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Abstract 
 
The Earth Observation (EO) analytics are moving from local systems to online cloud computing platforms such as Google Earth 
Engine (GEE) and Open Geospatial Engine (OGE). A typical approach in existing efforts is to leverage geospatial data cubes with 
cloud computing to support large-scale big EO data analytics in Digital Earth systems. While online analytical processing (OLAP) 
can be enabled using the cube approach, it is still not clear how geospatial artificial intelligence (GeoAI) can be incorporated in data 
cubes to benefit the cube infrastructure. Such an investigation can consolidate the vision of an AI-ready SDI (Spatial Data 
Infrastructure). The paper presents a systematic approach to incorporate GeoAI models into geospatial data cubes to help create an 
AI Cube. It covers on-demand model retrieval, cube data and model integration, and distributed model inference. The approach is 
demonstrated in OGE, which is an EO cloud computing platform layered on the GeoCube implementation. The results show that 
such an AI Cube enriches a cube infrastructure with GeoAI capabilities, facilitates the on-demand coupling of cube data and GeoAI 
models, and improves the performance of GeoAI inference.   
 
 

1. Introduction 

The increasing volume of Earth Observation (EO) motivates the 
changes of the way EO data is being processed. Typical 
examples of big EO data processing in existing Digital Earth 
systems include Google Earth Engine (GEE) (Gorelick et al., 
2017) and Open Data Cube (ODC) (CEOS, 2021). They harness 
advanced information infrastructures like cloud computing to 
move the traditional local processing into online processing. 
Since the EO data processing is characterized by multiple data 
types, different spatial-temporal resolutions, and various tasks, 
the organization and processing of big EO data is a challenging 
topic.  
 
Recent process on data cubes have shown great promise in 
extracting information from analysis-ready data (Baumann et al., 
2018; Giuliani et al., 2017; Sudmanns et al., 2020). Data cube 
originated in the business intelligence field, where data is 
organized into multi-dimensional arrays according to interested 
dimensions. Recently data cube has been investigated in the EO 
domain to create a cube infrastructure. Both the International 
Committee on Earth Observation Satellites (CEOS) and Open 
Geospatial Consortium (OGC) are working on moving the 
geospatial data cube forward. The EarthServer data cube 
proposed by Baumann et al. (Baumann et al., 2018) supports 
the management and processing of raster data using an array 
database approach. The ODC launched by the CEOS (Gomes et 
al., 2021) was developed for the analysis of time series images. 
Both solutions are mainly designed for raster data. In an Open 
Geospatial Engine (OGE), the GeoCube is proposed (Gao et al., 
2022), which extends the capacity of data cubes to different 
types of geospatial data including both vector and raster data. 
 
Recent work envisions an AI-ready SDI (Spatial Data 
Infrastructure) by adding AI data and models into an SDI (Yue 

et al., 2022). Such an SDI can be consolidated by a cube 
infrastructure enriched with AI capabilities, shortly named as an 
AI Cube. While online analytical processing (OLAP) can be 
enabled using the cube approach, it is still not clear how 
geospatial artificial intelligence (GeoAI) can be incorporated in 
data cubes to benefit the cube infrastructure. For example, 
images are still the basic unit of DL inference (Aspri et al., 2020; 
Fang et al., 2021; Lunga et al., 2020), making it difficult to 
develop fast and accurate inferences for tile-based distributed 
data in data cubes. Furthermore, different from traditional EO 
processing algorithms, GeoAI models have their own specific 
characteristics in data analytics. Due to the spatial heterogeneity 
of geographical phenomena, GeoAI models such as remote 
sensing (RS) intelligent interpretation models have varying 
inference abilities on EO imagery from different regions, 
seasons, and scales. One individual GeoAI model is often not 
general enough in various tasks and regions. Thus it is often 
necessary to integrate various trained models together to 
support various inference tasks at different places in a Digital 
Earth system. 
 
The paper presents a systematic approach to incorporate GeoAI 
models into geospatial data cubes to help create an AI Cube. It 
covers on-demand model retrieval, cube data and model 
integration, and distributed model inference. The approach is 
developed in OGE, which is an EO cloud computing platform 
layered on the GeoCube implementation. The results 
demonstrate the applicability of the approach.  
 
The rest of the paper is organized as follows. Section 2 presents 
the key issues towards the vision of an AI Cube. Section 3 
presents how the OGE GeoCube is used to develop an AI Cube. 
The implementation and evaluation of the AI Cube are 
described in Section 4. Section 5 raises several observations 
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that need some further discussion. And finally, Section 6 
presents the conclusions and future work. 
 

