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Abstract 

 

Transportation is a key component in urban design for cities’ efficiency and residents’ life quality, and GIS has the capability of 

handling data management, model design, and scientific decision-making for transportation studies. This article reviews how spatial 

big data and analysis strategies help GIS-T studies from the phases of conceptual design, modelling, and decision-making. In this 

research, we firstly summarized categorizes of data objects and relevant information for real-world issues from transportation 

applications in the conceptual design phase. In the modelling phase, optimization strategies for transport planning and accessibility 

measures through network data were also summarized. Finally, we reviewed spatial analysis methods in supporting transport 

decision-making, and how spatial methods take advantage of geography features of transport variables in previous studies. Our 

research primarily focuses on geography research with transportation topics as applications, and this work can help transport experts 

to have a better understanding of GIS values for transportation modelling and planning. 

 

1. Introduction 

Planning, modelling, and analysis in transportation play a vital 

role in urban design and land use management to improve 

living quality (Shahumyan and Moeckel, 2017). A smart 

transportation management strategy can help improve residents’ 

accessibility to facilities (Karou and Hull, 2014), road safety 

(Kamel and Sayed, 2021), and transportation infrastructure 

asset management efficiency (White and Stewart, 2015). 

Spatiotemporal traffic data interpretation and management can 

support good transportation planning strategies (Basse et al., 

2016; Fang et al., 2017). Geographic information system (GIS), 

as an integrated computer system for geographical data storage, 

manipulation, analysis and visualization (DeMers, 2011), 

coordinates with the technical requirements of transport 

planners well (Lopes et al., 2014). Dating back to the 1990s, the 

pilot practice of geographic information systems for 

transportation (GIS-T) started with transportation decision-

making with the support of computation on topology 

relationships from different mapping layers (Niemeier and 

Beard, 1993). Through decades of development in GIS-T, the 

capability of GIS in assisting transportation studies has been 

proven with various practical applications and advanced 

extensions in functionality, including but not limited to digital 

transport network management (Djurhuus et al., 2016), route 

planning with visual navigations (Fang et al, 2012), transport 

development plan assessment (López and Monzón, 2010), and 

emergency evacuation plans (Fahad et al., 2019).   

 

Despite new functionalities and case study applications varying 

from case to case, summarizing how GIS is supporting current 

transportation innovation in general at the phases of conceptual 

design, modelling, and decision-making can be a help to future 

professionals. How spatial databases for objects, optimization 

models, and spatial analysis are assisting GIS-T is illustrated in 

Figure 1. At the preparation stage, spatial databases help in 

setting up data management schemes for research problem 

understanding and real-world simulation. Tomasiello et al. 

(2019) summarized four key categories of components for a 

transport network database model, including the transport 

infrastructure component, temporal component, land use or 

geography component, and individual component. These four 

types of elements are commonly present in databases for 

transportation and can be specifically represented by objects 

showing information on ‘How’, ‘When’, ‘Where’, and ‘Who’ in 

transportation applications as databases proposed by Koncz and 

Adams (2002) and Huang (2019).  

 

At the modelling stage, optimization strategies, by abstracting 

complicated real-world problems into network models using 

GIS, are commonly utilized to formularize the transportation 

problem into research targets, decision variables, and 

constraints (Delmelle et al., 2012). Typical optimizing targets in 

transportation include minimizing relevant costs (Pamučar et al., 

2016), guaranteeing reasonable network flow (Lim and Lee, 

2013), and maximizing transport accessibility (Tahmasbi and 

Haghshenas, 2019). Correspondingly, several common 

constraints cover transport infrastructure physical capacity, 

general road network properties (Brachman and Dragicevic, 

2014), and features of detailed transport planning activities 

(Saeheaw and Charoenchai, 2017). Computer science 

algorithms for network analysis, such as Dijkstra’s algorithm 

(Etherington, 2012) and K-shortest path algorithm (Chen et al., 

2021), can be solutions for these formularized models.  

 

At the decision-making stage, spatial analysis methods from 

GIS, with the consideration of spatial autocorrelation of 

transport-related factors locally or spatial disparity of variables’ 

relationship in a distance, provide scientific supportive advice 

for smart urban planning and transport system performance 

assessment (Álvarez et al., 2016; Brown and Affum, 2002). 

