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Abstract: 

 

Uncertainty modelling is regarded as one of the core components in the field of human mobility analysis and urban navigation, that 

can affect the performance of human behaviour modelling and location information acquisition. Existing uncertainty modelling 

algorithms towards the human movement trajectory are subjected to random and highly dynamic human motion characteristics and 

sampling and observation errors of Global Navigation Satellite System (GNSS) signals caused by the occlusion of buildings in urban 

scenes, which lead to the insufficient spatiotemporal correlation and poor accuracy of uncertainty modelling. To fill in this gap, this 

paper proposes an efficient attentive-GRU structure for uncertainty modelling of crowdsourced human trajectories under building-

obscured urban scenes, that takes into account both temporal correlation and spatial correlation of human-originated GNSS trajectories 

and related motion features. A period of human motion data is modelled instead of only one or adjacent location points to avoid 

interference factors caused by the obstruction of urban buildings, and time-varying measurement and sampling errors are further 

estimated and combined with comprehensive human motion features to improve the accuracy of final uncertainty modelling. 

Comprehensive experiments indicate that compared with existing uncertainty modelling methods including physical models and deep-

learning models, the proposed attentive-GRU structure realizes much better performance under different accuracy indexes. 

 

 

1. Introduction 

Pedestrian trajectory data within urban contexts is undeniably 

pivotal for advancing human mobility analysis. It provides a rich 

tapestry of information, elucidating the spatial-temporal 

dynamics and intricate social interactions of individuals and 

communities. The advent of Micro-Electro-Mechanical Systems 

(MEMS) sensors and their integration into mobile devices have 

revolutionized the acquisition of pedestrian movement data (Yu 

et al., 2021). This technological leap has enabled a plethora of 

applications, from enhancing intelligent transportation systems 

(Zhu et al., 2019) to pioneering advances in smart healthcare (Pal 

et al., 2018). These applications leverage pedestrian trajectory 

data to gain insights into user behaviours (Liu et al., 2022a; Liu 

et al., 2022b), support epidemic prevention measures (Yang et al., 

2023), and facilitate the development of intelligent logistics 

solutions (Liu et al., 2020; Shi et al., 2021). Through these lenses, 

pedestrian trajectories serve as a foundational element in 

understanding urban mobility, contributing significantly to the 

optimization of location-based services (LBS) and informing city 

planning and public policy (Liu et al., 2019; Yu et al., 2022; Liu 

et al., 2021). 

 

Despite their invaluable contributions, the task of capturing 

accurate and reliable pedestrian trajectories in the complex and 

dynamic urban environment is fraught with challenges (Rajput 

2024; Liu et al., 2024). The diversity of pedestrian movement 

patterns, coupled with the limitations and variability of data 

provided by different mobile sensing and positioning 

technologies, introduces a significant degree of uncertainty in the 

trajectory data collected. This movement uncertainty, if not 

accurately addressed and mitigated, can severely impact the 

reliability of analyses conducted, undermining efforts to derive 

actionable insights and make informed decisions (Downs et al., 

2018; Shi et al., 2021). 

 

At the heart of trajectory uncertainty are two primary sources: 

sampling error and measurement error. Sampling error emerges 

from the collection process itself, where gaps in the data 

sequence result from variable sampling rates, leaving segments 

of motion information unrecorded or cannot be acquired (Zheng 

et al., 2012). Measurement error, conversely, arises from the 

variability inherent in positioning methodologies, the changing 

environmental conditions under which data collection occurs, 

and discrepancies in hardware performance (Zheng, 2015; Zheng 

et al., 2014). Addressing these errors necessitates innovative 

approaches that go beyond traditional methodologies, which 

often rely on assumptions of constant velocity or distance, 

leading to potential overestimations of the actual path area 

(Miller, 1991; Kwan, 1998). 

 

Recognizing the limitations of conventional models in accurately 

quantifying movement uncertainty, especially in the nuanced and 

unpredictable realm of urban pedestrian movement, researchers 

have sought to refine PPA estimations through adaptive models. 

