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bstract 

 

The quantity and diversity of Earth spatiotemporal big data have significantly increased in recent years, providing the potential to 

comprehensively analyse complex spatiotemporal problems from new perspectives. However, integrating, managing, and applying 

multi-source heterogeneous Earth spatiotemporal big data remains a challenge. To address this issue, this study proposes a cloud-

based spatiotemporal computing platform, the Open Geospatial Engine (OGE), for the unified organization and joint analysis of 

Earth spatiotemporal big data in multiple dimensions and scales. The framework of this platform comprises three modules: data 

management, computing engine, and service interface. The data management module adopts the GeoCube model to effectively 

integrate and manage multi-source heterogeneous spatiotemporal data through multi-dimensional aligned tiles. The computing 

engine module seamlessly maps the GeoCube model to the cloud environment by extending Spark RDD, making the GeoCube 

model capable of high-performance distributed computing. Following OGC specifications, the service interface module integrates 

and shares data, operators, and spatiotemporal analysis models through extensible APIs in an interactive development environment. 

Combined with a series of high-performance optimization techniques, OGE simplifies data queries and the construction of complex 

analytical applications by integrating these three modules. The applicability of OGE is demonstrated by case studies involving multi-

dimensional queries and joint analysis of long-time-series and heterogeneous spatiotemporal data. 

 

 

1. Introduction 

 

With the continuous advancement of Earth observation 

technologies, the Earth spatiotemporal big data are being 

continuously produced through orbital sensors, field 

measurements, and computer simulations (Li et al., 2017), 

leading to a significant increase in data volume, accompanied 

by an abundance in the diversity of available data types (Zhu et 

al., 2021). These data play an important role in various fields 

including resource utilization, economic development, national 

security, and social governance (Zhang, 2018). Despite diverse 

sources and structures of Earth spatiotemporal big data, they 

reflect the surface of the Earth from different aspects in various 

granularities, time phases, directions, and levels, collectively 

revealing the mechanisms underlying Earth's evolution, urban 

operational patterns, and human activity modes (Xu et al., 2016).  

In the era of Earth spatiotemporal big data, the integration of 

technologies such as spatiotemporal big data management, 

cloud-based distributed computing, artificial intelligence, and 

other related technologies holds unprecedented potential for 

understanding and discerning the Earth's dynamics. 

Consequently, the establishment of a complete processing 

framework of Earth spatiotemporal big data, encompassing data 

storage, management, computing, and application services, for 

comprehensively and efficiently mining and analysing 

spatiotemporal information, has become a highly focused 

research area globally (Liao, 2021). 

 

Efficient data access is important for spatiotemporal analysis 

and application. Achieving technological breakthroughs in 

unified management of multi-source data combined with cloud 

computing technology is essential to meet real-time and 

comprehensive analysis requirements (Wang et al., 2019; Xu et 

al., 2021). Given the challenges and opportunities presented by 

the wide-range, multi-scale, multi-type, long-time-series, and 

high-dimensional characteristics of Earth spatiotemporal big 

data, a series of research programs have been launched 

internationally (Baumann et al., 2018; Mahecha et al., 2020).  

Analysis-ready data (ARD) and spatiotemporal data cubes for 

Earth Observation have gained widespread adoption (Gao et al., 

2022; Xu et al., 2022a). In alignment with this trend, the 

Committee on Earth Observation Satellites (CEOS) proposed 

the Open Data Cube project (ODC, 2018), aiming to provide 

open-source solutions for the integrated management of Earth 

observation big data. Based on the ODC, a series of 

spatiotemporal data cube infrastructures have been developed, 

including the Australian Geoscience Data Cube (Lewis et al., 

2017) and the Swiss Data Cube (Chatenoux et al., 2021; 

Giuliani et al., 2017), which are deployed on supercomputing 

platforms for unified management and access of remote sensing, 

meteorological, and ground station data. Additionally, The 

European Space Agency has established the Earth System Data 

Cube for joint analysis of multi-source data streams in the ocean, 

atmosphere, and other fields (Mahecha et al., 2020). Particularly 

noteworthy is the Google Earth Engine (GEE) initiated by 

Google in collaboration with Carnegie Mellon University and 

the United States Geological Survey (Gorelick et al., 2017), 

which has evolved into a cloud computing platform highly 

relied upon by geoscience-related scientists and engineers 

worldwide. 

