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Abstract 

 

Soil moisture is a crucial component of the global terrestrial ecosystem water vapor cycle, and higher spatial-temporal soil moisture 

product has significant impacts on research in agriculture, hydrology, and ecology. Spaceborne Global Navigation Satellite System 

Reflectometry (GNSS-R) is a new remote sensing technology which can be used to retrieve soil moisture. Cyclone Global Navigation 

Satellite System (CYGNSS), launched by NASA in 2016 to observe ocean surface hurricanes, has also collected a substantial amount 

of data of GNSS signals reflected over the land. This paper focuses on soil moisture retrieval using CYGNSS and SMAP dataset. In 

this study, three machine learning methods (GSVM, BP and RF) are used for spatial interpolation of SMAP soil moisture data. Result 

shows RF interpolation is the best with the RMSE of 0.044 cm³/cm³ and the CC of 0.959 compared with SMAP truly SM. Then soil 

moisture data after RF interpolation and conventional linear interpolation are respectively used as response variables to train the 

retrieval model by ELM, BP and RF machine learning methods respectively. Results show that, among the six regression models, the 

RF-RF regression model performs the best with the RMSE of 0.012 cm³/cm³ and the CC of 0.986. Using this model, we get a global 

soil moisture product and have higher temporal and spatial resolution. 

 

 

1. Introduction 

Soil moisture (SM) is a physical quantity used to express the 

degree of soil dryness and moisture. It is an important component 

of the water vapor cycle in global terrestrial ecosystems 

(Vereecken et al., 2008). SM plays an indispensable role in 

research on climate change, global ecology, surface hydrology 

models, agricultural drought, and crop yield estimation. Previous 

measurement methods such as resistance method and time 

domain reflectometry have a small measurement range and can 

only reflect the local conditions of the measured area (Persson 

and Haridy, 2003). At the same time, they require a lot of 

manpower and material resources, have a long experimental 

cycle, and are greatly restricted by external environmental 

conditions. Currently, using microwave remote sensing satellites 

to obtain ground SM data has become a common method, but 

there are also some shortcomings. The lenses and sensors of 

optical remote sensing satellites are susceptible to the influence 

of clouds, fog and other weather conditions, and are expensive; 

the spatial and temporal resolution of infrared band remote 

sensing is small; microwave remote sensing has a relatively long 

wavelength, strong penetrating power, and can achieve all-

weather observation, but the cost is relatively high (Price, 2017; 

Paloscia et al., 2001). 

 

GNSS reflectometry (GNSS-R) is an emerging remote sensing 

technology, which is a derivative technology from GNSS. 

GNSS-R makes use of the GNSS signals which are always 

available on the Earth’s surface. Due to the fact that GNSS-R 

does not require any dedicated signal transmitter, it has the 

advantage of low cost. This technology also has the advantage of 

large coverage or higher spatial resolution. GNSS-R has achieved 

great advances over the past few decades, and it is still making 

fast progress. GNSS-R has been exploited to retrieve a series of 

physical and environmental parameters such as ocean surface 

height, sea surface wind speed, significant wave height, snow 

depth, soil moisture, above-ground biomass, and the sea ice 

detection, ship detection and flood detection (Yu, 2021). The SM 

experiment 2002 (SMEX02) is the first experiment in which both 

GPS reflected signals from land and in situ data were collected 

throughout the state of Iowa, USA in June-July 2002. In this 

series of experiments, it was found that the change of SM has a 

great correlation with precipitation events (Masters et al., 2003; 

Jackson et al., 2003).  

 

CYGNSS (Cyclone Global Navigation Satellite System) mission 

successfully launched 8 microsatellites to establish a 

constellation for observing tropical cyclones with high spatial 

and temporal resolution, and successfully implemented the use of 

GNSS-R to monitor ocean hurricane intensity (Ruf et al., 2013a). 

Its coverage range is the mid- to low-latitude areas on both sides 

of the equator (about 40°S ~ 40°N), to cover the ocean areas of 

interest. The coverage area of the CYGNSS also includes a lot 

land area, so the recorded data can also be used to retrieve 

parameters. In 2018, Chew et al. found a strong positive 

correlation between CYGNSS surface reflectance and SMAP SM, 

proving that CYGNSS can be used to develop global SM 

products with high temporal resolution (perhaps every 6 hours) 

(Chew and Small, 2018). Many studies have also confirmed the 

correlation between CYGNSS data and SM (Carreno-Luengo et 

al, 2018; Al-Khaldi et al., 2019; Al-Khaldi et al., 2021). Volkan 

Senyurek evaluated the error of different spatial interpolation 

methods (Senyurek et al., 2021). Volkan Senyurek used three 

machine learning methods (ANN, RF, SVM) to retrieve SM 

(Senyurek et al., 2020). Orhan Eroglu used a fully connected 

artificial neural network to retrieve SM by learning the nonlinear 

relationship between SM and other terrestrial geophysical 

parameters and the observable data of CYGNSS (Eroglu et al., 

2019). 

