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Abstract 
 
Painted artefacts, such as murals and paintings, are the treasures of human civilization. Pigment is an important component of their 
surfaces. It is crucial to study the composition and proportion of pigments on the surface of painted artefacts for the field of heritage 
conservation. In this study, hyperspectral remote sensing was used to invert the abundance of mixed pigments by spectral unmixing. 
Spectral variability effects are often present in hyperspectral images. Hyperspectral images of cultural artefacts also suffer from spectral 
variability due to factors such as particle size and impurities within the pigment, and acquisition conditions. Therefore, spectral 
variability was incorporated into the Linear Mixed Model of the pigment spectral unmixing. The unmixing methods are classified into 
two categories based on whether or not spectral libraries are used. In the experiment, computer synthesized data and laboratory-made 
sample blocks of mixed pigments, which mixed with different ratios of Azurite and Malachite, were selected as validation data. Five 
commonly used algorithms for solving the spectral variability problem, namely MESMA, Fractional Sparse SU, ELMM, RUSAL, and 
BCM, are used for pigment unmixing and compared with FCLS, which does not consider spectral variability. The results show that 
ELMM has the highest unmixing accuracy of aRMSE and xRMSE compared to other methods. At the same time, it can be seen from 
the metric of SAM that ELMM is able to extract reliable endmember variability spectral, which is more suitable for solving the problem 
of spectral variability in pigment unmixing. Finally, we apply ELMM to real artefacts Yungang Grottoes mural paintings, and obtain 
a lower xRMSE than FCLS, which improves the unmixing accuracy. 
 
 

1. Introduction 

Painted cultural artefacts such as murals and paintings are 
precious material cultural heritage with great artistic value and 
historical significance. In recent years, compositional analysis of 
surface pigments of painted cultural artefacts has become a 
research hotspot. As artefacts are not renewable, the use of non-
invasive techniques has become an essential means of analysis. 
The typical techniques include X-ray fluorescence (XRF) and 
Raman spectroscopy, which can analyse pigments from a 
molecular and elemental point of view. For example, red 
pigments in historical plastics were identified through an in situ 
analysis method based on Raman microscopy (Angelin et al., 
2021). Raman spectroscopy, XRF, and hyperspectral imaging 
were used to identify and map the watercolour pigments used by 
the eighteenth-century botanical illustrator Ferdinand Bauer 
(Mulholland et al., 2017). Hyperspectral technology, with its 
advantages of map integration and non-contact detection, is an 
important tool for pigment analysis. Its application in the pigment 
analysis of painted artefacts can obtain the spectral reflectance of 
pigments. And it is able to explore the pigment distribution of 
large area artefacts. An important direction of hyperspectral 
techniques for pigment analysis is the spectral unmixing of 
pigments, which refers to obtaining the composition and 
proportions of the pigments. In a hyperspectral image of a 
pigment, a pixel can be described as a spectrum in a mixture of 
several pure pigments. Pure pigment spectral can be considered 
as endmember (EM) and their abundance indicates the proportion 
of pure pigments. Many pigment unmixing methods rely on 
spectral unmixing techniques. These are similar to the algorithms 
for the unmixing of land features. The difference, however, is that 
the pigments on the surface of the painted artefacts are mixed in 

certain proportions. Its mixing is small-scale and dense, and there 
may be no pure pigments for hyperspectral images. 
 
The modelling of unmixing has been studied by many scholars. 
Currently, the commonly used model is the linear mixed model 
(LMM), which has a simpler and clearer physical meaning. The 
surface pigments of the painting "The Scream" (1893) were 
mapped using Fully Constrained Least Squares (FCLS) to 
identify different proportions of pigments in the mixture, 
employing known endmembers (Deborah et al., 2014). The 
pigment unmixing of an ancient Egyptian painting was conducted 
using sparse unmixing by variable splitting and augmented 
Lagrangian (SUnSAL) (Rohani et al., 2016). Nonlinear mixing 
models (NLMM) have also been proposed for the research of 
small-scale compact mixing. The proportions of each pigment in 
the mineral pigment mixture were calculated using FCLS and 
three NLMM unmixing methods (Lyu et al., 2021). 
 