 

Although the platforms mentioned above have addressed 

multiple key issues in utilizing Earth spatiotemporal big data, 

there are still some shortcomings. On one hand, the data stored 

and managed primarily consist of corrected remote sensing 

images from various sources, with excessive emphasis placed 

on the multi-resolution pyramid structure during the process of 

standardization, while the unified expression and organization 

of types of Earth spatiotemporal data such as vector, raster and 

thematic data in the same area are ignored (Zhu et al., 2021), 
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which leads to isolated data island and limits the descriptive 

capabilities of the Earth. On the other hand, the operational 

interfaces provided are still confined to simple overlay analysis 

and visualization based on scene-organized layers, lacking 

scalability (Xu et al, 2022b). The granularity of operations is 

relatively fixed, and there is a lack of systematic operations 

oriented to multi-level, heterogeneous, and multi-dimensional 

spatiotemporal features, making it challenging to fulfil the 

requirements of multi-dimensional joint analysis. 

 

In this article, we propose a spatiotemporal computing platform, 

the Open Geospatial Engine (OGE), for unified organization 

and efficient joint analysis of Earth spatiotemporal big data. 

First, we provide an overview of the OGE framework, which 

integrates the application capabilities of Earth spatiotemporal 

big data. Subsequently, the multidimensional spatiotemporal 

data cube model adopted in OGE, GeoCube (Yue et al., 2020b), 

is described in detail, serving as a pivotal component for the 

multi-dimensional integration of heterogeneous spatiotemporal 

data. Based on the cube model, we introduce a mapping method 

for cube objects, facilitating efficient distributed spatiotemporal 

computing in the cloud environment. Finally, a prototype 

platform was built to verify the feasibility of the proposed 

framework. This study contributes to the literature in four main 

ways. 

 

1) From the perspective of integrating Earth spatiotemporal big 

data, Geocube is adopted to solve the problem of organizing 

multi-type and multi-scale spatiotemporal data, providing 

capabilities of unified modelling and multi-dimensional 

operations for raster, field, vector, and thematic Earth 

spatiotemporal big data. 

 

2) To give the GeoCube model the capability of high-

performance distributed spatiotemporal computing, seamless 

mapping of various spatiotemporal data organized by GeoCube 

onto the distributed cloud environment is achieved.  

 

3) A series of optimization schemes for spatiotemporal 

computing are integrated, including the multivariate hybrid 

organization and storage load balancing on the storage side, as 

well as the application of adaptive resource scheduling and the 

introduction of the LuoJiaNet and LuoJiaSet deep learning 

framework at the computing side. The efficiency of multi-

dimensional reasoning and computing for complex 

spatiotemporal problems is enhanced. 

 

4) A prototype platform is implemented to verify the feasibility 

of the proposed OGE framework by taking full advantage of 

open-source technologies and theories of big data and cloud 

computing. Feasible solutions are proposed for customized 

spatiotemporal analysis across multiple dimensions. 

 

The remainder of this article is organized as follows. The 

overview of the OGE Framework is introduced in Section 2. 

The multi-dimensional data model of GeoCube is described in 

Section 3. The distributed spatiotemporal computation method 

designed for GeoCube is introduced in Section 4. The prototype 

platform and implementations are provided in Section 5. Finally, 

Section 6 concludes the article. 

 

2. Open Geospatial Engine Framework 

 

Massive spatiotemporal data and complex modelling algorithms 

play a significant role in spatiotemporal analysis (Deng et al., 

2023), while service publishing enables their accessibility and 

operability. Thus, the data management, computing engine, and 

service interface are the three core modules within the OGE 

framework. As shown in Figure 1, we fully draw on innovative 

technologies emerging from fields such as the Internet of 

Things, big data, and artificial intelligence, combined with 

advanced models and methods in the field of Earth observation,  

propose OGE to provide a comprehensive platform for the 

processing and analysis of Earth spatiotemporal big data at 

various dimensions and granularities, with deep coupling and 

open sharing of computing power, data, operators, and 

spatiotemporal analysis models. 

 

 

Figure 1. Overview of the OGE framework. 

 

2.1 Data Management 

 

The module of data management stores and manages a variety 

of Earth spatiotemporal big data from multiple sources, 

including remote sensing data, shapefile data, tabular statistics, 

and other spatiotemporal data products. Considering the 

advantages of the data cube model in data organization and 

analysis, the GeoCube model is adopted within OGE, aiming to 

establish a unified multi-dimensional framework capable of 

mapping heterogeneous, multi-source Earth spatiotemporal big 

data to standardized grid units, while aligning their attributes 

across dimensions through standard tile structures, which 

facilitates unified expression, organization and analysis of 

various types of spatiotemporal data. The detailed structure of 

GeoCube within the OGE framework is illustrated in Section 3. 

