8 1.2 1.6 2.0
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Figure 4. Robustness of main results. The CC, NSE, and

NRMSE values during the testing period between GRACE

observations and RecGAN trained using crop sizes of 32x32,

96x96, CSR mascon data, GSFC mascon data, and GLDAS data.

First, it’s crucial to acknowledge that RecGAN’s performance

is undoubtedly influenced by the size of the dataset used for

training. As of the time of writing, there are about 200 monthly

GRACE observations available. It is anticipated that better

RecGAN performance can be achieved with an increase in the

quantity of GRACE observations. To mitigate this issue, data

augmentation techniques can be applied. For example, Wang

et al. (2024) proposed a noise-augmented technique to augment

training datasets, leading to improved deep learning perform-

ance. Furthermore, GANs have proven to be effective tools

for generating synthetic ”training data” (Sandfort et al., 2019).

These techniques will be explored in our future works.

While RecGAN shows potential for improving consistency

between WGHM and GRACE observations, it exhibits relat-

ively poor performance in arid regions, such as the interior

of Africa and Australia (Figure 2). This is likely due to

weak TWS signals resulting from limited precipitation and high

evapotranspiration. Moreover, TWS changes in arid regions

(e.g., Gobi Interior) may have many small and unstable trends

caused by irregular precipitation, leading to high uncertainties

in these areas (Figure 3b). It is important to note that these

findings assume that GRACE observations serve as the ground

truth. Large lakes (e.g., Lake Victoria in Africa), reservoirs, and

glaciers may also impact the calibration, but comprehensively

studying their influence requires additional effort and explora-

tion.

We chose to calibrate WGHM outputs because this model incor-

porates simulations of human-induced water use and groundwa-

ter dynamics. Additionally, WGHM generally exhibits a high

correlation with GRACE observations. We utilize a linear least
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squares method to decompose TWS changes into trend, annual,

and semi-annual components. We observe moderate discrep-

ancies in the trends between WGHM and GRACE (Figure 5),

indicating challenges in simulating this component, which is

likely attributed to human activities, such as groundwater ab-

straction and dam construction (Rodell et al., 2018). Human-

induced TWS changes have often been under-reconstructed

or unreconstructed in previous studies due to the absence of

long-term observations specifically reflecting human activities

(Wang et al., 2023). Potential improvements in RecGAN per-

formance can be anticipated if appropriate human factors or

their proxies are incorporated as context variables.

Finally, this work demonstrates a potential application of using

RecGAN to generate GRACE-like observations, indicating the

efficacy of deep generative models in addressing remote sens-

ing challenges. While acknowledging the limitations inherent

in this study, we anticipate exploring avenues for enhancing

RecGAN’s performance in our future research endeavors.

Figure 5. Trend, annual amplitude, and semiannual amplitude

derived from CSR Mascons, JPL Mascons, GSFC Mascons, and

WGHM.

6. Conclusion

In this study, we proposed a deep generative model called

RecGAN, which consists of a RecNet generator and pixel dis-

criminator, to generate GRACE-like TWS observations by cal-

ibrating those derived from WGHM. Compared to the ini-

tial WGHM output, RecGAN effectively improves consistency

with GRACE observations, achieving higher CC and NSE val-

ues, along with lower NRMSE values. Our main results are ro-

bust to different mascon solutions, crop sizes, and hydrological

models.

Deep generative models, such as GANs, have undergone rapid

evolution in recent years. Their intrinsic adversarial generation

capabilities have enabled the resolution of numerous problems

previously deemed unsolvable, much like the study presented

here. We anticipate further refining and leveraging this method-

ology to address a broader array of environmental-related sci-

entific challenges.
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