Considering the spatially clustering feature of traffic variables 

on the roads, the spatial analysis method can be used to 

interpolate traffic data and improve data quality for similar 

tasks in the next lifecycle (Zou et al., 2012).  

 

Given the importance of transport management to urban 

planning, the capability of GIS in supporting smart 

transportation innovation, and various advanced functionalities 

extended by GIS-T over years of development, a review article 

summarizing data models and spatial analysis methods 

supporting GIS-T at the stages of conceptual design, modelling, 

and decision-making can help transport planners, GIS analysts, 

and researchers working in transport geography fields 
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understand the competence of geospatial tools and theories in 

improving transport models and future development of GIS-T 

(Shaw, 2010). The purpose of this review article is to provide a 

summary of technical milestones of the GIS-T brief 

development history by reviewing and concluding data models 

and spatial analysis methods from research cases.  

 

The rest of the article is organized as the follows, section 2 

reviews spatial databases’ support in GIS-T at the conceptual 

design phase by summarizing key transport objects and their 

relationships in different research cases; section 3 shows 

optimization models for public transport planning, accessibility 

measurement, and transport vulnerability formularization; 

section 4 concludes spatial autocorrelation and spatial 

heterogeneity methods in supporting transport decision-making, 

followed by discussion and conclusion.  

 

Figure 1. Spatial database, optimization model, and spatial 

analysis supporting key topics in GIS-T at the phases of 

conceptual design, modelling, and decision-making 

2. Spatial data management at the conceptual design phase 

2.1 Key objects in transportation conceptual design 

The geospatial features of real traffic conditions on roads and 

relevant infrastructure information are usually digitalized and 

abstracted as points, lines, or polygons with key attribute 

variables in spatial databases for further modelling and analysis 

(Dong et al., 2019; Peng, 2005). Apart from topology 

relationships and mapping layers, there are other statistical and 

temporal data demonstrating users’ information or other traffic-

related information shown in featured objects within data 

models to achieve advanced functionalities (Andris, 2016; Jin et 

al., 2018; Ding et al., 2021). In general, data objects in 

conceptual design models would have multiple features, which 

can be summarized into the following categories: 

 

Where – Information telling geographical locations of transport-

related objects, including but not limited to points of interests 

(POIs), land uses, household locations, road intersections, and 

building locations.  

 

When – Temporal information of objects. These are common in 

preparing transit plans or multi-temporal traffic studies, and 

these temporal data are usually associated with spatial 

information of objects.   

 

Who – Personal information on individuals, users, or person-

related objects in data models. Detailed information can be age, 

sex, working industry, working status, car ownership, and 

household information. 

 

What – Information on an individual’s event or activity, which 

is transport-related. Examples of activities can be residents’ 

travelling to work or users’ visiting places listed as POIs.  

 

How – Information showing transport modal of activities. It 

shows how people travel from the origin to the destination. 

Typical types of transport modal include private cars, biking, 

walking, buses, trams, or other kinds of public transport.  

 

In this literature review, we selected key objects in GIS-T 

practical applications and summarized their properties and key 

information telling ‘Where’, ‘When’, ‘Who’, ‘What’, or ‘How’ 

in Table 1. In Table 1, objects are categorized by their 

corresponding entity type, together with possible 

representations of their spatial information, and the 

compatibility with temporal information.  

 

Common infrastructure objects include public traffic routes and 

stops, road segments, walking paths, and POIs (Frihida et al., 

2002; Tomasiello et al., 2019). Transport routes and road 

segments can be stored with an additional Z-value field, 

indicating the height of infrastructures, supporting 3D 

modelling and accurate transport planning (Koncz and Adams, 

2002). Furthermore, public transport routes and roads can also 

be linearly referenced in the database systems of some 

organizations. A practical example of linear referencing 

systems (LRS) for roads is ‘ArcGIS Roads and Highways’ 

designed for transportation industry companies and government 

agencies. In the LRS, rather than using coordinate systems for 

recording geographic information, relative positions along a 

polyline are utilized (ESRI, 2004).  

 

Individual information showing details of a person or household 

can be concluded from government census data or organization-
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collected data (Johnston and De La Barra, 2000; Huang, 2019; 

Price et al., 2021). These data objects are especially useful in 

simulating traffic flows and other transport indicators. In terms 

of temporal information in transportation, transit and activity 

plans made by users, real-time traffic flow, and hourly-based 

traffic attributes require temporal data analysis and 

management for advanced functionalities (Tomasiello et al., 

2019). 