 

Taking full advantage of distributed file and database storage, as 

well as relational and non-relational storage, a hybrid 

organization scheme based on the distributed file system minIO, 

the non-relational database HBase, and the relational-object 

database PostgreSQL is designed in OGE. In this scheme, the 

metadata of Geocube is stored in the relational database, the tile 

data is stored in the non-relational database, and the remote 

sensing images are stored in the distributed file system. A 

unified coding method for spatiotemporal cube units based on 

T-S-T (time-space-time) is proposed to link this multivariate 

hybrid storage system, which performs coarse-grained time 

coding, spatial coding, and fine-grained time coding at each 

coding level to improve the efficiency of spatiotemporal 

indexing. For query processing, a spatiotemporal range query 

optimization algorithm based on multi-level coarse filtering is 
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proposed, which allows the coarse filtering step to be executed 

at the storage side to reduce network communication. 

 

To address the issue of storage load imbalance arising from 

spatial clustering and temporal tides, a hierarchical computing 

method based on spatial density distribution derived from 

sampling results is proposed, executing split and merge 

operations in parallel at intermediate levels to adaptively 

partition spatial grids. The multi-level spatial grids are then 

represented by an undirected weighted graph structure and are 

grouped through graph partitioning algorithms. Finally, genetic 

algorithms are introduced to design an iterative refinement 

method for boundary units. By adjusting the grid ownership 

determined through graph partitioning, the imbalance of 

spatiotemporal data across different time granularity levels is 

further reduced. 

 

2.2 Computing Engine 

 

The computing engine module extends Apache Spark's resilient 

distributed dataset (RDD) based on the multi-dimensional 

partitioning structure of the GeoCube model in OGE (Yue et al., 

2018), and the CubeRDD is designed for distributed 

spatiotemporal data cube objects. The CubeRDD can be further 

transformed into specific RDDs depending on data types, 

enabling the GeoCube model for multi-source data integration 

to be employed in high-performance distributed spatiotemporal 

computing environments. The CubeRDD method will be 

elaborated in detail in Section 4. Through the combination of 

CubeRDD and high-performance computing optimization 

methods, the computing engine module provides efficient multi-

dimensional query and analysis capabilities. 

 

The irregular distribution and pronounced heterogeneity of 

Earth spatiotemporal big data, particularly vector data, can lead 

to load imbalance issues during distributed computing. To 

address this challenge, machine learning methods are employed 

to characterize the spatiotemporal complexity features of data 

and algorithms (Yue et al., 2020a), enabling the automated 

prediction of the computational intensity of each computing 

node in processing workflows. During execution in OGE, 

resource allocation is adapted by simulated intensity results to 

improve the computational performance. 

 

In the intelligent interpretation of multispectral remote sensing 

images based on multi-dimensional spatiotemporal information, 

OGE introduces the LuoJiaNet deep learning framework and the 

large-scale open-source remote sensing sample library, 

LuoJiaSet (Zhang et al., 2023), which provides basic remote 

sensing application models including remote sensing scene 

classification, target detection, ground object classification, 

change detection, and multi-view 3D reconstruction. Multi-

dimensional applications compatible with the characteristics of 

remote sensing images have been designed, and the 

classification performance of the deep network combined with 

the GeoCube is improved under the guidance of the empirical 

knowledge model. 

 

2.3 Service Interface 

 

Based on the above key technologies, the service interface 

module of OGE provides multiple types of RESTFUL services 

of metadata, data, operators, and models through microservices. 

Following the OGC standard, it provides an interactive 

development environment with various spatiotemporal APIs. 

 

On this basis, the Web UI of OGE is designed and implemented 

by mainstream Web frameworks to integrate and share data 

resources, operators, and spatiotemporal analysis capabilities. 

The interactive development environment supports users to 

form workflows by dragging graphical modules of operators or 

flexibly designing analytical applications based on Python and 

JavaScript in a low-code way. All these workflows are executed 

by the backend distributed engine through directed acyclic 

graphs (DAG) constructed by OGE. Additionally, with the 

assistance of service proxies, the method of GRASS and WPS is 

seamlessly imported, thereby expanding the spatiotemporal 

operator system of OGE. 