 

In this study, we first propose to interpolate the low-resolution 

SM data using three machine learning algorithms, namely 

Gaussian Support Vector Machine (GSVM), Back-Propagation 

(BP) Neural Network, and Random Forest (RF). Traditional 

linear interpolation is also studied for performance comparison. 

The SM data generated by a machine learning-based 
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interpolation and the traditional linear interpolation method are 

respectively employed are used as reference data for constructing 

machine learning-based SM retrieval models. 

 

2. Dataset and ML Algorithm 

2.1 Cyclone Global Navigation Satellite System 

In this study, the Level 1 version 3.2 data of the cgy01 satellite in 

2023 was used to retrieve SM. Daily observations for each 

satellite were stored in an NC file. DDM (Delay-Doppler Maps) 

is one of the key variables of analogue scattered power for each 

specular point. It is a two-dimensional map composed of 11 

doppler frequency shift units and 17 time delay units. The 

reflection area of DDM associated with land surface specular 

reflection point is mostly coherent, and the reflected signal power 

is concentrated in a small and smooth area around the specular 

emission point (Ruf et al, 2013b). This part of the energy comes 

from the coherent scattering signal. In addition to DDMs, the NC 

files also provide some useful metadata of geometric and 

instrumental parameters. Those commonly used parameters 

include quality flags, error estimates, and bias estimates as well 

as a variety of orbital, spacecraft/sensor health, timekeeping, and 

geolocation parameters. 

 

Compared with v3.1 L1 data, the correction for coarse 

quantization effects that was implemented in v3.1 for the signal 

portion of the DDM has been updated to include a correction to 

the noise floor portion of the DDM.  This update is found to 

improve the sensitivity to SM over land and to have a minimal 

effect on the sensitivity to wind speed over ocean. L1 variables 

over land and ocean are now combined in common NC data files, 

with additional details added regarding the specular point 

calculation over land. Nadir antenna pattern and NBRCS 

rescaling have been updated to improve the inter-satellite 

consistency of the L1 calibration (CYGNSS., 2024). This is 

undoubtedly a huge step forward for SM retrieval. 

 

2.2 SMAP 

The SM products from the L3 level of the Soil Moisture 

Active Passive (SMAP) mission are used in this study as 

the “truth value” in the retrieval process. The soil moisture 

product obtained by this mission is also considered to be 

the most accurate product among the existing SM products. 

SMAP L3 level global SM data is divided into active and 

passive products. The SMAP L3 product currently used is 

0-5 cm surface SM on a global scale. The SMAP data used 

here are L3 v.5 radiometer global daily Equal Area 

Expandable Earth Grid (EASE-Grid) data with a spatial 

resolution of 36 km × 36 km. They contain SM, quality 

flags and other ancillary information gridded on EASE-

Grid v2.0, with ascending and descending channels being 

averaged together to form a single daily channel (Entekhabi 

et al., 2010). Besides the SM, additional variables extracted 

from the SMAP files and used in the algorithm such as 

quality flags, land roughness coefficient (LRC), vegetation 

water content (VWC), vegetation optical depth (VOD) and 

soil surface temperature (SST). 

 
2.3 Selected Machine Learning Algorithms 

The selection of machine learning algorithm and its 

hyperparameter has a significant impact on the performance of 

SM prediction. In this work, we use BP neural network, RF, 

Extreme Learning Machine (ELM) and GSVM methods, which 

are widely used for supervised regression problems. BP, RF and 

GSVM are used to build SM interpolation models. SM; ELM, BP 

and RF are used to build SM retrieval regression models. 

 

2.3.1 BP Neural Network: BP neural network is a multi-layer 

feedforward neural network (Rumelhart et al., 1986). The model 

is so called because the error is subject to backpropagation while 

the information is propagated forward. In the propagation process, 

the model uses gradient descent method to constantly update the 

weight and bias of a single sample. BP neural network can be 

divided into three layers: input layer, hidden layer and output 

layer. 