 

Key objects Entity type Spatial Temporal 

Public 

transport route 

Infrastructure Linear; 

2D; 3D 

- 

Public 

transport node 

Infrastructure 2D; 3D - 

Road segment Infrastructure Linear; 

2D; 3D 

- 

Walking path Infrastructure 2D; 3D - 

Point of 

interests (POIs) 

Infrastructure 2D - 

User / Person Individual - - 

Household Individual 2D - 

Census 

information 

Individual 2D - 

Transit plan / 

Trip 

Event 2D √ 

Activity Event 2D √ 

Traffic value Transport 2D; 3D √ 

Table 1. Features of key objects in transportation conceptual 

design. 

 

2.2 Object relations shown in featured practical 

applications 

This section aims to demonstrate and summarize transportation 

object relationships in practical applications, including route 

planning and navigation, multi-temporal transport network 

management, and agent-based individual transport activity 

simulation. It is no doubt that road segments and public 

transport features play fundamental roles in every GIS-T 

application as shown in Figure 2, while different functionality 

extensions need changes in entities and data relations to set up.  

 

Real-time visual landmark navigation is one of the most state-

of-the-art transport applications. The goal of real-time visual 

navigation is to design an application for analyzing and 

showing a visual route towards a landmark destination after 

receiving a request from the user. The key outputs are visual 

route instructions towards landmarks with supportive 

information from road segments and walking paths showing 

possible routes; and visual, semantic, and geometric features of 

landmarks. POIs data also play a role in providing ancillary 

information for target destinations. Route instructions objects 

are solutions to users’ requirements, and this type of spatial 

object is associated with transport routes, the image library, and 

landmark objects (Fang et al., 2012).  

 

Multi-temporal transport network management is also an 

important topic in transport planning. Tomasiello et al. (2019) 

proposed a conceptual design based on an object-oriented data 

model for geographic applications (OMT-G) (Borges et al., 

2001). This transport network management strategy managed to 

combine data from heterogeneous sources showing different 

temporal granularity of traffic information and laid the 

foundations for accessibility analysis with temporal dynamics. 

With spatial features of road networks and transport 

infrastructures included, temporal information on traffic can 

also be managed through database relations. In spatiotemporal 

transport data model studies, temporal traffic data and relevant 

validity on roads are linked to the road network object with 

RoadID as the key. Similarly, spatial point-based traffic records 

over a period can also be linked to the corresponding node 

objects for integration.  

 

The other critical application in assisting smart transport 

planning is agent-based traffic simulation. The agent-based 

model for transport aims at simulating or predicting traffic-

related conditions in cities considering individual activity and 

preference. The estimated results would provide insights for 

public policymaking. Considering the sensitivity of personal 

data and the difficulty in private data collection in a wide 

spatial range, census data released by the government are good 

sources providing raw materials. To establish the agent-based 

model, private information on individual residents and 

households can be roughly extracted from the census. With 

transit activity specified and road spatial data provided, a transit 

plan covering details of the itinerary for users can be generated. 

Given a pilot data model study summarized in Figure 2, the 

transit plan object is linked to the user object and the activity 

object for managing simulated personal details of each 

transition. The transit plan object is also associated with the 

itinerary object, which summarizes spatial information 

representing the user’s transportation plan (Motieyan and 

Mesgari, 2018). 

 

3. Optimizations for transport performance assessment 

and planning at the modelling phase 

An optimization model, consisting of a research target, 

constraints, and decision variables, is a method to describe a 

real-world problem in a quantity measure (Martins and Ning, 

2021). By setting up an optimization model by abstracting and 

simulating real-world conditions, researchers are able to 

understand the nature of the issue, the required materials to 

solve the issue, and practical solutions to conquer the problem 

(Boyd and Vandenberghe, 2004; Antoniou et al., 2008). 

Optimization is a commonly used strategy in transport planning, 

helping engineers and researchers to simulate traffic demands, 

assess traffic conditions, and predict future trends (Herty and 

Klar, 2003). Optimization models for transportation are mainly 

based on nodes and arcs with traffic attributes representing the 

road network (Lei, 2021). In this section, we summarized 

featured research targets and constraints in describing research 

problems in public transport planning, accessibility measures, 

and traffic vulnerability. 

