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Abstract 

 

The process of ensuring efficient and safe urban transportation is closely linked to urban planning, particularly through the aspects of 

transportation planning. Transportation planning is a pivotal concern for urban regions worldwide, reflecting the growing need to 

increase mobility while ensuring safety and sustainability in densely populated areas. This research focuses on developing a novel 

digital-twin-based approach for micro-traffic simulation to support data-driven decision-making for increasing traffic safety through 

scenario planning. Leveraging the traffic data obtained through monitoring one of the busiest intersections in Sofia city, this research 

workflow shows the effective integration of LiDAR data and the urban digital twin concept in intelligent transportation systems (ITS). 

The research addresses problems related to moving object classification, trajectory analysis, and reclassification of unrecognised 

objects by processing the LiDAR data, pre-processed in a .osef format, thereby transforming it to make it suitable for simulation. The 

proposed solution for the monitoring of urban traffic is demonstrated by the usage of SUMO (Simulation of Urban MObility) for 

performing simulations and a Random Forest model for unrecognized object reclassification to pre-existing vehicles and pedestrian 

classes. The architecture of the proposed workflow can possibly be applied in other similar urban settings, providing a scalable solution 

for both traffic management and urban planning. The study’s results support the wider use of urban digital twin principles in ITS by 

highlighting the value of advanced modelling tools and high-quality data in addressing today's urban transportation challenges. 

 

 

1. Introduction 

The development of effective and safe transportation systems 

within cities is significantly influenced by urban planning, 

particularly in the area of transportation planning. Increased 

mobility enhances certain types of social and economic activity 

in the cities. Despite the benefits, transportation congestion 

remains the most prevalent issue, with increased delays recorded 

in 58% of metropolitan locations (Pishue, 2023). A 2023 traffic 

report reveals the average driver lost 51 hours to congestion in 

2022, a 15-hour increase from 2021 (Fernandez, 2023). 

Furthermore, traffic congestion not only causes delays but also 

has detrimental environmental impacts, contributing to urban 

pollution. 

 

Another concern is traffic accidents. An estimated 35,766 fatal 

Traffic accidents were reported in the United States alone in 

2020, while globally, road crashes cause 1.3 million deaths and 

20-50 million non-fatal injuries annually (Zhang, 2020). This 

highlights a global epidemic of traffic accidents causing millions 

of deaths and injuries every year. Economically, traffic 

congestion in Europe costs the continent around 1% of its GDP 

(Gross Domestic Product) annually. This underscores the urgent 

need for sustainable urban mobility solutions (Rodrigues et al., 

2021).  

 

In response to these challenges, European communities have 

invested in bike and pedestrian infrastructures to lessen 

dependence on motorized vehicles, thereby reducing intraurban 

traffic and pollution. This movement towards sustainable urban 

transportation emphasizes data-driven policy and green 

infrastructure (European Commission, 2022). Bulgaria, 

reflecting these trends, had the second-highest road fatality rate 

in the EU in 2021, worsening in 2022 with 175 road deaths 

between January and May (The Sofia Globe, 2022). Sofia faces 

similar issues, with traffic and pollution persisting despite public 

transit advancements. The city is committed to promoting 

environmentally friendly transportation and digitalizing 

transportation systems, as outlined in the Sustainable Urban 

Mobility Plan (SUMP) for 2019–2035 (Ministry of Transport and 

Communications of Republic of Bulgaria, 2017) 

 

This paper proposes an end-to-end approach for micro-traffic 

analysis and simulation based on urban digital twins. This 

approach utilizes key functionalities of digital twins, developing 

a robust traffic data workflow covering data transformation, 

moving object reclassification, data storage, and exportation for 

traffic simulations. The workflow supports informed decision-

making and provides a foundation for advancements in intelligent 

transportation systems. The paper is structured as follows: 

Section 2 outlines related work, Section 3 presents the study area 

and datasets, Section 4 explains the research methodology, 

Section 5 describes the results, and Section 6 concludes with 

future work. 

 

2.  Related Work 

Recent developments in LiDAR technology have had a big 

influence on transportation applications by making it possible to 

perceive the environment in detail and accuracy. Real-time traffic 

data collecting is made easier by this technology, especially when 

it is used on roadside platforms. LiDAR's capability to capture 

precise geometric data enables intelligent transportation systems 

to create comprehensive holographic scenes of traffic conditions, 

underscoring its significance in contemporary transportation 

research for optimizing traffic management methods and 

alleviating congestion (Williams et al., 2013). 