In recent years, spectral variability has been widely proposed in 
spectral unmixing algorithms. The spectral characteristics of a 
material can vary in hyperspectral data due to a variety of reasons 
such as environmental, atmospheric and temporal factors, while 
the material may also have inherent spectral variability (Zare and 
Ho, 2013). Spectral variability is mainly due to atmospheric 
effects, illumination and topographical variations, and intrinsic 
variations in the spectral characteristics of materials (due to 
physicochemical differences) (Borsoi et al., 2021). Meanwhile, 
the authors in this article summarized various unmixing 
algorithms for solving spectral variability. Similarly, spectral 
variability exists in the unmixing of pigments on the surface of 
painted artefacts using hyperspectral techniques. As the 
hyperspectral images of the artefacts are usually collected indoor, 
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a large part of the spectral variability comes from the artefacts 
themselves, including the particle size within the pigment, the 
influence of impurities, dust on the surface, textural factors, and 
the influence of the collodion and the pigment carrier side of the 
equation. Another reason is due to the acquisition conditions, the 
influence of the light source and so on. Therefore, in order to 
improve the accuracy of pigment unmixing, it is crucial to 
address the issue of spectral variability. One of the main ways to 
address spectral variability is to consider acquiring a large library 
of spectral, which should theoretically contain all the potentially 
variable spectral for each material. Currently the main methods 
to solve the unmixing of spectral variability using spectral library 
are Multiple Endmember Spectral Mixing Analysis (MESMA) 
(Roberts et al., 1998) and sparse unmixing (Bioucas-Dias and 
Figueiredo, 2010). Most of these methods require preprocessing 
of the spectral library (Xu et al., 2016) or extracting the spectral 
library from the image for the purpose of improving the 
experimental accuracy and efficiency. However, the unmixing 
results of these methods mostly depend on the quality of the 
spectral library. In addition, it is difficult to obtain a large spectral 
library in real scenarios. Therefore, solving spectral variability 
without a priori knowledge of spectral library has also been of 
wide interest. Four spectral variability unmixing methods that do 
not depend on a spectral library include local unmixing methods 
(Goenaga et al., 2012), parametric EM models (Drumetz et al., 
2016), endmember-model-free unmixing (Hong et al., 2018), and 
Bayesian methods (Gao et al., 2016) (Borsoi et al., 2021). 
 
In this study, we will use two types of methods for pigment 
unmixing in response to the absence of pure endmembers for 
spectral mixing of pigments on the surface of artefacts. The first 
type is based on spectral libraries, including MESMA and 
Fractional Sparse SU. The second type is the representative 
method that does not use spectral libraries, named extended 
LMM(ELMM), robust unmixing by variable splitting and 
augmented Lagrangian (RUSAL), as well as beta compositional 
model (BCM). In addition, we compare these methods with 
FCLS. Computer synthesized data and laboratory-made sample 
blocks of mixed pigments were selected to validate the 
applicability of these methods to the unmixing of pigment 
spectral variability. 
 

2. Methodology 

First, we assumed that the spectral are mixed in a way that 
conforms to the LMM, and that each image endmember must 
satisfy the abundance non-negativity constraint (ANC) and the 
abundance sum to 1 constraint (ASC). The LMM model is 
expressed as follows: 
 
 𝒙𝒙𝑛𝑛 = ∑ 𝑎𝑎𝑛𝑛𝑛𝑛𝒎𝒎𝑝𝑝

𝑃𝑃
𝑝𝑝=1 + 𝜺𝜺𝑛𝑛 (1) 

 
 𝑎𝑎𝑛𝑛𝑛𝑛 ≥ 0,∑ 𝑎𝑎𝑛𝑛𝑛𝑛 = 1𝑃𝑃

𝑝𝑝=1  (2) 
 
where xn is the hyperspectral reflectance matrix of the nth pixel 
in the image, P is the number of endmembers, mp is the matrix of 
the pth endmember, anp represents the abundance of the pth 
endmember in the nth pixel, and εn represents the noise. 
 