These models, such as the Approximate Upper Bound (AUB) 

approach (Furtado et al., 2018) and adaptive speed control 

criteria (Liu et al., 2022), represent significant advancements 

towards achieving more accurate uncertainty region calculations. 

However, the unique complexities presented by indoor 

environments—where the majority of valuable public trajectory 

data is generated—demand a more nuanced understanding and 

innovative solutions. The scarcity of absolute location references, 

the variability of measurement errors in complex indoor spaces, 

and the inherent randomness of indoor pedestrian movement 

patterns present formidable challenges to uncertainty estimation 

and lead to difficulty in balancing temporal and spatial 

correlations (Li et al., 2021; Liu et al., 2020). 

 

In light of these challenges and building upon the foundational 

work of preceding research, this paper proposes a novel and 

comprehensive methodology for estimating the uncertainty of 

crowdsourced GNSS trajectories, specifically in urban 

environments characterized by architectural obstructions and 

complex human motion. By harnessing the power of advanced 

deep learning techniques, for instance Long Short-Term Memory 
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(LSTM) (Shi et al., 2022) and Bidirectional LSTM (Bi-LSTM) 

(Yu et al., 2023) networks, we endeavour to transcend the 

limitations of existing models. Our approach meticulously 

integrates human motion data with GNSS information to offer a 

holistic and adaptive framework for urban pedestrian trajectory 

analysis, setting a new benchmark for accuracy and reliability in 

the field. 

 

Specifically, the contributions of our study lie in the following 

aspect: 

 

(1) Compared with the existing methods that only use a single 

location point or nearby points for uncertainty modelling, this 

paper takes into account the time correlation and spatial 

correlation of human trajectory data in the feature extraction 

stage, by extracting GNSS-originated locations within a period 

of time, and combines with the related characteristics of human 

movement information to overcome the interference factors 

caused by the obstruction of urban buildings. 

 

(2) This paper develops a novel attentive-GRU structure to 

achieve efficient and autonomous learning of human trajectory 

data. In order to improve the efficiency of existing LSTM, this 

article uses the GRU network to achieve more efficient human 

trajectory sequence modelling, and uses the attention mechanism 

to improve the accuracy and stability of spatiotemporal features 

learning and presentation. 

 

(3) This paper adopts the ground-truth trajectory provided by 

Simultaneous Localization and Mapping (SLAM) technology to 

generate training and testing datasets under building-obscured 

urban scenes. The generated training dataset includes time-

varying measurement and sampling errors, and also collects and 

models complex human motion information to improve the 

accuracy of uncertainty error modelling. Comprehensive 

experiments indicate that compared with existing uncertainty 

modelling methods including physical models and deep-learning 

models, the proposed attentive-GRU structure realizes much 

better performance under different accuracy indexes. 

 

Organized for clarity and depth, the paper unfolds as follows: The 

"Method" section delves into our proposed approach for 

uncertainty estimation. In the "Experiment" section, we detail our 

experimental design and disseminate our findings, illustrating the 

robustness and adaptability of our model across diverse urban 

landscapes. The "Conclusion" section encapsulates our 

contributions to urban pedestrian trajectory analysis, advocating 

for future research directions that leverage the transformative 

potential of deep learning to navigate the complexities of urban 

mobility patterns further.  

 

2. Problem Statement and Methedology 

In this section, the key definitions regarding our movement 

uncertainty modelling are given, followed by a detailed 

elaboration of the proposed feature construction and 

methodology. 

 

2.1 Key definitions and problem statement  

This study aimed at developing a comprehensive and dependable 

framework for predicting the uncertainty of pedestrian 

movements within the complex settings of urban environments. 

The framework takes into account the variability of human 

motion, along with errors in sampling and measurement, offering 

an adaptive approach for predicting uncertainty errors. This 

approach thoroughly addresses the dynamic errors emanating 

from various location sources and their temporal impacts. The 

key concepts pertinent to this subject are outlined as follows: 

 

Definition 1. Space-time Location Point (STP): An STP 

represents a two-dimensional geographical point specified by a 

certain time interval, provided through diverse positioning 

methods and described as STPi=(x,y,t). Here, (x,y) specifies the 

geographical coordinates, and t is the associated timestamp. 