2. What is an AI Cube 

A data cube generally refers to an array of multiple dimensions 
that facilitates online analytics, it is also known as an OLAP 
cube (Gray et al., 1997). The OLAP cube was introduced into 
the geospatial domain to accommodate various geospatial data 
including raster and vector data by adding the spatial dimension 
and spatial measure (Gao et al., 2022). In recent years, this term 
has been used in the EO domain to refer to a time-series multi- 

dimensional array. It is combined with Cyberinfrastructure to 
create EO data cube infrastructure, which facilitates EO data 
management, access, analysis, visualization, and interoperability. 
 
The AI Cube is proposed to empower geospatial data cubes 
with GeoAI analytical functions. It takes benefits of analysis-
ready data organization in geospatial data cubes and analytical 
functions from GeoAI models. An AI cube can accommodate 
various GeoAI models and make model inference over the cube 
data possible. Fig.1 gives an overall architecture for an AI Cube, 
which has the following major characteristics: 

 

 
Figure 1. An AI Cube framework. 

 

(1) On-demand model retrieval: The AI Cube is augmented with 
a DL model repository that stores trained GeoAI models. The 
repository could be a model fact table in a cube. Each model 
has attributes such as task, neural network, spatial and temporal 
applicability. These attributes help to filter appropriate models 
in Cube. Traditional cubes focus on using formalized 
dimensions to index data from fact tables. From an AI Cube 
perspective, the model attributes can be formalized as 
dimensions in cubes. Then they can be indexed using cube 
dimensions from a model fact table, thus promoting a data cube 
to a model cube. Assuming a decision support scenario where 
users want to know the cropland changes in the past several 
years in a spatial region, the change detection task, together 
with spatial and temporal requirements, will be used in the cube 
to retrieve GeoAI models from the cube on demand.  
 
(2) Cube data and model integration: Data and model need to be 
coordinated to be prepared for distributed inference. On the one 
hand, traditional cube data retrieval and OLAP operations can 
be reused to efficiently get input data for models. Data are 
organized in the cube following well-defined ways like the star, 
snowflake, and fact constellation schemas (Chaudhuri and 
Dayal, 1997). The data organization is further combined with 
advanced infrastructure like cloud computing using distributed 
databases/files and computing technologies. To improve the 
performance of retrieval of EO imagery in cubes, the EO data is 
often organized in grids using a pyramid structure like the 
Cloud Optimized GeoTiff (COG) files. The OLAP operations 
on them can get high level product as input. On the other hand, 
these data still need to be pre-processed in a ready form for 
inference. The processing typically includes tile overlapping 

and band normalization. For example, in terms of pixel-level 
inference tasks, it goes through the following steps: performing 
inference separately on tiles and then stitching the results 
together. This may result in noticeable seam artifacts. A 
common solution for the pre-processing is to ensure the 
existence of overlapping regions between tiles and optimize the 
results through probability voting. The other one is band 
normalization, where the inference data needs to undergo a 
normalization process consistent with the training samples 
before feeding into the model. 
 
(3) Distributed model inference: The model inference can take 
advantage of cube infrastructure by disseminating tiles as 
batches into a distributed inference engine. First, the tile IDs 
from multi-source EO data are retrieved from the cube 
dimension and packaged into several batches, where the data in 
each batch has the same or similar product, resolution, datetime 
and bands. After that, each batch is allocated to different nodes 
for parallel computing, and each node automatically selects the 
matched DL models through the batch attributes for multi-GPU 
inference. Finally, the inference results of cube tiles are 
mosaiced together and post-processed to get the final inference 
result. Different tasks require different post-processing methods. 
For example, in object detection tasks, techniques like non-
maximum suppression (NMS) (Neubeck and Van Gool, 2006) 
or weighted box fusion (WBF) (Solovyev et al., 2021) are 
commonly used to eliminate multiple detection boxes for the 
same object. In terms of pixel-level inference tasks, steps such 
as image stitching, color mapping, denoising, and smoothing 
are typically performed to optimize the inference results 
(Krähenbühl and Koltun, 2011). 
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3. The OGE Approach 

The OGE is an EO cloud computing platform for global scale 
data management and geoprocessing. It is developed by Wuhan 
University and available to the public online at 
http://www.openge.org.cn/. OGE integrates and manages multi-
source, heterogeneous, and big spatiotemporal data on a global 
scale using the GeoCube model.  The data are managed using 
the star constellation schema. It includes different dimensions, 
such as product, spatial, temporal, and band dimensions. The 
product/band dimension specifies the thematic axis using the 
product name (e.g., Sentinel 2 or Landsat 8), instrument name 
etc. Spatial dimension specifies the spatial axis using the grid 
code, grid name, city name etc. Temporal dimension specifies 
the temporal axis using the acquisition time and result time. EO 
images are organized as tiles in fact tables, which can be 
retrieved through multi-dimensional cube queries.  
 