2.1 Unmixing using Spectral Libraries 

2.1.1 MESMA: The basic idea of the MESMA algorithm is 
to iteratively search for all possible combinations of endmembers 
in the spectral library to minimize the reconstruction error of each 
image endmember in the LMM model. The algorithm formula is 
expressed as: 
 

 argmin
𝒂𝒂𝑛𝑛 ,𝒎𝒎𝑛𝑛

‖𝒙𝒙𝑛𝑛 −𝒎𝒎𝑛𝑛𝒂𝒂𝑛𝑛‖2 (3) 

 
 𝒎𝒎𝑛𝑛 ∈ 𝜧𝜧,𝒂𝒂𝑛𝑛 ≥ 0, 1T𝒂𝒂𝑛𝑛 = 1 (4) 
 
where mn represents the combination of endmembers for the 
iterative search, M is the ensemble of all possible endmember 
matrices, xn is the reflectance matrix of the nth pixel of the 
hyperspectral image, and an is the abundance matrix of the nth 
pixel. The MESMA algorithm obtains the optimal solution when 
the reconstruction error (RE) is minimum. 
 
2.1.2 Sparse Unmixing (SU): Another approach to 
unmixing with spectral variability using spectral libraries is 
sparse unmixing. Its basic idea is to select a small number of 
spectra as endmembers in the spectral library to minimize the RE 
of the image. The formula for sparse unmixing is expressed as: 
 
 argmin

𝒂𝒂𝑛𝑛≥0
‖𝒙𝒙𝑛𝑛 −𝒎𝒎𝐿𝐿𝐿𝐿𝐿𝐿𝒂𝒂𝑛𝑛‖2 (5) 

 
 ‖𝒂𝒂𝑛𝑛‖0 ≤ 𝑃𝑃, 1T𝒂𝒂𝑛𝑛 = 1 (6) 
 
where MLib is the input spectral library, xn is the reflectance 
matrix of the nth pixel of the hyperspectral image, an is the 
abundance matrix of the nth pixel, and P is the number of input 
endmembers. ||||0 is the L0 paradigm, which calculates the 
number of non-zero endmembers in the vector. 
 
When dealing with spectral variability in sparse unmixing, the 
inclusion of multiple spectral for each material (constituting 
endmember bundles) is considered, as well as the use of a sparse 
L2,1 paradigm in the abundance estimation optimization problem 
(Drumetz et al., 2019). This method is known as fractional sparse 
unmixing (Fractional Sparse SU) and is used in this paper as a 
method to address the spectral variability of pigments. 
 
However, when the input spectral library is very large, the 
algorithms for MESMA and sparse unmixing may have very high 
computational cost and the problem of multiple solutions. In 
response to the above problems, most of the methods for 
extracting spectral libraries in hyperspectral images are used in 
feature unmixing. In contrast, pure pigments may not be present 
on the surface of the artefacts, extracting spectral libraries from 
the images is not applicable. In order to solve this problem, we 
created a small spectral library according to the colour system of 
the pigments, to which we added a variety of typical pigments 
and included the spectral of each pigment with different painting 
layers and different particle sizes. 
 
2.2 Unmixing without the use of Spectral Libraries 

2.2.1 ELMM: The ELMM model serves as an extension of 
the LMM to account for variability effects caused primarily by 
changes in light. The model is shown below: 
 
 𝒙𝒙𝑛𝑛 = 𝑴𝑴𝜑𝜑𝑛𝑛𝒂𝒂𝑛𝑛 + 𝜺𝜺𝑛𝑛 (7) 
 
where φn is the multiplicative diagonal matrix, M is the 
endmember matrix, an is the abundance matrix, and εn is the noise 
matrix. The endmember spectral of each pixel are extended using 
φn in ELMM to account for complex spectral variability. 
 
The solution criterion of ELMM can be expressed by the 
following equation: 
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𝐽𝐽 �𝑨𝑨,𝑴𝑴
 

,𝜳𝜳� = 1
2
∑ (‖𝒙𝒙𝑛𝑛 −𝒎𝒎𝑛𝑛𝒂𝒂𝑛𝑛‖22 +𝑁𝑁
𝑛𝑛=1

                                      𝜆𝜆𝑚𝑚‖𝒎𝒎𝑛𝑛 −𝒎𝒎0𝜑𝜑𝑛𝑛‖𝐹𝐹2) + 𝑅𝑅(𝑨𝑨) + 𝑅𝑅(𝜳𝜳) (8) 
 
All variables in Eq (8). are non-negative. where A is the 
abundance matrix, M is the set of endmember matrices, and Ψ is 
the set of scale matrices φn, i.e., M = {mn} and Ψ = {φn}. ||||2 is 
the L2 paradigm and ||||F is the F paradigm. λm is a parameter that 
controls the strength of the ELMM execution. R (A) and R (Ψ) 
are regularization terms for the abundance and scale factors, 
which serve to incorporate constraints on the variables and 
enhance spatial smoothing. It should be noted that ELMM is very 
sensitive to model initialization and parameter settings, so 
finding the right model initialization and parameters is crucial. 
 