 

3.1 Optimizations in public transport planning 

Traffic flow control, prediction, and management are some of 

the most important tasks in transport planning. Regardless of 

daily traffic control or the maximum efficiency of an 

emergency evacuation, transport planners wish to guarantee 

passable roads throughout the network as shown in Equation (1). 

 

 Minimize Z = sum(Cij  * xij) , (1) 

 

where  Cij  is the travelling cost from node ‘i’ to node ‘j’ (i and j 

are directly connected nodes in the network), and  xij  is the 

traffic flow. For any kind of road network, Equation (1) is 

subjected to fundamental constraints from the nature of traffic 

flow and road design, and maximum road capacity from 

Equations (2) to (4). 
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Figure 2. An illustration of data conceptual designs transport 

planning practical applications: real-time visual landmark 

navigation, multi-temporal transport network, and agent-based 

simulation model. 

 

 sum(xij) - sum(xji) = bi ,   (2) 

 

where bi  is the net traffic flow at node i. 

 

 0 ≤ xij  ≤ uij ,  (3) 

 

where  uij  is the maximum road capacity from node ‘i’ to node 

‘j’. The traffic volume in each arc should not exceed the road 

capacity. 

 

   sumk(xki) = sumj(xij) ,  (4) 

 

where node ‘k’ and node ‘j’ are directly connected to node ‘i’. 

If the road intersection does not allow car parking, for this node, 

the total traffic flow incoming is equivalent to the total traffic 

flow outgoing. 

 

Equations (1) to (4) are based on the traffic flow xij as the 

decision variable. This optimization model is a foundation form 

in transport planning, and variations in the research target or 

constraints can be applied to fit different cases. Take emergency 

evacuation planning as an example, Equations (1) to (4) are 

common physical variables working as the basis of a network 

optimization model (Yamada, 1996). Biological response 

variables and social variables simulating the real-world scenario 

can be further introduced to fit cases. For instance, adjustments 

to the travelling cost  Cij , by simulating biological responses of 

self-preservation from the danger, can be made by adding more 

travel costs on arcs close to the hazard. Furthermore, the road 

capacity value can be changed correspondingly to reflect 

emergency response actions as social variables, including 

firefighters and police actions, which make changes on roads 

(Brachman and Dragicevic, 2014). 

 

3.2 Measures of transport accessibility 

Travelling accessibility through the transportation system is 

another primary concern from the view of transport experts. In 

supporting a wider team of sustainability and humanity, 

transport accessibility can be an indicator telling the urban 

performance and infrastructure effectiveness (Saghapour et al., 

2016; Cheng et al., 2019; Zannat et al., 2020). Furthermore, 

spatially visualizing transport accessibility and land uses of 

interests can help policymakers have a better understanding of 

the vulnerable population of a region (Wang and Chen, 2015). 

A formula for multi-modal transport accessibility is shown in 

Equation (5) (Hansen, 1959). In general, planners tend to 

increase transportation utilization by maximizing Equation (5). 

 

 Aijm = sumj(aj  * f(Cijm)),  (5) 

 

 

where Aijm is the accessibility from location ‘i’ to ‘j’ using a 

mean of transport ‘m’ (bus, tram, bike, underway, and others); 

aj is the attractiveness factor for the location ‘j’; f(Cijm) is the 

cost function of travelling from ‘i’ to ‘j’ using ‘m’ transport. 

The cost functions are usually the impedance function of the 

generalized cost between two locations.  

 

4. Spatial analysis methodologies at the decision-making 

phase 

Spatial analysis methods, capturing geographical features of 

traffic variables, have the capability to provide informative 

results in supporting transportation decision-making (Hackl et 

al., 2019; Liu et al., 2017). Spatial analysis methods usually 

consider spatial features of variables or spatial variation of the 

relationship across the space by introducing specific terms or 
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computing strategies into a statistical model (Özbil Torun et al., 

2020). It has been widely acknowledged that transport-related 

features follow the laws of geography through decades of 

research development in GIS-T (Lopes et al., 2014). In this 

literature review, we categorized spatial analysis models into 

the ‘spatial autocorrelation’ and the ‘spatial heterogeneity’ as 

shown in Table 2. Methods on spatial autocorrelation consider 

the existing clustering effects of traffic variables, especially 

observations that are geographically close enough, and these 

methods can be used to predict transportation demands or 

interpolate missing data (Zou et al., 2012). Furthermore, 

transport-related variables’ relationships can be different from 

place to place when objects or relationships are summarized in 

regional statistics or measured at a distance (Kamel and Sayed, 

2021). Thus, methods of spatial heterogeneity can help in 

capturing the spatial variation and provide insights into 

transport decision-making (Brown and Affum, 2002).  