 

Definition 2. Ground-truth Trajectory (GT): The GT, derived 

through SLAM technologies, outlines a sequence of STPs 

{GT.STP1,GT.STP2,...,GT.STPn} that denotes the actual path 

walked by a pedestrian, incorporating reference locations. This 

trajectory is obtained by integrating SLAM systems with open 

street maps, enabling the retrieval of reference trajectories with 

centimeter-level precision for comparison. 

 

Definition 3. GNSS-based Trajectory (HT): In this study, to 

maintain trajectory continuity in areas where GNSS signals are 

unavailable, human motion detection is utilized. The HT is thus 

a series of indexed STPs {HT.STP1,HT.STP2,...,HT.STPn} that 

estimates an individual's path using human motion detection over 

periods when GNSS signals are absent, with each HT.STPn 

accurately reflecting a corresponding point in GT.STPn. 

 

Consequently, our movement uncertainty modelling can be 

illustrated as:  

 

Problem Statement: Given a HT and its corresponding GT, we 

aimed to find a mapping relationship M from HT to Dis (HT, GT), 

i.e., M: HT -> Dis(HT.STP, GT.STP), where Dis(HT.STP, 

GT.STP) denotes the spatial distance between HT.STP and 

GT.STP 

 

2.2 Trajectory Collection and Data Preprocessing 

In this paper, we choose the typical building-obscured urban 

scenes to collect crowdsourced GNSS trajectories data with 

complex human motion information, which contains:  

 

1) the GNSS trajectory HT is provided by crowdsourced 

smartphone-reported GNSS locations provided by different users, 

and the human motion information is modelled as the 

combination of handheld-assisted trajectory dead-reckoning, 

described in Figure.1 (Yu et al., 2023): 

 

 
Figure 1. Description of GNSS Location and Human Motion 

(Yu et al., 2023) 

 

After the handheld mode detection and conversion, the entire 

trajectory can be recreated as follows utilizing the motion data 

gathered throughout the trajectory period: 
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where 0 indicates the starting point of the selected trajectory, 

k and k represent the heading and gait-length information 

calculated in reference (Yu et al., 2023). 

2) the ground-truth trajectory GT is provided by the centi-meter 

level backpack SLAM product (Bao et al., 2022), that can 

provide high-accuracy reference trajectory for uncertainty error 

calculation.  Finally, the generated real-world dataset contains the 

combination of following elements: 

 ( ), ( ), , , ( ), ( )
k

GT GT HT HT

STP k k k k k kvector STP x STP y STP x STP y =       (2) 

where
kSTPvector indicates the basic element vector of training 

and test datasets. ( )GT

kSTP x and ( )GT

kSTP y are the ground-truth 

location, ( )HT

kSTP x and ( )HT

kSTP y are the GNSS location. 

 

2.3 Feature Construction 

This paper takes into account the time correlation and spatial 

correlation of human trajectory data in the feature extraction 

stage, by extracting GNSS-originated locations within a period 

of time, and combines with the related characteristics of human 

movement information to overcome the interference factors 

caused by the obstruction of urban buildings as follows: 

 

1) Actual sampling interval of adjacent GNSS location Ti and 

GNSS reported location  ( ), ( )G Gx k y k at current timestamp. 

2) Acquired gait-length and heading vector among two adjacent 

GNSS calculated locations: 
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where N indicates the amounts of steps detected among adjacent 

GNSS locations,
/W G

N and 
/W G

N indicate the corresponding step-

length and heading vector. 

3) Coordinate differences provided by human motion detection, 

GNSS, and hybrid value under x-axis and y-axis: 
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4) Euclidean distance of adjacent GNSS based location source 

and gait and heading originated based location source: 
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where  ( ), ( )G Gx k y k  represents the GNSS-originated locations. 

5) Estimated GNSS-originated speed and location observations 

and gait and heading originated observations: 

/
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where
M

kv and
GNSS

kv represent the MEMS sensors and GNSS 

originated walking speeds. 
GNSS

k indicates the sampling intervals 

of GNSS based location source. 