2.2.2 RUSAL: The RUSAL algorithm (Halimi et al., 2016) 
is a typical approach for the Endmember-model-free unmixing to 
address the effects of outliers and spectral variability in 
hyperspectral images. The method introduces an additional 
residual term in the LMM to account for spectral variability and 
other unmodelled effects, which can be expressed as: 
 
 𝒙𝒙𝑛𝑛 = 𝑴𝑴𝒂𝒂𝑛𝑛 + 𝜙𝜙𝑛𝑛𝑀𝑀𝑀𝑀(𝒃𝒃𝑛𝑛) + 𝜀𝜀𝑛𝑛 (9) 
 
where M is the endmember matrix, an is the abundance matrix 
and εn is the noise matrix. The additional term 𝜙𝜙nME is expressed 
as the product of two matrices: 
 
 𝜙𝜙𝑛𝑛𝑀𝑀𝑀𝑀(𝒃𝒃𝑛𝑛) = 𝑭𝑭T𝒃𝒃𝑛𝑛 (10) 
 
where 𝜙𝜙nME is a smooth spectral function, F denotes the Discrete 
Cosine Transform (DCT) matrix, which controls the sparsity of 
the space, and bn is the vector coefficient of the DCT. 
 
2.2.3 BCM: BCM (Du et al., 2014) is a type of Bayesian 
model. The spectral mixing in BCM is LMM and the 
endmembers are represented by beta distribution. The model 
assumes a univariate beta distribution for each endmember in 
each band: 
 
 𝑒𝑒𝑝𝑝𝑝𝑝~𝐵𝐵(⋅ �𝛼𝛼𝑝𝑝𝑝𝑝 ,𝛽𝛽𝑝𝑝𝑝𝑝) (11) 
 
where B () denotes the beta distribution, which is mathematically 
expressed as: 
 
 𝐵𝐵�𝑒𝑒�𝛼𝛼，𝛽𝛽� = Γ(𝛼𝛼)Γ(𝛽𝛽)Γ（𝛼𝛼 + 𝛽𝛽）

−1
𝑒𝑒𝛼𝛼−1(1− 𝑒𝑒)𝛽𝛽−1(12) 

 
where epl denotes the reflectivity value of the pth endmember in 
the lth band. αpl and βpl denote the parameters of the beta 
distribution, both of which have non-negative values. Thus, each 
pixel is considered to be a random variable whose distribution is 
a convex combination of the endmember of the beta distribution: 
 
 𝑥𝑥𝑛𝑛𝑛𝑛~𝚾𝚾(⋅ |𝐴𝐴𝑛𝑛,𝛼𝛼𝑙𝑙 ,𝛽𝛽𝑙𝑙) (13) 
 

Where  
 
 𝚾𝚾(⋅ |𝐴𝐴𝑛𝑛,𝛼𝛼𝑙𝑙 ,𝛽𝛽𝑙𝑙) = ∑ 𝑎𝑎𝑛𝑛𝑛𝑛𝐵𝐵(𝑒𝑒𝑝𝑝𝑝𝑝�𝛼𝛼𝑝𝑝𝑝𝑝 ,𝛽𝛽𝑝𝑝𝑝𝑝)𝑃𝑃

𝑝𝑝=1 + 𝜀𝜀𝑛𝑛𝑛𝑛 (14) 
 
where xnl denotes the reflectivity value of the lth band in the nth 
pixel in the image. P is the total number of endmembers, anp is 
the abundance value of the pth endmember in the nth pixel, and 
εnl is the noise. 
 