GeoCube supports query and processing operations as follows. 
The multi-dimensional cube queries are parsed and processed 
on the database where the tile IDs are retrieved from the 
dimension and fact tables. These tile IDs are partitioned and 
assigned to each computing unit to enable parallel data access. 
Cube processing includes batch processing, cloud computing, 
and multi-thread computing. The data processing involves 
multiple processes among the computing nodes and multiple 
threads in one node, thereby supporting hybrid parallelism. 
 
GeoAI models are integrated into OGE GeoCube by adding new 
dimensions and fact tables. Fig.2 shows the cube approach to 
accommodate GeoAI models, where the task-class dimension is 
added to join the model fact table. This dimension describes the 
types of tasks that GeoAI models can perform and their 
corresponding classifications. Dimension members are defined 
by using combinations of tasks and/or classes in terms of 
classification tasks. Model facts are indexed by spatialKey, 
timeKey, productBandKey, taskClassKey, and modelKey. It 
also includes fields modelId and qualityElements. The modelId 
can join to the complete metadata of the model. 
QualityElements can provide the quality information of the 
model in terms of spatial measurement in each cell. 
 

 
Figure 2. A cube approach to accommodate GeoAI models. 

 

The model inference is integrated into the cube processing 
operations through a CPU/GPU hybrid distributed computing 
approach.  This includes the preprocessing into a ready form 

and distributed inference. Preprocessing utilizes the parallel 
acceleration of a distributed multi-node CPU environment. The 
input data is initially parallelly sliced, and distributed tiles are 
computed in parallel by thread pools on each node. After 
preprocessing, the tile data is organized into several batches, 
with each batch consisting of multiple tensors. The main thread 
schedules pending inference batches, sequentially pushing batch 
data to multiple nodes with multiple GPUs for parallel inference. 
After all batches have been inferred, the main thread collects 
and stitches results, and performs corresponding post-
processing on the resulting tiles, thus generating the final result. 
 

4. Implementation 

A prototype system based on the OGE is developed to 
demonstrate the applicability of the approach (Fig. 3). It follows 
a layered architecture: hardware layer, data layer, computing 
layer, and application layer. The hardware layer includes 
CPU/GPU high-performance computing clusters, data storage 
arrays, and fiber optic network links. EO data and models are 
imported into the data layer. The computing layer is responsible 
for deploying models, receiving data, and executing the 
inference workflow. The application layer extends the OGE 
Web GUI to allow users perform specific inference tasks online 
in a user-friendly way. 
 

 
Figure 3. Implementation architecture of the system. 

 

In the front end, OGE provides a set of Web Graphical User 
Interface (GUI) for data retrieval and programming (Fig. 4). 
Fig4a and 4b show the data resource and data query in OGE 
respectively. Fig4c shows the OGE support users to do 
programming interactively in a Web GUI, and Fig4d shows that 
users can build geoprocessing workflows in a drag-and-drop 
way with low code efforts. 
 
By extending the GUI to the GeoAI model inference, Fig. 5 
shows a user-friendly GUI. It allows users to select tasks and 
spatiotemporal ranges to get inference results without delving 
into technical details on what data and models being used. Task 
types include land user and land cover (LULC) classification, 
single-class land cover extraction, change detection, object 
detection, etc.  Two types of inference are supported: inference 
of state and time-series inference. The inference of state (Fig5a 
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and 5b) means that the latest EO data available for the specified 
period are used for deriving the state of the area. The time-series 
inference (Fig5c and 5d) means that the cube-based OLAP 
operations are used to aggregate images, followed by the 
inference on the aggregated result. For example, the weekly 

images are rolled up into a quarterly image using the average 
method to reflect the comprehensive characteristics of that 
quarter. Such cube operations can be combined with inference 
to construct an inference pipeline, improving the performance 
of cube data processing.  

 

 
Figure 4. OGE Web GUI. 

 

 
Figure 5. Snapshots of model inference. 
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5. Discussion 

The paper presents an approach to couple geospatial data cubes 
with GeoAI models, thus empowering the traditional EO cubes 
with capabilities of AI analytical functions. Traditional EO 
cubes manage geospatial data to make them ready for cube 
OLAP analysis. Such cube analytics integrate traditional 
geoprocessing functions with parallel distributing paradigms in 
the cloud computing such as MapReduce(Dean and Ghemawat, 
2008) to process EO data in distributed computing nodes. The 
traditional geoprocessing functions can be regarded as physics-
based models. In this paper, the AI cube aims to accommodate 
data-driven models into the cube infrastructure. The 
implementation raises several observations that need some 
further discussion. 
 