 

Accurate coordinate transformations are crucial for aligning local 

Cartesian coordinates with global geographical coordinate 

systems (CRS), significantly impacting spatial analysis 

outcomes, particularly for LiDAR data (Fan et al., 2014). 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-411-2024 | © Author(s) 2024. CC BY 4.0 License.

 
411



 

Improved spatial data alignment, essential for traffic simulation, 

relies on high-resolution satellite imagery for precise road 

extraction, often supplemented by manual digitization to enhance 

segmentation accuracy at the lane level. Understanding traffic 

dynamics involves analysing GPS data to interpret vehicle paths, 

with spatial analysis playing a key role in identifying travel 

behaviours (Zheng, 2015). Handling missing labels in these 

datasets is effectively managed by artificial intelligence, 

particularly Random Forest (RF), which excels in classifying 

complex datasets and improving traffic simulation accuracy 

(Breiman, 2001). 

 

Parallel to the development of LiDAR applications, the concept 

of digital twins (DTs) has gained popularity in the Intelligent 

Transportation System (ITS) field. A digital twin is a dynamic 

digital model of a physical object or system that combines sensor 

data and analytics to reflect its real-world status, enabling real-

time monitoring, simulation, and decision-making (Digital Twin 

Geohub, 2023). The research by Kušić et al. (2023) on the digital 

twin model of the Geneva Motorway (DT-GM) exemplifies the 

use of the microscopic traffic simulator SUMO (Simulation of 

Urban MObility) to model and simulate synchronized virtual 

representations of transportation dynamics. 

 

This research aims to improve the operational efficiency of 

dynamic traffic management by integrating real-time LiDAR 

data into traffic simulation models, focusing on the Open 

Serialization Format (OSEF) dataset. Developed by Outsight, 

this dataset employs Type-Length-Value (TLV) encoding, 

tailored for LiDAR sensor data, streamlining processing and 

delivering relevant information efficiently (Vincent, 2023). 

While visualizing real-time data provides an immediate snapshot, 

traffic simulation allows for the analysis of potential scenarios 

and the evaluation of traffic management strategies, leading to a 

more comprehensive understanding. 

 

3. Study Area and Datasets 

3.1 Study Area 

The research area is located in one of the busiest intersections in 

Sofia, Bulgaria, adjacent to a big shopping center, in the heavily 

populated Lozenets district. The development of the shopping 

center in a neighborhood featuring a mix of high-speed secondary 

and tertiary roads, smaller residential streets, bi-directional roads, 

and various public transportation options has led to significant 

congestion issues. A high density that adds to traffic challenges 

is evident in the Lozenets district, whereas, of June 15, 2023, 

there were 63,214 residents living at their current address and 

67,093 at their permanent residence (Ministry of Regional 

Development and Public Work of Bulgaria, 2023). 

 

The intersection is composed of a single lane (Blvd. "Cherni 

vrah") that runs from south to north and a dual-lane road that 

splits into two streets: "Srebarna" that runs northeast and "Henrik 

Ibsen" that leads southwest. The numerous types of vehicles, 

such as cars, two-wheelers, high-load trucks, and buses, impact 

the traffic dynamics in this area. The traffic is monitored by a 

LiDAR system, comprising 6 sensors, which are the primary data 

source for this study. They are positioned along various borders 

surrounding the main intersection, record the movement of 

vehicles and pedestrians over time. The study area and sensor 

distribution are shown in Figure 1 

 

 

Figure 1. Study area and sensors distribution. 

The LiDAR sensor, Ouster OS1-128, features a 45° field of view 

across 64 layers and uses an ALB processing module for 

classifying cars, trucks, pedestrians, and two-wheelers. It 

measures 85 mm in diameter and 58.45–73.5 mm in height, 

consuming 14–20W of power at 22–26V. Operating 

temperatures range from -53°C to 60°C. It is IP68 and IP69K 

rated, shock-resistant (IEC 60068-2-27), and vibration-resistant 

(IEC 60068-2-64). The sensor offers 0.3 cm resolution, detects as 

close as 0.3 m, and provides ±3 cm Lambertian and ±10 cm 

retroreflector accuracy.  