2.3 Accuracy Evaluation 

In order to evaluate the performance of these algorithms for 
pigment unmixing, we used the overall root mean square error 
(aRMSE) of abundance and the root mean square error (xRMSE) 
of reconstruction of the image to evaluate the algorithms: 
 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝑁𝑁
∑ �1

𝑃𝑃
∑ (𝑎𝑎𝑛𝑛𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑎𝑎�𝑛𝑛𝑛𝑛)2𝑃𝑃
𝑝𝑝=1

𝑁𝑁
𝑛𝑛=1  (15) 

 

 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 = 1
𝑁𝑁
∑ �1

𝐿𝐿
∑ (𝑥𝑥𝑛𝑛𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑥𝑥�𝑛𝑛𝑛𝑛)2𝐿𝐿
𝑙𝑙=1

𝑁𝑁
𝑛𝑛=1  (16) 

 
In addition, we will evaluate the endmembers obtained by the 
three methods MESMA, Fractional Sparse SU, and ELMM using 
Spectral Angle Mapping (SAM): 
 

 𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀 = 1
𝐿𝐿𝐿𝐿𝐿𝐿

∑ ∑ arccos( 𝐦𝐦𝑛𝑛𝑛𝑛
𝑇𝑇 𝐦𝐦�𝑛𝑛𝑛𝑛

�𝐦𝐦𝑛𝑛𝑛𝑛��𝐦𝐦�𝑛𝑛𝑛𝑛�
)𝑃𝑃

𝑝𝑝=1
𝑁𝑁
𝑛𝑛=1  (17) 

 
3. Result and Analysis 

3.1 Simulated Data 

In order to compare and verify the applicability of the above 
methods, we selected two kinds of simulated data. The first one 
is computer synthesized data. Abundance data of size 50 × 50 
were randomly generated in a Gaussian random field with spatial 
correlation added. The true abundance of the three endmember of 
the synthesised hyperspectral image is shown in Fig. 1. The 
endmembers were selected from three spectral data sets collected 
in the laboratory, namely Cinnabar, Malachite and Azurite, with 
a wavelength range of 350 nm to 2500 nm. In order to simulate 
the spectral variability in a real scene, we added perturbations to 
the endmembers spectral using the Hapke model (Hapke, 1981), 
as shown in Fig. 2. Moreover, in order to simulate the mixing of 
pigments, the abundance value of each pixel was set to less than 
1 in the synthesized data (no pure image endmembers). Finally, 
Gaussian noise (SNR = 30) was added to the synthesized data.  
 
The second type of simulated data is a laboratory-made sample 
block of mixed pigments of Azurite and Malachite, blending in 
different ratios (2:8, 3:7, 6:4, 5:5). Spectral images were acquired 
using a hyperspectral imager (THEMIS-VNIR/400H from 
Themis Vision System, USA) with a wavelength range of 400 nm 
to 1000 nm. The sample blocks of mixed pigments are shown in 
Table 1. 

 

 
Figure 1. True abundance values of Cinnabar, Malachite and Azurite 
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Figure 2. Spectral variability of endmember generated by the Hapke model

Azurite: Malachite 2:8 3:7 4:6 5:5 

Sample blocks of 
mixed pigments 

    
Table 1. Sample blocks of pigments with different mixing ratios of Azurite and Malachite 

 
3.2 Unmixing Results 

The above two data were unmixed using six methods, FCLS, 
MESMA, Fractional Sparse SU, ELMM, RUSAL and BCM, 
with the results from the FCLS algorithm used as a preliminary 
abundance for the other results. The computer hardware 
environment for all experiments in this paper is Intel(R) Xeon(R) 
Sliver 4110 CPU @ 2.10Hz, 32GB RAM, Windows system, and 
Matlab 2023 (a) platform. 
 
For the computer synthesized hyperspectral data, the unmixed 
abundance map is shown in Fig. 3.  And Fig. 4 shows the variant 
endmember spectral obtained from the three results of MESMA, 
Fractional Sparse SU and ELMM (endmember variant spectral 
could not be obtained from RUSAL and BCM). The accuracy 
ratings of the six methods are given in Table 2. 
 

 
Figure 3. Pigment abundance maps from different methods 

 
The evaluation results for the computer synthesized data show 
that all methods except the BCM method have a higher unmixing 
accuracy than the FCLS, which does not solve the spectral 
variability. The ELMM model has the best unmixing results for 
the mixed data in all three-evaluation metrics. The BCM 
algorithm is less effective and the reason for this may be due to 
the fact that it is not applicable to the data that does not have pure 
pixels. 
 