 

Analysis models Geospatial 

phenomenon 

Featured transport 

study 

Kriging method Transport features 

(e.g. traffic 

volume) on the 

roads are similar 

in closer areas.  

Interpolation of 

missing transport 

data (Zou et al., 

2012).  

Spatial 

autoregressive 

model 

Spatial 

autocorrelation 

pattern of 

transport-related 

features by 

regional statistics. 

Transportation 

demand forecast 

(Lopes et al., 

2014).  

Spatial expansion 

model 

The average 

travel distance or 

mobility of 

residents may 

vary spatially.  

Transport 

accessibility by 

measuring average 

travel distance 

(Cheng et al., 

2019).  

Gravity model The decrease in 

residents’ 

tendency to travel 

outside with the 

increase in 

distance.  

Transportation 

accessibility 

assessment and 

analysis (Celik, 

2010; Geurs and 

Van Wee, 2004; 

Meyer and Miller, 

2001). 

Spatial error 

analysis for linear 

regression 

Minor variance of 

variables’ 

relationship 

supporting 

transport planning 

can be shown by 

linear residuals.  

Decision-making 

for active mobility 

planning (Hackl et 

al., 2019).  

Geographically 

weighted 

regression 

Spatial variation 

on transport-

related variables’ 

relationship in a 

distance.  

Recreational 

walking 

relationship with 

land use and social 

factors (Özbil 

Torun et al., 2020).  

Poisson  

lognormal model 

with regional 

statistics 

The statistical 

distributions of 

some transport 

variables follow 

the Poisson 

distribution.  

The relationship 

between bike-

vehicle crash and 

network indicators 

(Kamel and Sayed, 

2021).  

Table 2. Spatial analysis models in supporting transport 

planning 

 

Transport variables may follow the geography law of 

autocorrelation (spatial dependence) in general cases, which 

means observation of transport variables at a place is highly 

likely at the same level as observations nearby. Some of the 

spatially correlated transport variables can be average annual 

daily traffic (AADT) and average vehicle speed on roads. 

Kriging, is a spatial interpolation method utilizing the feature of 

the variable’s autocorrelation over the space and also presenting 

spatial variance. Kriging and its variant methods have been 

practised in traffic data prediction with acceptable accuracy 

(Zou et al., 2012). 

 

Furthermore, there are also indicators quantifying spatial 

autocorrelation levels, which can be applied to linear 

regressions to improve model performance. Moran’s I and 

LISA are two important indicators showing spatial dependence 

globally and locally, by measuring how the target area is 

different from its surroundings (Fischer and Wang, 2011). 

Spatial autoregressive models are series of regressions by 

adding spatial terms once the strength of spatial dependence on 

variables is verified (Venkadavarahan et al., 2023). A more 

complicated spatial regressive model can be shown with the 

combination of two or three spatially-lagged terms of dependent 

variable, selected independent variables, and residual. In 

transport-related studies, relevant socio-economic variables 

demonstrate a comparatively strong spatial dependence when 

statistically summarized by traffic analysis zones (TAZs) or 

administrative boundaries. Thus, multiple regression models in 

transport-related research could perform better by introducing 

spatial dependence terms on variables or residuals (Lopes et al., 

2014). 

 

The spatial heterogeneity feature in variables’ relationships 

over the study area can be represented by the discrepancy in 

weighting coefficients at different regions (Fotheringham et al., 

2003). The GWR model has been applied to transportation 

research in investigating the transport-related relationship 

between urban form and residents’ walking behaviour with 

indicated spatial variance over the space (Özbil Torun et al., 

2020). Poisson lognormal model in road safety planning is 

applied with regional statistics, and thus variables’ relationships 

are different from region to region (Kamel and Sayed, 2021). 