 

3.2 Research Datasets 

The LiDAR data collected from the sensors is processed in real-

time and made available for further analysis in .osef format, 

which is the main input dataset for this research. The .osef data 

format was developed to make LiDAR point cloud technology 

more manageable and accessible, addressing integration 

problems into ITS applications. The .osef datasets offer precise 

and comprehensive spatial measurements, making them 

invaluable across diverse applications. Its key advantages include 

adaptability, which simplifies processing; efficiency, by reducing 

processing overhead; simplicity, through straightforward 

parsing; robustness, offering versatile data management; 

compatibility, facilitating integration with new features; and 

scalability, accommodating varying data volumes. 

 

The real-time download of the .osef dataset was managed using 

a TCP (Transmission Control Protocol) stream. The time-

stamped data, specifically in GMT+3 to match the local time 

zone of each recorded frame, is organized systematically by the 

preprocessor of the sensors. The datasets used in the research 

vary, ranging from a 2-minute period in the morning to a 4-

minute period in the afternoon; both were utilized as foundational 

data for specific research steps. As shown in Figure 2, the data 

can be parsed to distinguish between objects that are considered 

dynamic and those that are static, belonging to the urban 

infrastructure.  
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Figure 2. Intersection point cloud visualisation; static objects 

(Left), and dynamic objects (Right). 

The nested TLV tree structure is traversed while processing 

binary data into an array of data points or other formats, such as 

.csv. The .osef data contains information on tracked objects and 

the augmented cloud, in addition to the previously described 

information pertaining to the base data. Unique object identifiers 

(IDs), classes consisting of CAR, PERSON, TRUCK, 

TWO_WHEELER, and UNKNOWN, speed in km/h 

(convertible to other units of measurement), volume computed 

using bounding boxes, coordinates (local pose x, y, and z, or 

Cartesian coordinates) and zones are among the information that 

can be extracted from tracked objects. 

 

However, it is important to note a few issues with the dataset. 

Firstly, the dataset currently records coordinates only in a local 

pose, conversion into geo-coordinates is needed. Second, the data 

contain an unknown class that needs to be identified. Therefore, 

addressing these issues as practically as possible should be the 

initial step in this research. 

 

4. Research Methodology 

The purpose of this research is to develop a digital twin-based 

workflow that can integrate real-time LiDAR data into traffic 

simulations for effective traffic monitoring and assessment. The 

research methodology illustrated in Figure 3 explores the 

potential of OSEF data integration into traffic simulation while 

addressing data issues such as unknown classes and spatial 

alignment problems for the traffic simulation input. 

 

 

Figure 3. Research methodology workflow. 

The methodology involves several steps: collecting data from the 

.osef dataset and satellite imagery, parsing and transforming it 

into an appropriate CRS, and classifying object types within each 

frame. Trajectory spatial analysis classifies each moving object’s 

trajectory, providing features for random forest reclassification 

to address unknown classes and enhance data enrichment. 

Properly classified trajectories are essential for accurate traffic 

simulations and must align with the simulation network. 

Processed data is stored in a PostGIS database, with incomplete 

trajectories corrected through map-matching. Data is fetched into 

the simulation using XML-based traffic simulations and the 

dynamic TraCI method for real-time monitoring and assessment. 

The .osef dataset is parsed using a Python script and OSEF 3.0 

libraries, efficiently processing large data volumes.  

 

The output of geopackage (.gpkg) data from road segmentation 

informs trajectory spatial analysis, determining object 

trajectories and classifying vehicles based on intersection 

locations. RF reclassification addresses unknown classes, 

enhancing model performance. The reclassified data is uploaded 

to the PostGIS database, which includes trajectory and object 

information. SUMO traffic simulation retrieves this data, 

transforming it into XML format for input. The simulation 

replicates real-world traffic conditions, using XML and TraCI to 

dynamically adjust the simulation, creating a comprehensive 

pipeline for processing, storing, and simulating traffic data. 

 

4.1 Local Coordinates Transformation to Geo-coordinates 

Cartesian coordinates or a local pose array are the two types of 

coordinates that are available from the .osef dataset. This dataset 

was first transformed into global CRS (Coordinate Reference 

System) geo-coordinates in order to be used for spatial analysis 

and to ensure that it is aligned with the SUMO road network. To 

accurately convert local coordinates to the desired geo-

coordinates, Well-Known Text (WKT) is used. This is a text 

format that defines geographical properties and geometries. 