 

2.4 Proposed Model 

Prior studies (Shi et al. 2022; Yu et al. 2023) have highlighted the 

importance of extracting temporal features for predicting errors. 

Nonetheless, the Long Short-Term Memory (LSTM) networks 

previously utilized did not adequately capture long-range 

dependencies. Additionally, these networks were limited by their 

capacity to determine which points in time were most crucial for 

accurate forecasts. To overcome these shortcomings, our 

research introduces an innovative neural network design that 

combines the more sophisticated Gated Recurrent Unit (GRU) 

with a multi-head attention mechanism. This hybrid approach is 

engineered to more effectively recognize temporal relationships 

and the movement patterns of pedestrians.  

 

Figure 1 illustrates our model Attentive-GRU for handling the 

input sequence 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑇] , in which each 𝑥𝑖 =

[𝑑𝑒𝑙𝑡𝑎𝑢𝑝𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒, 𝐺𝑃𝑆𝑥, 𝐺𝑃𝑆𝑦, . . . ]  is the feature vector at 

time step 𝑖, and 𝑇 is the total number of time steps. Initially, we 

transform the input sequence into a higher dimensional space 

using a fully connected layer. This transformed sequence is then 

passed through a multi-head attention module. The output with 

refined attention is subsequently inputted into a Gated Recurrent 

Unit (GRU) module, which is responsible for capturing the 

temporal dependencies within the data. The final step involves 

mapping the GRU’s output to a one-dimensional vector via 

another fully connected layer, which serves as the prediction 

for the estimated error. 
 

Within the multi-head self-attention module, the initial step is to 

project the input sequence 𝑋  onto three separate spaces to 

generate the query 𝑄 = 𝑊𝑞𝑋, the key 𝐾 = 𝑊𝑘𝑋, and the value 

𝑉 = 𝑊𝑣𝑋. Here, 𝑊𝑞, 𝑊𝑘, and 𝑊𝑣 represent the respective weight 

matrices for the query, key, and value projections. Subsequent to 

these projections, we calculate the attention scores matrix 𝐴: 

𝐴 = softmax (
𝑄𝐾𝑇

√𝑑𝑘
),                      (7) 

where 𝑑𝑘 is the dimension of the key. The attention score matrix 

𝐴 represents the importance of each time step in the sequence. 

We then compute the output of the multi-head attention layer as: 

𝑋′ =       MultiHead(𝑄, 𝐾, 𝑉)Concat(head1, . . . , head𝐻)𝑊𝑂 ,   
(8) 

where head𝑖 = Attention(𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉) , and 𝑊𝑂  is the 

output weight matrix. 

 
The resulting output 𝑋′  from the multi-head self-attention 

module is subsequently channeled into the GRU to discern the 

sequential dependencies. The GRU encompasses a reset gate 𝑟𝑡, 

an update gate 𝑧𝑡, and a candidate hidden state ℎ̃𝑡. The update 

dynamics within the GRU are described by the equations below: 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥′𝑡]),

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥′𝑡]),

ℎ̃𝑡 = tanh(𝑊ℎ[𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥′𝑡]),

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡,

           (9) 

where 𝜎  is the sigmoid function, ⊙  denotes element-wise 

multiplication, and 𝑊𝑟, 𝑊𝑧, and 𝑊ℎ are the weight matrices for 

the reset gate, update gate, and candidate hidden state, 
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respectively. 

 
Finally, the output of the GRU module is passed through a fully 

connected layer to obtain the estimated error. The loss function 

is defined as the mean squared error between the predicted error 

and the ground truth error. 

 

 
Figure 2. The architecture of proposed AttentiveGRU 

 

3. Experimental Results 

3.1 Experimental Dataset Collection 

Our dataset was collected on the open campus of The Hong Kong 

Polytechnic University, where the received GNSS signals were 

significantly affected by reflections and occlusions, leading to 

time-varying sampling errors and large measurement 

inaccuracies. To obtain the ground-truth trajectories of 

individuals, we employed a SLAM system capable of surveying 

locations with centimeter-level precision. The GNSS-based 

trajectory dataset, denoted as HT, encompasses human 

movements and locations recorded using a variety of 

smartphones. Additionally, some representative trajectories 

within the constructed dataset are detailed in Figure. 3. 