 

3.  Multi-dimensional Data Model 

 

Earth spatiotemporal big data possess characteristics such as 

multi-type, heterogeneity, complex structure, and large volume. 

Due to different production modes and specifications, their 

resolutions and coordinate systems are usually inconsistent. 

Existing management frameworks for spatiotemporal big data 

are typically optimized for certain types of data, which leads to 

insufficient ability for joint analysis of multi-source 

heterogeneous spatiotemporal data. To address this issue, the 

GeoCube model (Figure 2) based on the fact constellation 

schema of online analytical processing (OLAP) is adopted in 

OGE. Through the designed multi-dimensional structure, as 

well as formal expression and organization method for its 

measure, GeoCube integrate various types of Earth 

spatiotemporal big data, including vector data, raster data, and 

tabular data, by mapping them to regular grid units. Thus, 

GeoCube provides unified representation, organization, and 

OLAP capabilities. 

 

 

Figure 2. The GeoCube model in OGE. 

 

3.1 Multiple Dimensions  

 

To meet the needs of multi-dimensional spatiotemporal data 

analysis, four dimensions of GeoCube are involved: temporal 

dimension, spatial dimension, product dimension, and band 

dimension, which makes Earth spatiotemporal big data aligned 

in each dimension, so as to provide the ability of multi-

dimensional real-time analysis. 
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The spatial and temporal dimensions are independent of the data 

imported, and provide a unified spatiotemporal reference as 

well as standard spatiotemporal partitioning. The spatial 

dimension describes the spatial locations of the cube, and its 

members are composed of a series of regular grids, which are 

uniquely identified by the grid codes and the spatial benchmark. 

Space-filling curves are used to code these discrete grids and 

reduce two-dimensional space to one dimension. This coding 

method assigns close codes to spatially adjacent data, thus 

making it beneficial for improving query efficiency and 

reducing communication frequency between computing nodes 

during distributed computing. The spatial benchmark describes 

the size, resolution, and reference of the spatial grid, defining 

the spatial scale of the cube. When the raster data and the vector 

data are uniformly mapped to a two-dimensional grid, the raster 

data are divided into physical blocks of the same size as the grid, 

while vector data is indexed into logical blocks, which helps to 

maintain the integrity of vector features. Additionally, the 

spatial dimension contains hierarchical information such as grid 

level, district level, and city level, which facilitates OLAP 

operation along the spatial dimension. The temporal dimension 

describes the time standard used, the duration of the 

spatiotemporal process under study, and the temporal 

distribution of spatiotemporal data. For long time-series data 

products, the acquisition time can either be the time obtained 

after the product is processed or the duration of the product's 

evolution process. There are intuitive hierarchical and adjacency 

relationships at the temporal dimension, such as the hierarchy 

from days to months and years, as well as the temporal 

similarity between adjacent time members, for example, the 

atmospheric temperature measured over consecutive days, 

which enables OLAP operation for sequential variation and 

spatiotemporal interpolation along the temporal dimension. 

 

The band dimension describes the spectral band information of 

remote sensing images, including band names, polarization 

modes, spectral ranges, and advanced bands. The polarization 

mode is a unique attribute designed for synthetic aperture radar 

(SAR) images. The spectral range retains spectral range 

information of different data sources, allowing a band name to 

be mapped to different spectral range intervals. Considering that 

the results of raster calculation among bands can still be used 

for band analysis, the advanced band is proposed to describe 

hierarchical attribute information specifically designed for 

OLAP operation, referring to product-level bands generated 

based on a series of original bands, such as normalized 

difference water index (NDWI) bands and normalized 

difference vegetation index (NDVI) bands. The hierarchical 

relationship between advanced bands and original bands is also 

marked. 

 

The product dimension is a thematic dimension for 

spatiotemporal data products, which contains information such 

as product name, data type, and data source. The product name 

is the most basic information, consisting of feature descriptions. 

The data type is used to distinguish between raster, vector, and 

tabular data products, and data source information describes 

production means including the sensors, satellite platforms and 

data publisher. It should be noted that vector and tabular data do 

not have satellite platform information. 