 

With given WKT information, there are multiple processes 

involved in converting local coordinates (x, y, z) to geographical 

coordinates (longitude, latitude) using PyProj. A Python interface 

to PROJ, a general coordinate transformation software, is used in 

this process using the PyProj package. The position of a point in 

three dimensions, where 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 represent distances from an 

origin in a localized coordinate system, are converted to a 

position on the surface of the Earth, which is represented by 

latitude (north-south position from the equator) and longitude 

(east-west position from the Greenwich meridian). 

 

The local pose, which refers to point or object position and 

orientation within local coordinate systems, can be 

transformed directly into WGS84 coordinate systems 

using WKT information. To ensure the alignment with SUMO's 

road network projection, which follows an ellipsoid rather than a 

2D plane projection, EPSG:4326 was determined to be the 

appropriate coordinate system for this research. EPSG:4326 uses 

an ellipsoid to model the surface of the Earth. The transformation 

procedure requires a datum shift to adjust the coordinates from 

the local datum relative to WGS84.  

 

4.2 Semantic Road Segmentation 

Road segmentation plays an important part in initiating the 

process of classifying objects and their trajectories. It allows the 

understanding of semantic information about the road edges at 

the intersection, which aids in the spatial identification of 

areas classified as roads from the ones that are not. In order to 
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correctly classify object trajectories, the key objective of 

semantic segmentation is to identify the main lanes and junctions. 

During this process, roads are segmented into polygons, 

following the real-world shape of the intersection, and traced 

from satellite imagery —USGS Landsat 7 ETM+ C2 L1 with a 

resolution of 15-meter panchromatic blend— and ESRI’s world 

imagery service (up to 1-meter resolution) using ArcGIS 

software. The main focus is to identify the main road segments, 

the turning point, the lane distribution details, and the junctions 

that existed in the study area. The output is stored as a .gpkg. The 

segment name and junction type constitute the semantic 

information structure; segment names are modified in accordance 

with the SUMO road network naming format. 

 

"In/out_name_lanenumber" is the format used for segmentation 

names. "In/out" indicates the direction of the road flow, i.e., 

whether the segment is traveling inward or outward from the 

main intersection junction. "Name" indicates the road edges' 

name based on their location (for example, if they are in the north, 

their name will have a "n" affixed to it), and "lane number" 

indicates the exact lane number of those road edges. Lane 

numbers (e.g., 1, 2, 3,...) are assigned in ascending sequence from 

the outside to the inner portion of the road boundaries. When it 

comes to junction types, they are referred to according to the type 

of junction, such as intersection or fork (a junction where several 

roads merge into one or diverge into more than one). 

 

4.3 Trajectory Spatial Analysis 

Spatial analysis of objects is carried out using the outcomes of 

road segmentation and local coordinate transformations. This 

analysis includes object type reclassification (classifying 

possible vehicles or non-vehicles) and trajectory type 

classification (categorizing points into complete, short-complete, 

violation, and incomplete trajectories). It determines where road 

segmentation intersects with the frame sequence for each object 

ID, generating unique trajectories. Geopandas is the main library 

used in this analysis. 

 

The logic behind object classification is straightforward: an 

object ID is classified as a possible vehicle if the majority of its 

geo-coordinate sequence (𝐿𝑜𝑛1, 𝐿𝑎𝑡1, 𝐿𝑜𝑛2, 𝐿𝑎𝑡2, … ) intersects 

within a road segment (such as a lane or junction). This suggests 

that although it is presumably a vehicle, it might also be a person. 

On the other hand, it is categorized as a non-vehicle or a person 

if the majority of the data-point sequence of geo-location does 

not traverse the road segment. 

 

Trajectory-type classification is more complex and refined than 

object-type classification, requiring semantic road segment 

information and generating multiple unique instances for detailed 

classification. When object data-point sequences are primarily 

"non-vehicle," their trajectories are classified as "none" due to 

lack of alignment with road segments. For "possible vehicle" 

classifications, objects are filtered and assumed as vehicles based 

on their frame sequence within road segments. Specific segment 

types (inward, outward, intersection, special turns) are analysed 

to classify trajectory types. Complete trajectories follow the 

pattern (in, junction, out), with an 8-meter threshold from the 

junction distinguishing complete from short trajectories, essential 

for traffic simulation XML adjustments. Additional assessments 

identify unexpected direction changes indicating rule violations, 

such as illegal turns or same-side violations, where trajectories 

start and end on the same roadside. This meticulous approach 

ensures that trajectories are appropriately identified and saved as 

a separate column in the main array of data points. 