 

 
Figure 3. Representative trajectories. 

 

In our study, a total of 15 trajectories were analyzed, covering an 

extensive dataset with a significant number of 7954 location 

points. These trajectories varied in length and duration, with an 

average trajectory length of 981.7 m and an average time period 

of 577.47 s. The dataset captured a wide range of human 

movements, including the largest walking speed recorded at 55.6 

m/s. Additionally, the data was collected with an average 

sampling interval of 1.1 s. Of the collected 15 trajectories, three 

trajectories were designated for testing, while the remainder were 

used for training and validation during the training process. 

 

3.2 Model Training and Baseline Methods  

To evaluate our model, we used existing models LSTM and 

BiLSTM as baselines and added a GRU for comparison. In 

addition, we introduced an LSTM model with an attention 

mechanism to assess the impact of attention on error estimation. 

During the training of these models, we utilized the mean squared 

error as the loss function. 

 

To prevent data leakage, we partitioned the dataset into training 

and testing sets based on estimates, with the training set 

containing 12 trajectories and the test set containing 3 trajectories. 

Moreover, we allocated 3 trajectories from the training set as a 

validation set and employed early stopping to avoid overfitting. 

Ultimately, we assessed the performance of the models by 

comparing their performance on the test set. 

 

For fairness, all models were implemented using PyTorch and 

trained on an NVIDIA Tesla P100 GPU. We set the 

hyperparameters of the models as follows: the dimension of the 

hidden layer was 64, the number of attention heads was 8, the 

learning rate was set to 0.001, and the batch size was 32. 

Furthermore, we trained the models for 300 epochs and employed 

early stopping based on the validation set. Ultimately, we 

evaluated the performance of the models by comparing their 

results on the test set. 

 

3.3 Performance Evaluation of Uncertainty Prediction  

 

Our evaluation focuses on two main metrics: the average error 

(AvgErr) and the errors at specific percentiles (P25Err, P50Err, 

and P75Err). The average error provides a straightforward 

measure of overall accuracy, reflecting the average deviation of 

the estimated ages from their true values across all data points. 

We evaluate error variability and distribution using the 25th 

(P25Err), 50th (P50Err), and 75th (P75Err) percentile errors. 

P25Err represents the lower error range, P50Err the median, 

indicating average performance, and P75Err the higher error 

range, showing the spread of errors from best to worst cases. The 

results are given in Table 1. 

 

Model AvgErr P25Err P50Err P75Err 

Our model 1.35 0.39 0.84 1.53 

AttentiveBiLSTM 1.46 0.38 0.83 1.57 

AttentiveLSTM 1.48 0.40 0.89 1.67 

BiLSTM 1.74 0.52 1.13 2.05 

GRU 1.64 0.48 1.03 1.87 

LSTM 1.78 0.53 1.15 2.10 

Table 1. Errors of Uncertainty prediction by Respective Models 

 

Our model demonstrates superior performance with the lowest 

average error of 1.35, indicating its effectiveness in accurately 

estimating ages across diverse datasets. Additionally, it shows 

commendable accuracy in the lower error range with a P25Err of 

0.39, closely followed by the AttentiveBiLSTM model at 0.38. 

This highlights our model's precision in handling a significant 

portion of the data with minimal deviation from the actual ages. 

 

At the median of the error distribution (P50Err), our model and 

the AttentiveBiLSTM model exhibit nearly identical 

performance, with errors of 0.84 and 0.83, respectively, 

suggesting both models maintain consistent accuracy across the 
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median of the datasets. However, our model slightly outperforms 

the AttentiveBiLSTM in the upper quartile (P75Err), with an 

error of 1.53 compared to 1.57, indicating better handling of 

outliers or more challenging age estimations. 