 

3.2 Unified Tile Fact 

 

The members of the temporal dimension, spatial dimension, 

product dimension, and band dimension jointly point to the 

measure information in the multi-dimensional structure of 

GeoCube. Raster data, vector data and tabular statistics with 

spatiotemporal information are uniformly mapped onto grids of 

the same benchmark as regular measure units with a uniform 

size. To manage measure units effectively, GeoCube further 

aggregates adjacent measure units in space and time into tiles, 

forming the tile fact structured as "dimension-measure". Three 

types of tile fact are supported in GeoCube: raster tile fact, 

vector tile fact, and tabular tile fact, and high-dimensional field 

data can be expressed by raster tile fact through dimension 

expansion. Each type of tile fact contains a spatial measure and 

a computational intensity measure. The spatial measure links to 

actual raster, vector, and tabular tile data, while the 

computational intensity measure records the computational 

intensity of the tile in different analytical functions. By 

identifying the computational intensity of different units in this 

multi-dimensional structure, the spatial-temporal heterogeneity 

is revealed, which supports efficient parallel computing. 

 

4. Distributed Spatiotemporal Computation 

 

Organizing data in a high-performance form is crucial for 

efficient distributed spatiotemporal computation of Earth 

spatiotemporal big data. The tile organization of the GeoCube 

model provides convenience for designing distributed cube 

objects, which enables efficient data processing by combining 

distributed objects with large-scale cloud computing. 

 

As a mainstream distributed computing framework, Apache 

Spark is an efficient computing engine designed for large-scale 

data processing which employs RDD as the data container 

(Zaharia et al., 2010). The CubeRDD adopted in OGE extends 

Spark RDD and proposes a set of distributed cube objects. On 

the one hand, it inherits the distributed computing ability of 

Spark RDD, and on the other hand, it is compatible with 

multiple source data types by the tile fact of GeoCube, and 

achieves seamless mapping between the GeoCube model and 

cloud computing environment, as shown in Figure 3. 

 

Abstract RDD

CubeRDD[T]

RasterRDD

TabularRDDFeatureRDDPointRDD

PolyLineRDD

PolygonRDD

Point PolyLine

Geometry

Feature

Attribute SpaceTimeProductKey

SpacialKey

TemporalKey

ProductKey

ArrayTile ReaterTile

TemporalKey TabularRecords

Distributed cube objects

Wrapper

Dependency

Inheritance

Polygon

SpatialRDD

- _sc:SparkContext

+ compute()

+ getPartitions()

- partitioner: Partitioner

- deps: Seq[Dependency[_]]

+ getDependencies()

+ getPreferredLocations()

- rddPrev: RDD[(SpaceTimeProductKey,T)]

+ toRasterRDD()

+ toFeatureRDD()

+ toTabularRDD()

- rddPrev: CubeRDD[RasterTile]

+ addBandKey()

- cellType:cellType

- rddPrev: CubeRDD[TabularRecords]- rddPrev: CubeRDD[FeatureColeection]

+ toSpatialRDD()

- rddPrev: SpatialRDD

- rddPrev: SpatialRDD

- rddPrev: SpatialRDD

+ toPointRDD()

+ toPolygonRDD()

+ toPolyLineRDD()

- rddPrev: FeatureRDD

Figure 3. Distributed cub objects. 

 

The value of CubeRDD is generic type T, allowing it to be 

converted into any data type to meet the mapping requirements 
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of different data types. Furthermore, CubeRDD can be 

transformed into distributed cube raster objects (RasterRDD), 

distributed cube vector objects (FeatureRDD), and distributed 

cube tabular objects (TabularRDD), keeping consistency with 

the mapping between tiles in Geocube and cloud environments. 

The implemented distributed cube objects offer two advantages: 

1) Consistency with the proposed GeoCube conceptual model, 

supporting analysis of multi-source, heterogeneous data within 

a unified multi-dimensional framework. For instance, 

RasterRDD can be grouped along the temporal dimension to 

support distributed time series analysis or algebraic analysis of 

band maps, while FeatureRDD can be grouped along the 

product dimension to support distributed nine-intersection 

model operations. Additionally, merging RasterRDD and 

FeatureRDD based on dimension keys enables raster tiles and 

vector tiles with identical spatiotemporal keys to fall within the 

same spatiotemporal cube unit, facilitating distributed joint 

analysis. And 2) In addition to raster, vector, and tabular data 

types, it can be extended to support other data types of cube 

objects by simply customizing dimension keys and measure 

types. 

 

Pixels of remote sensing images are typically considered as the 

measure in spatiotemporal data cube platforms, which also 

serve as the smallest data unit for processing and analysis in 

GEE. However, the GeoCube model adopts raster tiles, vector 

tiles, or tabular tiles from multiple sources as the cube measure. 