 

2.3.2 Random Forest: Based on Bootstrap self-help method, 

RF randomly selects dependent variables from the original 

sample as the training set, and randomly selects a certain amount 

of influence factors from the dependent variables in the original 

sample as the splitting point of tree nodes, so that each tree in the 

forest has its own different training data. Accordingly, random 

forest can randomly generate many different classification trees, 

from which the number with high repetition rate is selected or the 

average value is used as the final result of the model (Breiman, 

2001). 

 

2.3.3 Gaussian Support Vector Machine: GSVM is a 

classification algorithm, and its basic idea is to map the data into 

a high-dimensional space, and then find the best hyperplane in 

the high-dimensional space to classify. This mapping is usually 

achieved by kernel functions, of which Gaussian kernel functions 

are a common choice (Gonzalez-Abril et al., 2014). 

 

2.3.4 Extreme Learning Machine: ELM is a machine 

learning algorithm used to solve supervised learning problems, 

especially regression and classification problems. The main idea 

of ELM is that in the neural network, the weight of the input layer 

and the bias of the hidden layer are randomly selected, while the 

weight of the output layer is calculated by the analytical method, 

which can greatly speed up the training speed (Huang et al., 

2006). 

 

3. Method 

3.1 Data Quality Control 

First, we need to extract DDM data and relevant parameters from 

the CYGNSS data by excluding those related to the ocean 

specular points (SP). After the land and ocean data are separated, 

in order to ensure the data quality, it is necessary to set up a 

number of rules to exclude the poor quality data such as antenna 

gain, signal-to-noise ratio, and altitude angle, thereby improving 

the accuracy of the model. In this work, if the data of SP reach 

any of the following receiver and experimental conditions, the 

data is eliminated: 

1) the incident angle θ is higher than 65°. 

2) the receiver gain Gr is less than 0 dB. 

3) the signal-to-noise ratio is less than 2 dB. 

4) the high elevation more than 2000m. 

 

3.2 Data Matching 

Firstly, since the CYGNSS land reflection point 

coordinates are inconsistent with the SMAP SM data point 

coordinates, space matching work must be carried out to 

obtain the SM and auxiliary data at the reflection point. In 

order to compare with the machine learning-based 

interpolation, we also use a commonly used linear 
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interpolation method. In this work, SM during daily time 

is considered constant, so it only needs to perform day to 

day time matching. In other words, time matching is 

aligning CYGNSS and SMAP data on the same day. In 

space dimension, since SMAP's revisit time is 2-3 days, 

this means that all the land in the world cannot be covered 

in one day. In order to obtain reliable interpolation results, 

only CYGNSS specular reflection points within SMAP 

satellite coverage are considered to retrieve SM on the 

same day. 
 

3.3 Machine Learning-based Interpolation 

In this work, SMAP SM data is used to explore the interpolation 

accuracy of three machine learning methods. Elevation, 

longitude, and latitude of SMAP data were used as feature 

vectors of the interpolation model. SM of SMAP data was used 

as response variables. To obtain interpolated SM results on a 

global scale, three consecutive days of SMAP data were used. 70% 

of the data is used for the training of machine learning models 

and 30% was used to test the performance of the models. The 

best-performing machine learning method was used for spatial 

matching of CYGNSS and SMAP data. SMAP SM is the 

response variable of training data set. The best performing 

machine learning method is used to train and generate the model. 

The longitude, latitude and elevation of the CYGNSS specular 

reflection point are taken as the input of the model, and the output 

data is taken as the SM value of the CYGNSS reflection point. 

Other auxiliary parameters from the SMAP dataset are also 

processed by the same method. VWC, SST and LRC of CYGNSS 

reflection points will be used as input to retrieve the SM 

regression model (Clarizia et al., 2019).  

 

3.4 Regression Model Construction 

This work used three machine learning methods: RF, BP 

and ELM to build retrieval model with SM as the response 

variable. DDM snr is the main input vector. Furthermore, 

auxiliary parameters are also essential as feature vectors 

such as incident angle, inst gain, LRC, VWC, VOD, SST, 

SP longitude and latitude. All of them have great influence 

on SM retrieval. In order to get a model with good 

generalization ability, we used CYGNSS and SMAP data 

from January 1, 2023 to December 31, 2023 to train the 

machine learning regression models. To verify the 

generalization ability of these regression models, another 

test dataset was used, which was independent of the 

training dataset. 
 