Based on the results of the experiments of computer synthesized 
data (BCM is less suitable for pigment unmixing and has a high 
computational cost), the BCM method is not used on the second 
simulated data, which are samples of mixed pigments. Since the 
real samples of mixed pigments cannot represent the real spectral 
variability, only the aRMSE and xRMSE are used in the accuracy 
evaluation. The accuracy of pigment unmixing is shown in Table 
3 and Table 4. 
 

 aRMSE xRMSE SAMM time (s) 
FCLS 0.0418 0.0182 NaN 0.4 

MESMA 0.0364 0.0162 0.1155 16.68 
Fractional 0.0266 0.0158 0.065 17.26 

ELMM 0.0153 0.0144 0.0328 22.8 
RUSAL 0.022 0.0147 NaN 4.26 

BCM 0.1112 0.0441 NaN 1105.54 
Table 2. Evaluation of the accuracy of the unmixing results of 

the computer synthesized data 
 

 Azurite: Malachite Average 
aRMSE  2:8 3:5 4:6 5:5 

FCLS 0.0659 0.0484 0.0321 0.0491 0.0489 
MESMA 0.1216 0.0932 0.0404 0.1392 0.0986 
Fractional 0.1218 0.0673 0.0703 0.1652 0.1062 

ELMM 0.0593 0.0388 0.0210 0.0399 0.0397 
RUSAL 0.0413 0.0837 0.0645 0.0483 0.0594 

Table 3. aRMSE for the samples of mixed pigments unmixing 
results 
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 Azurite: Malachite Average 

xRMSE  2:8 3:5 4:6 5:5 
FCLS 0.1038 0.098 0.0885 0.0849 0.0938 

MESMA 0.0174 0.0183 0.0168 0.0159 0.0171 

Fractional 0.0167 0.0164 0.0148 0.0137 0.0154 

ELMM 0.0007 0.0007 0.0007 0.0007 0.0007 

RUSAL 0.0048 0.0044 0.0039 0.0036 0.0042 
Table 4. xRMSE for the samples of mixed pigments unmixing 

results 
 
The results of the accuracy evaluation in Tables 3 and 4 show that 
for the samples of mixed pigments data, the unmixing method of 
ELMM is the best. The other methods, although performing well 
on xRMSE, are inferior to FCLS and ELMM for abundance 
estimation. we suppose that there are three reasons for this 

situation. The first, the input spectral libraries do not contain 
more spectra of the same material variability for the methods that 
need to use spectral libraries. The second, the spectral variability 
of the pigments is not fully represented by the Hapke model and 
a more consistent representation of the spectral variability of the 
pigments needs to be found. The third, the pigment mixing is 
small scale mixing and there is the effect of non-linear mixing 
factors. 
 
ELMM is more accurate compared to other methods, and we 
believe there are two reasons for this. Firstly, ELMM has a 
corresponding scaling matrix for each pixel, so that the 
endmembers can be changed proportionally, which can better 
resist the spectral variability. Secondly, the selection of 
appropriate parameters to adjust the scaling degree of the scale 
matrix is also the key to the high accuracy of ELMM. Too little 
scaling of the scaling matrix is not enough to solve the spectral 
variability, and too much scaling will lead to large errors in the 
unmixing results. 
 

 

 
Figure 4. Spectral variability of endmember extracted using different methods 

 
3.3 Real Mural Application 

We chose the hyperspectral image collected on mural on the east 
wall of the sixth cave of Yungang Grottoes (Shanxi, China) as 

the verification data of real artefacts, as shown in Fig. 5. The 
several unmixing methods compared in this paper belong to 
supervised unmixing, which needs to obtain endmember 
information in advance, among which the best result is ELMM. 
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whereas the priori endmember information is often not available 
in real murals, the input endmembers of FCLS and ELMM are 
extracted in the image. It is also compared with the unsupervised 
nonnegative matrix factorization-quadratic minimum volume 
(NMF-QMV) method, which does not require known end 
endmembers (Zhuang et al.，2019). The results of the three 
methods are shown in Fig. 6. 
 