 

4.4 Random Forest Reclassification 

Given the issues associated with many objects that are labelled as 

"unknown," reclassification using the Random Forest (RF) 

algorithm as a supervised machine learning approach is used. It 

is considered to be appropriate for handling complicated 

information with a lot of uncertainties, notably volume, speed, 

and the trajectory and object types that come from spatial 

trajectory analysis. RF is able to deal with mixed data types in a 

dataset, especially when the dataset contains both 

categorical (e.g., object type and trajectory type) and numerical 

(e.g. speed and volume) data. Additionally, RF reduces 

overfitting by using an ensemble approach, where multiple 

decision trees influence the results, producing broadly applicable 

and reliable predictions across various datasets.  

 

Furthermore, RF provides insights into feature significance, 

identifying key features like speed, volume patterns, object type, 

and trajectory type for reclassification. Feature engineering 

calculates average speed and volume for each object ID and 

changes in volume to improve prediction precision. The dataset 

is split into 70% training and 30% test sets, with the test set 

further divided into 15% with unknown labels and 15% without, 

to assess model predictions on unseen data. Refined class 

adjustments resolve labels inconsistencies by prioritizing precise 

labels over ambiguous ones, creating a uniform training set. This 

approach enhances the model's ability to recognize patterns and 

improves accuracy for previously unknown cases. 

 

RF processes data internally as arrays, with each row frame 

denoting a data point and each column representing a feature. A 

random subset of features is taken into consideration at each split 

in a tree during the training phase when feature arrays are 

randomly selected (with replacement) to form subsets for training 

individual trees. The process of classifying new data point (𝑥) 

for the reclassification issues, where there are 𝑁 trees and classes 

as 𝐶, can be defined as follows: 

 

Predicted Class =  
argmax

𝑐 ∈ 𝐶
∑ 𝐼(prediction of tree𝑖(𝑥) = 𝑐),

𝑁

𝑖=1

          (1) 

 

where 𝐼 is an indicator function that evaluates whether the 

prediction of 𝑖th decision tree (tree𝑖) for the data point 𝑥 matches 

the spesific class 𝑐. If it is true, the indicator functions return 1, 

otherwise 0. Based on all the trees in the forest, this equation 

indicates that for data point 𝑥, the projected class is the one that 

has received the most votes. 

 

Hyperparameter tuning is also considered in the reclassification, 

depending on the performance of the model and how well can 

they effectively adapt the model to accurately reclassify the 

unknown classes. Metrics such as the number of tree 

(n_estimators), maximum depth of the tree (max_depth), 

minimum sample split (min_sample_split), and the number of 

features (max_features) are considered. Parameter grid search 

techniques are used to determine the initial hyperparameter 

tuning. It involves systematically testing a predefined set of 

hyperparameters to find the optimal combination by evaluating 

the performance of the model across different parameter settings. 

 

4.5 Traffic Simulation 

After local coordinate transformation, trajectory spatial analysis, 

and reclassification of unknown objects, the dataset is uploaded 

into a PostGIS database. The traffic simulation platform SUMO, 

which relies on XML, retrieves this data using the SQLAlchemy 
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library and xml.tree libraries to export it into an XML format 

compatible with SUMO. The traffic simulation workflow 

includes two processes: one using XML input to initiate the 

simulation and another using TraCI libraries to dynamically add 

vehicles without XML. The data fetching process incorporates 

map-matching to handle incomplete trajectories, using Sumolib 

to transform them into complete routes by aligning geo-

coordinates with the nearest road network. 

 

For XML based approach, data is directly fetched, transformed, 

and saved in the required XML format. Vehicles use the {\trip>} 

attribute, and pedestrians use the {<person>} attribute to define 

the XML configuration for vehicle input. In separate trips.xml 

files, every vehicle class is stored. The characteristics selected for 

the XML configuration are intended to match real-world 

behaviour as much as feasible while also considering the data that 

is contained in the database. The list below shows the details 

about each trips.xml configuration structure. 