 

Input Variables Long Name 

ddm snr DDM signal to noise ratio 

incident angle Specular point incidence angle 

inst_gain Instrument gain 

longitude Specular point longitude 

latitude Specular point latitude 

LRC Roughness coefficient 

VWC Vegetation water content 

VOD Vegetation opacity 

SST Surface temperature 

Table 1. List of Input variables for the Regression Models 

 

3.5 Accuracy Index 

In this work, root-mean-square error (RMSE), mean absolute 

error (MAE) and correlation coefficient (CC) are used to verify 

the interpolation accuracy of the above interpolation method and 

the accuracy of the SM retrieval regression model. 
They are defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1 ,                  （1） 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |�̂�𝑖 − 𝑦𝑖|
𝑛
𝑖=1 ,                        （2） 

 

𝐶𝐶 =
∑ (𝑦𝑖−�̅�)(�̂�𝑖−�̅̂�)

𝑛

𝑖=1

√∑ (𝑦𝑖−�̅�)
2𝑛

𝑖=1 ∑ (�̂�𝑖−�̅̂�)
2𝑛

𝑖=1

,                （3） 

 

where       n = the number of data samples  

𝑦𝑖 = the SM estimates by the regression model  

�̂�𝑖 = the SM data of SMAP 

�̅�𝑖 = the mean of 𝑦𝑖 
�̅̂� = the mean of �̂�𝑖 
 

4. Results 

The results were analysed in two parts. Firstly, the interpolation 

results of different methods are compared. Secondly, the 

regression performance based on three machine learning models 

was analysed and the retrieval result of the RF model using RF 

interpolation was given. 

 

4.1 Interpolation Accuracy 

Figure 1 shows the test dataset of SMAP SM, treated as truth SM 

values, while Figure 2 shows the comparison of machine 

learning-based interpolation results with SMAP SM. 

 

 

Figure 1. Test Set SMAP SM Distribution MAP. 

 

Figure 2. Soil Moisture after Different Interpolation. 
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Interpolation CC 
MAE 

(cm³/cm³) 
RMSE 

(cm³/cm³) 

GSVM 0.855 0.054 0.079 

BP 0.84 0.059 0.082 

RF 0.938 0.034 0.053 

Table 2. Interpolation Performance of different Machine 

Learning Models 

 

Figure 1 shows the distribution points of SMAP data of the test 

set on the global map. It can be seen that all land is covered in the 

range 45°S to 45°N; this also fully covers the coverage of 

CYGNSS. Figure 2 shows the SM interpolation errors by 

machine learning-based methods. Overall, the RF interpolation 

results are better than the BP and GSVM interpolation results. 

Table 2 shows the SM retrieval performance of GSVM, BP and 

RF model interpolation. RF model has the highest CC of 0.938, 

the lowest RMSE of 0.053 cm³/cm³ compared with SMAP truly 

SM. Performances of BP and GSVM model is worse than RF 

model. This also proves that the interpolation result using RF is 

more reliable so that we used daily SMAP SM for RF 

interpolation to obtain SM at CYGNSS specular reflection points 

on the same day. 

 

4.2 Performance based on Different Machine Learning 

Regression Models 

In this part, the SM data generated by machine learning-based 

interpolation are used as response variables to train the SM 

retrieval models based on ELM, BP and RF machine learning 

methods respectively. At the same time, we also use the linear 

SM interpolation results to train the three machine learning-based 

models as a contrast. According to different combinations of 

interpolation methods and machine learning regression methods, 

six models are named as Linear-ELM Model, RF-ELM Model, 

Linear-BP Model, RF-BP Model, Linear-RF Model, RF-RF 

Model for simplicity.  

 

ELM Performance Index 

Interpolation CC 
RMSE 

(cm³/cm³) 
MAE 

(cm³/cm³) 

Linear 0.814 0.076 0.058 

RF 0.831 0.065 0.050 

Table 3. Trainset Performance of ELM Regression Model 

 

BP Performance Index 

Interpolation CC 
RMSE 

(cm³/cm³) 
MAE 

(cm³/cm³) 

Linear 0.838 0.072 0.054 

RF 0.854 0.060 0.047 

Table 4. Trainset Performance of BP Regression Model 

 

RF Performance Index 

Interpolation CC 
RMSE 

(cm³/cm³) 
MAE 

(cm³/cm³) 

Linear 0.988 0.021 0.014 

RF 0.99 0.014 0.009 

Table 5. Trainset Performance of RF Regression Model 

 

Table 3-5 shows the different model performances. In the same 

machine learning regression method, the RF interpolation model 

is superior to linear interpolation, with higher CC and lower 

RMSE. For RF-ELM regression model, the CC increases 2.1% 

and RMSE decreases 14.5% compared with Linear-ELM model. 