To be consistent with the structure of the cube model, the 

proposed distributed spatiotemporal data cube objects are also 

organized by tiles. Therefore, OGE implements a large number 

of high-level distributed cube object operation interfaces, 

allowing users to perform flexible analysis without an in-depth 

understanding of the conceptual model. While the underlying 

conceptual model consists of cube units represented by raster or 

vector tiles, defining high-level interfaces enables users to 

directly engage in multi-dimensional analysis based on raster 

cells or vector features. 

 

5. Prototype System and Implementation 

 

Currently, the OGE platform has integrated a total of hundreds 

of millions of global vector data, terrain data, and image data, as 

well as remote sensing products, remote sensing samples, 

satellite virtual constellation, Internet of Things data and other 

Earth observation data, totalling approximately 20TB. OGE 

provides over a hundred distributed spatiotemporal operators 

covering raster, vector, and thematic data. Based on the above 

data and operators, the feasibility of OGE is verified by multi-

dimensional query and analysis experiments. 

 

5.1 Multi-dimensional Query  

 

Through the construction and data importation of GeoCube, 

OGE aligns all kinds of spatiotemporal data across dimensions, 

enabling efficient and convenient multi-dimensional semantic 

query of raster and vector data. Figure 4 shows slicing the 

temporal dimension of the cube constructed based on Landsat 8 

images through the drop-down list or inputting member 

information, without writing codes, the advanced member 

NDVI of a specific time on the band dimension in the study 

area can be obtained and displayed on the bottom layer. 

 

 

Figure 4. Multi-dimensional query.  

 

5.2 Multi-dimensional Analysis 

 

In terms of long-time-series spatiotemporal computations, take 

the analysis and computation of the water index as an example. 

The Landsat 8 L1-level data within the study area are imported 

to construct GeoCube. By utilizing the existing Cube.NDWI 

API, the advanced member NDWI is derived through roll-up 

along the band dimension, resulting in an updated cube named 

“NDWICube”. Subsequently, the binarization process of NDWI 

is carried out and the product member “NDWI_Product” is 

added to the product dimension. Finally, the results are 

visualized. Figure 5 illustrates the codes required for this 

analysis, the key steps in the analysis process and execution 

time for different amounts of data. 

 

 

Figure 5. Long-time-series NDWI computation. 

 

Figure 6 illustrates a multi-dimensional analysis of multi-source 

data, focusing on flood-affected areas and villages in a province 

in southern China in 2016. The data involved in this case 

included Landsat 7 Level-1 products before and after the 

disaster, village building vector data, and village-level 

demographic statistics. After initializing the cube and importing 

the above data, the member of NDWI on the band dimension is 

generated by the roll-up of high-resolution remote sensing 

images before and after the disaster. Subsequently, water body 

change detection is performed, resulting in flood-affected area 

products. Overlay analysis is then conducted between the flood-

affected area products, village building vector data and tabular 

demographic statistics to extract villages and associated 

populations affected by the disaster.  
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Figure 6. Multi-dimensional analysis of multi-source data.  

 

The codes as well as the analysis process for above multi-

dimensional joint analysis are shown in the upper part of figure 

6, and the figure also illustrates the results provided by the web 

side of OGE, where the red area is the flood-affected area, and 

the points marked with symbols are affected villages. 

 

Obviously, for multi-dimensional analysis such as long-time-

series spatiotemporal computations and vector-raster joint 

analysis, users will fall into tedious code-writing tasks when 

using GEE and other platforms. However, with the development 

interface provided by OGE, users can achieve the same 

functions with only a few lines of code. The reason is that the 

GeoCube is an Earth observation data model for multi-source 

fusion and spatiotemporal alignment in long-time-series. The 

OGE not only provides standardized data representation and 

organizational structure with open access, but also encapsulates 

the operators, models and workflows required for 

spatiotemporal analysis, helping to shorten the development 

cycle of spatiotemporal applications. 

 

6. Conclusion 

 

In this study, we propose a spatiotemporal computing platform, 

the OGE, based on cloud computing and big data technologies, 

for unified organization and efficient joint analysis of multi-

source and heterogeneous Earth spatiotemporal big data in 

multiple dimensions. Compared with previous works and 

similar platforms, the proposed OGE supports the multi-

dimensional unified expression, organization, and analysis of 

multiple types of data such as vector, raster, and tabular data. 

The implementation and cases demonstrate the applicability of 

this framework 

 

Future work includes the optimization of the distributed 

computing engine, the enrichment of spatiotemporal operators, 

and the expansion of research fields to improve the ability of 

data management and spatiotemporal analysis. 
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