Since the unmixing results of the real artefacts are unknown, only 
xRMSE is chosen for the accuracy evaluation.  It is found that 
although NMF-QMV does not need input endmembers, it cannot 
make a good spectral distinction between black and green 
pigments. With the same input endmembers, the xRMSE of FCLS 
was 0.0411 and the xRMSE of ELMM was 0.0033. It can be 
concluded that the unmixing accuracy of ELMM is higher. 

Meanwhile, due to the addition of spatial constraints in ELMM, 
its unmixing results are smoother. 
 

 
Figure 5. Hyperspectral images of mural on the east wall of 

Cave 6th of the Yungang Grottoes 
 

 
Figure 6. Abundance maps of FCLS and ELMM 

 
 

4. Conclusion 

In this study, we introduced the spectral variability effect in the 
problem of unmixing surface pigments of artefacts and analysed 
the spectral variability of mixed pigments. We classified the 
methods for solving the spectral variability into two categories 
based on whether the spectral libraries are used or not. Five 
commonly used methods, named MESMA, Fractional Sparse 
SU, ELMM, RUSAL, and BCM, are adopted to unmix the 
spectrum of mixed pigments. The aRMSE and xRMSE of 
simulated data and real pigment mixed samples show that the 
ELMM method has the highest unmixing accuracy. In addition, 
it is able to provide specific endmember variant spectral and the 
SAMM is more accurate compared to methods using spectral 
libraries. However, ELMM is more sensitive to the input 
parameters and the initialization of the abundance matrix, and 
some optimization can be done for the specific initialization and 
parameters. Several other methods perform well on xRMSE, but 
they are less suitable for abundance estimation compared to 
FCLS and ELMM. Finally, we applied ELMM to unmixing of a 
hyperspectral image of mural in the Yungang Grottoes and 
obtained abundance results with higher accuracy than FCLS. 
 
Currently, most of the methods for solving spectral variability 
need to obtain priori endmembers information in advance, so it is 

necessary to combine spectral variability unmixing with 
endmember extraction methods that do not rely on pure pixels in 
future research. Meanwhile, for such tight mixing of pigments, 
the mechanism of spectral variability occurring in the surface 
pigments of artefacts should be further understood, and the 
nonlinear mixing effect of the mixed pigments should be 
considered in the study of spectral variability in order to find a 
more suitable method for pigment unmixing. 
 

Acknowledgements  

This research was supported by the National K&D Program of 
China (No. 2022YFF0904400), National Natural Science 
Foundation of China (No.42171356，No.42171444). 
 

References 

Angelin, E. M., França de Sá, S., Picollo, M., Nevin, A., 
Callapez, M. E., Melo, M. J., 2021: The identification of 
synthetic organic red pigments in historical plastics: Developing 
an in situ analytical protocol based on Raman microscopy. 
Journal of Raman Spectroscopy, 52(1), 145-158. 
 
Mulholland, R., Howell, D., Beeby, A., Nicholson, C.E., 
Domoney, K., 2017: Identifying eighteenth century pigments at 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-403-2024 | © Author(s) 2024. CC BY 4.0 License.

 
408



 

the Bodleian library using in situ Raman spectroscopy, XRF and 
hyperspectral imaging. Heritage Science, 5, 1-19. 
 
Deborah, H., George, S., Hardeberg, J.Y., 2014: Pigment 
mapping of the scream (1893) based on hyperspectral imaging. 
//Image and Signal Processing: 6th International Conference, 
ICISP 2014, Cherbourg, France, June 30 – July 2, 2014. 
Proceedings 6, 247-256.  
 
Rohani, N., Salvant, J., Bahaadini, S., Cossairt, O., Walton, M., 
Katsaggelos, A., 2016: Automatic pigment identification on 
roman egyptian paintings by using sparse modeling of 
hyperspectral images. //2016 24th European signal processing 
conference (EUSIPCO).  
 
Lyu, S., Meng, D., Hou, M., Tian, S., Huang, C., Mao, J., 2021: 
Nonlinear mixing characteristics of reflectance spectra of typical 
mineral pigments. Minerals, 11(6), 626. 
 