Furthermore, regional statistics on the Poisson lognormal model 

also have spatial scale heterogeneity, and modelling based on 

different spatial units would have different regression results 

(Abdel-Aty et al., 2013). 

 

5. Discussion 

In this article, we reviewed spatial models and analysis methods 

in supporting conceptual design, modelling, and decision-

making phases under the scope of GIS-T. In the conceptual 

design, spatial databases have the capability to manage and 

manipulate spatial, temporal, or statistical data showing 

information regarding ‘Where’, ‘When’, ‘Who’, ‘What’, and 

‘How’ for relevant objects and relations in transport planning. 

We then summarized typical optimization models on the 

network data with general targets and constraints in the 

transport modelling phase. Finally, we discussed on spatial 

models, following two laws of geography and capturing 

geospatial features of variables and relations in transport 

planning. These spatial analysis methods can provide insights 
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into decision-making by showing spatial autocorrelation and 

spatial variation patterns.  

 

Despite decades of development, GIS-T remains a promising 

field regarding the rigid demand of transport modelling as a key 

part of smart urban design, and its potential to be compatible 

with cutting-edge techniques from a broader field. Current GIS-

T can get further enhancement from two aspects: smart 

decision-making with the assistance of advanced exploratory 

spatial data analysis (ESDA), and extended functionalities in 

transportation with the integration of explainable Geo-AI.  

 

From the view of ESDA in supporting smart transport decision-

making, there are innovative geospatial models showing spatial 

stratified heterogeneity and indicating new geographic patterns, 

which have a high potential to be applied to transportation 

studies. Currently, geographical detector based methods have 

the capability to show variance of spatial association and 

interaction of transport-related factors (Liu et al., 2020). These 

methods can also inform policymakers of the difference in 

spatial relations by geographical strata (Song et al., 2020; Wang 

et al., 2016; Zhang et al., 2022). Furthermore, geocomplexity, a 

new spatial indicator derived from spatial dependence, also has 

the potential to be applied to transportation fields for spatial 

pattern identification and model improvement (Zhang et al., 

2023). 

 

From the view of explainable Geo-AI integration, statistical 

machine learning models (SML), such as random forest, have 

been applied to simulate users’ choices in transport cases. The 

improved SML method, in supporting decision-making for 

policymakers, can provide interpretable results along with 

spatiotemporal features extracted from raw datasets (Kim et al., 

2021). Regarding the utilization of similar models in future 

work, explainable Geo-AI models have advantages in 

explaining the phenomenon and predicting trends with higher 

accuracy and clear patterns (Xu et al., 2023).  

 

We acknowledge that there are limitations in this review work. 

Considering the difficulties in searching satisfied research 

articles within the scope of tremendous volumes, we primarily 

focused on innovative geospatial data models and relevant 

strategies with applications in transportation research during the 

article selection process. Thus, this research mainly concerns 

geography research with traffic applications and other transport 

modelling studies with a minor focus on geospatial values are 

not the primary focus of this work. Thus, a future review study 

reviewing how transport modellers understand the geospatial 

value and improve their models and decision-making by 

introducing various geospatial features could be a supplement. 

 

6. Conclusion 

Transportation management is a key component in urban design 

for cities’ efficiency and residents’ life quality. GIS has proven 

its capability in providing solutions for data management, 

model establishment, and scientific decision-making through 

decades of development in GIS-T. This article reviews how 

spatial data and analysis strategies can help GIS-T from the 

aspects of conceptual design, modelling, and decision-making. 

Throughout the research, we summarized categorizes of data 

objects and relevant information reflecting ‘Where’, ‘When’, 

‘Who’, ‘How’, and ‘What’ for real-world problem simulation 

for transportation applications in the conceptual design phase. 

Furthermore, optimization strategies for transport planning and 

accessibility measures based on properties of arcs, nodes, and 

connectivity through network analysis in the modelling phase 

were also summarized. Finally, we reviewed spatial analysis 

methods in supporting transport decision-making, and how 

‘spatial autocorrelation’ and ‘spatial heterogeneity’ methods 

take advantage of geography features of transport variables in 

previous studies. Our research primarily focuses on geography 

research with transportation topics as applications, and future 

studies reviewing how transport modellers improve their 

models and decision-making by introducing geospatial features 

can be a supplement. 
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