 

• Vehicle (car, truck, two-wheeler): 

 
<vtype id vClass accel decel sigma color/> 

<trip id type depart from to via departLane departPos 
departSpeed arrivalLane arrivalPos arrivalSpeed/> 

 

• Pedestrian (person): 

 
<vType id vClass color/> 

<person id type depart departPos/> 
 <walk edges speed arrivalPos/> 

 

Where acceleration (acceleration) and deceleration (deceleration) 

are derived from speed changes over time, vehicle class (vClass) 

classifies vehicles. Vehicle behaviour is represented by sigma, 

while its appearance is assigned by colour. A type (vType for 

cars) defines every vehicle or pedestrian (object id), containing 

details about the vehicle's exact position, lane usage, departure 

time, and initial and destination coordinates (from/to). Trajectory 

continuity is guaranteed via speed settings, where "last" denotes 

adherence to the speed of the vehicle ahead to avoid simulation 

errors. 

 

The dynamic approach, on the other hand, does not store data 

locally. During the simulation time step, TraCI utilize the base 

XML input and continuously adding vehicles based on 

timestamps. A road network created in SUMO, imported from 

OpenStreetMap and modified to match the research area and road 

segmentation, is necessary for initiating the traffic simulation and 

completing trajectories identified as incomplete by the spatial 

analysis. 

 

5. Results 

In this section, the results of the research are presented. The 

sections are ordered according to the research workflow. Starting 

from the coordinate transformation to the final DT traffic 

simulation workflow. 

 

5.1 Local Coordinates Transformation to Geo-coordinates 

All of the arrays of data-points had their local pose translation 

(𝑥, 𝑦, 𝑧) are converted to WGS84 EPSG:4326 geo-coordinates. 

This process is done as part of the .osef data parsing algorithm. 

Where each frame's local coordinates are transformed into geo-

coordinates, following the methodology section. To further 

confirm that the tracked object points have been transformed 

 

(1) https://vimeo.com/948598952?share=copy 

successfully, the Plotly Express library's function called Mapbox 

was used. The array of data points must have precise geographic 

coordinates (longitude, latitude) for Mapbox to work properly. 

The georeferenced plotting of tracked objects in Mapbox can be 

seen in Figure 4 below and footnote (1). 

 

 

Figure 4. Mapbox plotting of the geo-referenced data points. 

As can be observed, the tracked items were successfully 

reprojected onto the intersection's true geo-coordinates, 

displaying a pattern that matches the form of the intersection. 

Following this coordinates transformation, trajectory spatial 

analysis can be performed on this dataset. 

 

5.2 Semantic Road Segmentation 

Road segmentation focused on lane and junction construction, 

with segment polygons manually digitized and aligned to the 

satellite images. The lanes were named based on their positions 

relative to the road borders, encompassing four road directions: 

northern, northeastern, southern, and southwestern. The northern 

segment has two outward lanes and three inward lanes toward the 

main intersection. The northeastern segment comprises two 

outward lanes and 3-4-3 inward lanes, with a single turning lane 

connecting to the northern outbound lane, as shown in Figure 6. 

The southern edges feature three inward and three outward lanes, 

while the southwestern segment has 2-1 outward lanes and 2-3 

inward lanes, including a turning segment connecting the 

southern outward lanes to the bidirectional lanes. 

 

 In total, there are five junctions that constitute the road 

segmentation: four fork junctions and one main intersection 

junction. Fork junctions, for instance, facilitate division and 

merging in the case of a single turning route in the northeast that 

links two separate road segments. The semantic segmentation 

details can be seen in Table 1 and Figure 5. 

 

Type Segments Count 

Road In_North 3 lanes 

 In_North-East 4 lanes, 1 turning lane 

 In_South-West 3 lanes 

 In_South 3 lanes 

 Out_North 3 lanes 

 Out_North-East 2 lanes 

 Out_South-West 2 lanes, 1 turning lane 

 Out_South 3 lanes 

Junctions Main Junction 1 

 Forks 4 

Table 1. Road segmentation details. 
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Figure 5. Road semantic information map of study area. 

5.3 Trajectory Spatial Analysis 

Geospatial analysis is performed to determine object and 

trajectory categories using the results of CRS transformation and 

semantic road segmentation. The first step in the analysis is to 

find the object type, or whether the objects are possibly vehicles 

or non-vehicles, by intersecting the road segment with the 

geographical coordinates of each object. Here, the rational 

presumption is that an object is possibly a vehicle if its frame 

sequence begins and ends on a road segment. Otherwise, they are 

non-vehicles. 