For RF-BP regression model, the CC increases 1.9% and RMSE 

decreases 16.7% compared with Linear-BP model. For RF-RF 

regression model, the CC increases 0.2% and RMSE decreases 

35.7% compared with Linear-RF model. For three machine 

learning retrieval methods, RF regression method shows the best 

retrieval results. In general，RF-RF model has the highest CC of 

0.99 and lowest RMSE of 0.009 cm³/cm³. 

 

In order to verify the generalization ability of the above retrieval 

model, 300000 groups of data are selected as the test set. Here is 

the performance of the test set. 

 

ELM Performance Index 

Interpolation CC 
RMSE 

(cm³/cm³) 
MAE 

(cm³/cm³) 

Linear 0.813 0.076 0.058 

RF 0.831 0.065 0.050 

Table 6. Testset performance of ELM Regression Model 

 

BP Performance Index 

Interpolation CC 
RMSE 

(cm³/cm³) 
MAE 

(cm³/cm³) 

Linear 0.838 0.073 0.054 

RF 0.854 0.060 0.047 

Table 7. Testset performance of BP Regression Model 

 

RF Performance Index 

Interpolation CC 
RMSE 

(cm³/cm³) 
MAE 

(cm³/cm³) 

Linear 0.973 0.031 0.02 

RF 0.986 0.019 0.012 

Table 8. Testset Performance of RF Regression Model 

 

Table 6-8 shows the performance of different models using the 

test data. Each model shows good generalization ability. For two 

ELM regression models, the CC increases 2.1% and RMSE 

decreases 14.5%. For two BP regression models, the CC 

increases 2.1% and RMSE decreases 14.5%. The performance of 

the RF model has been slightly reduced, but it still shows the best 

results with higher CC and lower RMSE. Density maps are used 

to show the regression performance of predicted SM with true 

SM.  

 
(a) Linear-ELM Model         (b) RF-ELM Model 

Figure 3. Density Plot of ELM Model. 
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(a) Linear-BP Model        (b)  RF-BP Model 

Figure 4. Density Plot of BP Model. 

 

 
(a) Linear-RF Model        (b)  RF-RF Model 

Figure 5. Density Plot of RF Model. 

 

Figure 3-5 shows the point density plots for the nine models. The 

performance of each model showed good fitting results， which 

basically conforms to the function relationship of y=x. The RF-

RF model performs best. The Linear-ELM model has a large 

point distribution area and the worst performance. In summary, 

according to the data in Figure 2, Table 2, Table 8 and Figure 5, 

the RF-RF model shows the best retrieval performance. 

Moreover, in the same machine learning regression method, the 

model using the SM of RF interpolation result as the response 

variable performs better than the traditional linear interpolation 

method. According to this, we used the RF-RF model to generate 

a global SM product as follows: 

 

 

Figure 6. Global CYGNSS Soil Moisture Map. 

 

 

Figure 7. Global SMAP Soil Moisture Map. 

 

Figures 6 and 7 show good consistency. However, in the area 

near the equator, it is obviously that the CYGNSS SM value is 

higher than the true SM of SMAP. However, on a global scale, 

SM retrieved by CYGNSS showed a good agreement with SMAP 

SM. Since the CYGNSS satellite revisit cycle time is one day and 

the space coverage is wider, the SM products generated by 

CYGNSS have high temporal and spatial resolution 

 

5. Conclusion 

In this study, we investigate interpolation of SM data using 

GSVM, BP, RF interpolation methods. The results show that the 

RF interpolation achieves the best results. Using SM data by 

traditional linear interpolation and RF-based interpolation 

respectively, six models for SM retrieval based on three machine 

learning methods were trained and used to retrieve SM. For the 

SM retrieval model with the same machine learning method, the 

model using RF interpolation result shows the best result. For 

different SM retrieval regression, the RF model using linear and 

RF interpolation methods has higher retrieval performance. 

Furthermore, the result shows that the RF-RF model has the best 

performance with the CC of 0.986 and the RMSE of 0.012 cm³

/cm³. Finally, the RF-RF model is used to generate a global SM 

product. CYGNSS SM products have good consistency with 

SMAP SM on a global scale. 
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