Metadata for GeoAI models: The AI Cube framework needs the 
access to and utilization of GeoAI models. The premise is that 
these models are described using a formal approach, enabling 
model management, retrieval, deployment, and invocation. 
Currently the interoperability of model descriptions needs more 
investigations. Well-defined metadata for GeoAI models can 
facilitate efficient exchange, sharing, and reuse of models in the 
cube infrastructure. The OGC TrainingDML-AI Standard 
Working Group (SWG) is working on extending the standards 
on GeoAI training data to models (Yue et al., 2022; Yue and 
Boyi, 2023). The OGC Testbed19 machine learning models 
engineering report also makes recommendations for work on 
model specification (Samantha and Trent, 2024). Compared to 
geospatial data, the descriptions of GeoAI models not only 
include the general metadata, but also emphasize the inputs and 
outputs of models. The specification of the model descriptions 
also needs to follow FAIR principles, which refer to findability, 
accessibility, interoperability, and reusability.  
 
Matchmaker between tasks and models: The matchmaker helps 
to select appropriate GeoAI models from a model repository 
based on specific tasks. Some public repositories such as 
Hugging Face (Wolf et al., 2020), TensorFlow Hub, and 
PyTorch Hub, offer users a plethora of available DL models. 
There are two types of matching, explicit and implicit matching. 
The former one is based on keyword matching and 
spatiotemporal filtering. The latter one can rely on model 
feature repository that are created using deep feature from AI. It 
is worthwhile to investigate which one is better for matchmake 
between tasks and models.  
 
AI ready data and model preparation: The paper unifies the 
organization of data and models through a multi-dimensional 
view. Unlike traditional EO data cubes, each cell is not limited 
to raster or vector data. It integrates facts and extends dimension 
tables to access GeoAI models. The data in the cell cannot be 
used directly as input for models, often requiring OLAP 
operations to pre-process the data. In addition, it needs to be 
transformed into a machine-readable format such as Tensor. The 
models also need to be deployed and disseminated to distributed 
nodes to facilitate the on-the-fly inference. Thus the model can 
be in an operational state, ready to accept input data at any time. 
This means that both data and model need to be prepared ready 
for inference. The results enrich the investigation of an AI-ready 
SDI. 
 
Inference pipeline: Traditionally it is the labour-intensive work 
to apply GeoAI models to process EO data, which typically 
involves data pre-processing, model deployment, format tuning, 
and data post-processing. This ad-hoc workflow hampers the 

efficient application of GeoAI models in the EO domain, 
necessitating automated solutions to provide efficient inference 
decision services. The AI extension to the GeoCube builds an 
automated inference pipeline that fully utilizes high-
performance computing resources to accelerate the application 
of models. This pipeline can be evaluated in the future against 
various cases and large scale inference to check performance 
and make optimization when needed.  
 
Hybrid physical and AI modelling: It has been discussed that 
physical and machine learning models can be integrated to 
complement each other (Reichstein et al., 2019). Although they 
basically belong to two different paradigms: theory-driven and 
data-driven, each of them has its own benefits. The former one 
basically is interpretable, and the latter one offers the potential 
to find unexpected the synergy generally can happen at several 
places: 1) using machine learning to improve parameterizations 
of physical models, 2) replacing a physical sub-model with a 
machine learning model, 3) analysis of model-observation 
mismatch. The physical model in traditional geospatial data 
cubes can be coordinated with the GeoAI models in AI Cube to 
create an analytical workflow for hybrid physical and AI 
modelling. This will improve the modelling capabilities of 
geospatial data cubes.  
 

6. Conclusions and Future Work 

The paper presents an AI Cube to enrich the traditional 
geospatial data cube with GeoAI analytical functions. It 
presents the framework of an AI Cube. The development of it 
follows the extensions of GeoCube in OGE. The model 
organization and distributed inference in GeoCube are 
highlighted.  
 
The prototype implementation demonstrates the applicability of 
on-demand model retrieval, cube data and model integration, 
and distributed model inference. The results show that such an 
AI Cube enriches a cube infrastructure with GeoAI capabilities, 
facilitates the on-demand coupling of cube data and GeoAI 
models, and improves the performance of GeoAI inference. 
 
There are also several observations, such as specification for 
model descriptions, matchmaker for tasks and models, AI ready 
data and model preparation, and automation of inference 
pipeline. We will work closely with OGC TrainingDML-AI 
SWG to move the work foward.  
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