 

Figure 6 shows the distribution of object categories over a two-

minute period, including 516 tracked objects. It indicates that 

about 309 unique objects are classified as possible vehicles, 

though this category also includes persons and unknown objects. 

Additionally, 194 objects are classified as non-vehicles, likely 

pedestrians. However, anomalies exist, such as four cars and four 

two-wheelers being misclassified as non-vehicles, likely due to 

inconsistent labelling (associated with more than two classes). 

 

  

Figure 6. Object type classification distribution graph. 

The next step involves identifying the trajectories and analysing 

their patterns to understand movement behaviours or detect 

anomalies. According to the research goal of determining 

appropriate vehicle trajectories, a thorough categorization of 

trajectories was only done for possible vehicles; non-vehicles 

were not taken into consideration further. The methods section 

outlines the process for determining trajectories, and the spatial 

analysis result showed that 500 of the 516 recorded objects had 

incomplete trajectories. The analysis revealed that only 10 

object had complete trajectories, 4 cars had (short) complete 

trajectories, and 2 objects had violation trajectories due to illegal 

lane changes or U-turns. This is observed in the trajectory plot 

shown in Figure 7. 

 

 

Figure 7. Trajectory type plot of each object id, consist of 

complete, (short) complete, violation, and incomplete track. 

Upon closer inspection of Figure 7, especially the incomplete 

trajectories, we find that the majority of them end at the centre of 

the primary intersection junction. This could be due to either the 

object moving outside of the LiDAR sensors' range for some 

reason or the time frame was cut short during the downloading of 

the .osef data. 

 

5.4 Random Forest Reclassification 

Understanding the data structure is crucial before beginning to 

train the RF model. Analysis of a 2-minute morning .osef dataset 

sample, comprising 58,939 rows and 516 tracked objects, 

revealed complex class classifications, adding noise and reducing 

prediction accuracy. The dataset includes three categories: 

recognized objects (one unknown among two classes, classified 

as the known class), consistent objects (single class), and 

unidentified objects (changing classes more than twice). There 

are 11 unidentified, 241 recognized, and 264 consistent objects. 

To reduce noise, the training process prioritized identified classes 

over unknowns, focusing predictions on unknown or unidentified 

multi-class objects. 

 

The model was trained using two distinct .osef datasets, one from 

an afternoon session lasting four minutes and the other from a 

morning session lasting two minutes, comprising 108,156 

frames. The first training round is done with the default settings 

of reclassification model training. It shows a high accuracy of 

0.998 when tested with the test set. This indicates close-to-perfect 

performance, which is unlikely. Since the aim of this process is 

to reclassify the unknown labelled objects and generalize the 

classes as much as possible throughout the frames, the number of 

objects with multiple classes needs to be minimized. In this first 

attempt, there are still 88 objects that have multiple classes after 

predictions, and 11 of them consist of more than two classes. 

 

A second training attempt involved hyperparameter tuning, 

setting n_estimators to 400 and using 'Adjusted Class' labels to 

minimize multiple predictions. This improved the accuracy to 

0.999 and reduced objects with multiple class predictions to 36. 

To further enhance robustness, a final iteration used a parameter 

grid search to optimize hyperparameters: 400 n_estimators, 

min_sample_split of 10, max_depth of 9, and max_features set to 

'none.' Figure 8 shows the learning curve of this tuned model, 

demonstrating a steady accuracy increase and good 
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generalization, with the curves converging at the end, indicating 

good generalization.  

 

 

Figure 8. 2nd Tuned model learning curves. 

This pattern suggests that the model can predict new, unseen data 

more effectively and generalize better than the previous model. 

Although this model has a similar accuracy of 0.998 compared to 

the first model, its generalization is far better, reducing multiple 

class predictions for an object ID by 76%. Table 2 below shows 

the differences in each model's performance in minimizing 

multiple class predictions. 

 

RF Model Accuracy 
Multiple Class Prediction 

2 Classes >2 Classes 

Default 

model 
0.998 88 11 

1st Tuned 

model 
0.999 36 4 

2nd Tuned 

model 
0.998 21 1 

Table 2. RF model generalization performance. 

The 2nd tuned model was determined to be the ideal model for the 

purpose of this research. It is directly incorporated into the final 

pipeline, where new, unseen data with an unknown label will be 

reclassified. To handle the remaining multiple class object IDs, a 

logic to take the majority class per frame is implemented. 