 

Comparatively, existing deep-learning models such as BiLSTM, 

GRU, and LSTM show higher average errors (1.74, 1.64, and 

1.78, respectively) and progressively larger errors across the 25th, 

50th, and 75th percentiles. This suggests that while these models 

have been foundational in sequential data processing, their 

performance in age estimation tasks is surpassed by models 

incorporating attention mechanisms, like our model and the 

AttentiveBiLSTM. The AttentiveLSTM model, while slightly 

less accurate than our model and the AttentiveBiLSTM, still 

demonstrates competitive performance with an average error of 

1.48 and shows a balanced error distribution across the 

percentiles. 

 

In this analysis, respective models are used to prediction the 

movement uncertainty and their performance are further 

evaluated. A comparison of the generated uncertainty areas by 

existing physical models: UB (Li et al., 2018), AUB (Furtado et 

al., 2018), BAEE (Shi et al., 2021) are shown in Figure 4. 

 

 
Figure.4 Comparison of Generated Uncertainty Areas 

 

It can be from Figure.4 that the proposed Attention-GRU proves 

much better coverage performance compared with existing 

physical models, the generated uncertainty area can well cover 

the ground-truth walking trajectories of the human.  Overall, our 

analysis underscores the efficacy of our model in age estimation, 

with it not only achieving the lowest average error but also 

exhibiting robustness across different portions of the error 

distribution, thereby confirming its reliability and accuracy in age 

estimation tasks across varied datasets. 

 

Besides the accuracy metric, two additional metrics, coverage 

ratio and the mean absolute error (MAE), are further revised to 

respectively evaluate how well the ground-truth trajectories are 

covered by the uncertainty ratio. Coverage ratio measures the 

proportional coverage of the ground-truth trajectory points by the 

generated uncertain regions. MAE refers to the normalized 

equivalent error, calculated from the adaptive Euclidean distance 

based on different models. These metrics collectively provide a 

comprehensive assessment of the performance, ensuring not only 

accuracy but also thorough coverage and optimal distribution of 

the uncertain regions relative to the actual trajectories. The 

performance of proposed accuracy indexes coverage ratio and 

MAE is described in Table 2 and Table 3. 

 

 Coverage Ratio 

Num AttentiveGRU BAEE AUB UB 

T01_05 97.6% 50.2% 15.2% 100% 

T02_05 99.5% 82.9% 59.5% 100% 

T03_05 98.6% 82.1% 46.9% 100% 

Average 98.6% 68.2% 38.2% 100% 

Table 2. Coverage ratio of respective method on test dataset 

 

 MAE (meter) 

Trajectory AttentiveGRU BAEE AUB UB 

T01_05 1.20 31.95 32.39 29.23 

T02_05 1.32 9.63 10.61 44.80 

T03_05 1.49 8.25 9.66 45.68 

Average 1.35 16.30 17.23 40.00 

Table 3. MAE (meter) of respective method on test dataset 

 

It can be found from Table 2 and Table 3 that the proposed 

AttentiveGRU model proves significant improvement of index 

MAE compared with three existing physical models, because 

they cannot take into account the estimation of positioning source 

measurement error under the task of human trajectory uncertainty 

modeling. In addition, the proposed AttentiveGRU also proves 

comparable performance of coverage ratio with UB, and 

improved performance with BAEE and AUB. 

 

4. Conclusion 

In conclusion, this paper presents a comprehensive analysis of 

GNSS signal-based trajectory uncertainty estimation in the 

context of an open campus environment. We have introduced a 

novel AttentiveGRU model that outperforms both physical 

models and deep-learning models in terms of accuracy and 

reliability, as evidenced by our extensive evaluations across 

multiple metrics. Our work not only advances the understanding 

of GNSS signal characteristics in complex urban settings but also 

provides a robust framework for accurate trajectory estimation. 

 

Looking ahead, our future work will focus on several key areas. 

We plan to extend our research to more complex indoor and 

outdoor scenarios, where signal interference and multipath 

effects pose additional challenges. Additionally, we aim to design 

a more universal model that can adapt to varying environmental 

conditions and user behaviors. Optimizing training samples will 

also be a priority, ensuring that our model can learn from a 

diverse and representative dataset. Through these efforts, we 

aspire to further enhance the accuracy and generalizability of 

trajectory estimation techniques, contributing to the development 

of more sophisticated location-based services and urban 

navigation systems. 
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