Zare, A., Ho, K.C., 2013: Endmember variability in 
hyperspectral analysis: Addressing spectral variability during 
spectral unmixing. IEEE Signal Processing Magazine, 31(1), 95-
104. 
 
Borsoi, R.A., Imbiriba, T., Bermudez, J.C.M., Richard, C., 
Chanussot, J., Drumetz, L., Tourneret, J.Y., Zare, A., Jutten, C., 
2021: Spectral variability in hyperspectral data unmixing: A 
comprehensive review. IEEE Geoscience and Remote Sensing 
Magazine, 9(4), 223-270. 
 
Roberts, D.A., Gardner, M., Church, R., Ustin, S., Scheer, G., 
Green, R.O., 1998: Mapping chaparral in the Santa Monica 
Mountains using multiple endmember spectral mixture models. 
Remote Sensing of Environment, 65(3), 267-279. 
 
Bioucas-Dias, J.M., Figueiredo, M.A., 2010: Alternating 
direction algorithms for constrained sparse regression: 
Application to hyperspectral unmixing. //2010 2nd Workshop on 
Hyperspectral Image and Signal Processing: Evolution in 
Remote Sensing. 1-4. 
 
Xu, M., Zhang, L., Du, B., Zhang, L., 2016: An image-based 
endmember bundle extraction algorithm using reconstruction 
error for hyperspectral imagery. Neurocomputing, 173, 397-405. 
 
Goenaga, M.A., Torres-Madronero, M.C., Velez-Reyes, M., Van 
Bloem, S.J., Chinea, J.D., 2012: Unmixing analysis of a time 
series of Hyperion images over the Guánica dry forest in Puerto 
Rico. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 6(2), 329-338. 
 
Drumetz, L., Veganzones, M.A., Henrot, S., Phlypo, R., 
Chanussot, J., Jutten, C., 2016: Blind hyperspectral unmixing 
using an extended linear mixing model to address spectral 
variability. IEEE Transactions on Image Processing, 25(8), 
3890-3905. 
 
Hong, D., Yokoya, N., Chanussot, J., Zhu, X.X., 2018: An 
augmented linear mixing model to address spectral variability for 
hyperspectral unmixing. IEEE Transactions on Image 
Processing, 28(4), 1923-1938. 
 
Gao, L., Zhuang, L., Zhang, B., 2016: Region-based estimate of 
endmember variances for hyperspectral image unmixing. IEEE 
Geoscience and Remote Sensing Letters, 13(12), 1807-1811. 
 

Drumetz, L., Meyer, T.R., Chanussot, J., Bertozzi, A.L., Jutten, 
C., 2019: Hyperspectral image unmixing with endmember 
bundles and group sparsity inducing mixed norms. IEEE 
Transactions on Image Processing, 28(7), 3435-3450. 
 
Halimi, A., Bioucas-Dias, J.M., Dobigeon, N., Buller, G.S., 
McLaughlin, S., 2016: Fast hyperspectral unmixing in presence 
of nonlinearity or mismodeling effects. IEEE Transactions on 
Computational Imaging, 3(2), 146-159. 
 
Du, X., Zare, A., Gader, P., Dranishnikov, D., 2014: Spatial and 
spectral unmixing using the beta compositional model. IEEE 
Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing, 7(6), 1994-2003. 
 
Hapke, B., 1981: Bidirectional reflectance spectroscopy: 1. 
Theory. Journal of Geophysical Research: Solid Earth, 86(B4), 
3039-3054. 
 
Zhuang, L., Lin, C.H., Figueiredo, M.A., Bioucas-Dias, J.M., 
2019: Regularization parameter selection in minimum volume 
hyperspectral unmixing. IEEE Transactions on Geoscience and 
Remote Sensing, 57(12), 9858-9877. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-403-2024 | © Author(s) 2024. CC BY 4.0 License.

 
409


	Spectral Unmixing of Pigments on Surface of Painted Artefacts Considering Spectral Variability
	1. Introduction
	2. Methodology
	2.1 Unmixing using Spectral Libraries
	2.2 Unmixing without the use of Spectral Libraries
	2.3 Accuracy Evaluation

	3. Result and Analysis
	3.1 Simulated Data
	3.2 Unmixing Results
	3.3 Real Mural Application

	4. Conclusion
	Acknowledgements
	References