Consequently, the entire dataset will have only one true class for 

each object ID. The data overview of before and after prediction 

is displayed in Figure 9. After reclassification where all the object 

ID have 1 true class, the dataset is then uploaded to the database 

for the next processing phase. 

 

 

Figure 9. Object categories overview from reclassified dataset. 

 

(2) https://vimeo.com/929027122?share=copy 

5.5 Traffic Simulation 

To simulate traffic in real-time, the traffic simulation program 

SUMO fetches the parsed dataset from the database. As the 

methodology section explains, there are two types of simulation 

experiments: xml based and dynamic using TraCI. To map-match 

incomplete trajectories to the SUMO road network, the data fetch 

function additionally includes the map-match logic utilizing 

sumolib. By comparing the incomplete trajectories with the 

missing sequences, this map-matching algorithm finds the edges 

and lanes that are closest to the end or starting point. 

 

XML dataset is then generated considering the map-match logic. 

There are five XML files produced in the workflow: "passenger 

(CAR).trips.xml", "truck(TRUCK).trips.xml", "motorcycle(TWO 

WHEELER).trips.xml", and "pedestrian(PERSON).trips.xml". In 

contrast to the other XML formats, the pedestrian XML format 

applies map-matching only to pedestrian walkways, denoted by 

lane 0 in the road network. Sumo-gui —a visualization tool for 

SUMO— then runs the simulation and opens the configuration 

automatically. Successful execution of the XML-based approach, 

as can be seen in footnote (2), results in an accurate simulation 

representation of the tracked objects from the .osef data, as shown 

in Figure 10. 

 

 
 

Figure 10. (Left) XML-based approach and (Right) Dynamic 

approach with TraCI for SUMO traffic simulation. 

 

On the other hand, in a dynamic approach with TraCI shown in 

footnote (3), the database is fetched directly without the need to 

store data locally. This workflow employs TraCI as middleware. 

TraCI adds and removes vehicle IDs when they arrive at their 

destinations, updating them in real-time based on the timestep. 

The dynamic changes with TraCI (Figure 13 right image) have 

yet to be able to designate lanes like the XML-based approach 

does. Route distribution is necessary to identify certain lanes; 

nevertheless, considering the size of the dataset and the range of 

route distributions, this is a challenging process. However, the 

dynamic flow functions as intended, automatically determining 

the optimal lane for a vehicle. 

 

6. Conclusion 

The digital twin workflow in this research, utilizing the .osef 

dataset for traffic simulation, has proven to be successful. The 

.osef raw dataset was parsed by the algorithm, which then pre-

processed it to identify object types, trajectories, and unknown 

object reclassifications before storing it in the database. The data 

fetching procedure, which involved direct input into the traffic 

simulation and database retrieval, facilitated a smooth real-time 

data flow. 

 

By automating the processing, enrichment through 

reclassification and usage for simulation, informed decisions are 

(3) https://vimeo.com/929027117?share=copy 
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enabled to resolve issues with the traffic and facilitate 

transportation planning. Various traffic objects and their 

movements are captured, allowing precise tracking and 

management of traffic flow, which is crucial for efficient urban 

traffic management. The continuous object and trajectory 

reclassifications ensure that the data remains accurate and 

relevant for real-time applications. Moreover, the ability to 

handle and reclassify unknown objects enhances the reliability of 

the traffic monitoring system. Thus, the proposed pipeline can 

support traffic control systems, improve intersection safety, and 

reduce congestion by providing timely and actionable insights. 

 

With minor modifications in road segmentation, this adaptable 

digital twin-based methodology can be applied to other similar 

areas. Once trained, the RF classification model can be saved and 

applied to similar data structures. The hybrid approach for 

trajectory classification, using map-matching and spatial 

analysis, effectively identifies incomplete trajectories. Although 

dynamic flow offers more flexibility, lane assignment issues can 

be resolved with clear route assignments. However, larger 

datasets may complicate the classification of incomplete 

trajectories, impacting real-time adjustments and processing 

times. Future research should explore the timing constraints 

imposed by .osef datasets. 

 

In the future, direct data parsing from TCP streams instead of 

using downloading .osef datasets may improve the traffic 

simulation workflow's performance. Thus, real-time data can be 

directly handled in simulation. Additionally, further 

refinement can be made to improve the classification 

performance of the RF model, with an emphasis on finding 

features that can enhance the model further, since it has been 

noted that increasing the frames training dataset would not 

increase the model performance. 
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