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Abstract

At present, the LiDAR system can achieve high precision and is extensively used for indoor and outdoor mobile positioning and
mapping. However, LiDAR systems still face issues in cluttered environments where strong features are absent, leading to a
degradation of the LiDAR-based solution. When the carrier movement involves high-speed or prolonged exposure to the mirror
wall, it can cause severe degradation issues or even positioning failures in the laser slam system. Event cameras are vision sensors
inspired by biology that exhibit strong robustness in high dynamic and low texture environments, potentially leading to better
performance in such environments. However, some issues with event cameras remain unresolved. In this paper, a multi-source
fusion method based on EVIO, LIO and IMU trajectory layer post-processing method is proposed, which will fully consider the
robustness of event camera in high dynamic environment and the high precision advantage of Lidar in conventional environment,
and use an algorithm based on normalized uncertainty. The elastic multi-source fusion of event camera and LiDAR is realized and
tested in realde environment. Experimental results show that the proposed algorithm can effectively improve the accuracy of event
camera and LiDAR. Compared to the current more advanced algorithms, the proposed algorithm effectively addresses the problem
of LIO in degraded environments. Additionally, it mitigates the scale inaccuracy and divergence of the EVIO trajectory to some
extent. Compared to LIO, the algorithm can reduce the maximum position error by approximately 30% and increase the overall
position accuracy by 32%. Additionally, it can significantly constrain the divergence of errors in the Y direction, improving its
accuracy by about 75% and 65% compared to the LIO and EVIO algorithms, respectively.

1. Introduction

As an emerging field, simultaneous localization and mapping
(SLAM) technology can utilize monocular, stereo, RGB-D
cameras and Light Detection and Ranging (LiDAR) to estim-
ate the the self movement. It has captured the research com-
munity’s attention in robotics, autonomous driving, and com-
puter vision. Numerous academics have conducted extens-
ive research on this subject. Currently, LiDAR SLAM is the
most widely used and mature SLAM system due to its cost-
effectiveness, lightweight design, and high performance (Binas
et al., 2017).

However, there are still some unresolved issues with LiDAR
SLAM. LiDAR measurements typically rely on geometrical
structures in the environment to identify feature points. How-
ever, these methods often fail in structure-less environments,
such as long corridors or flat open fields (Shan et al., n.d.b).
In cluttered environments where no strong features are present,
the LiDAR-based solution can easily degenerate. This phe-
nomenon becomes more severe when the carrier is in high-
speed motion or faces the mirror wall for an extended period,
leading to significant degradation issues or even positioning
failures in the LiDAR SLAM system. Therefore, it is an ur-
gent problem to improve the performance of LiDAR system in
high dynamic and low texture environment.

Therefore, in order to completely solve the robustness and im-
prove the accuracy of SLAM navigation algorithm in complex
lighting, high dynamic, low texture environment and other chal-
lenging environments, a more robust sensor is needed.

Event cameras, such as the dynamic vision sensor
(DVS) (Lichtsteiner et al., 2008, Binas et al., 2017), are

biologically inspired vision sensors that offer several advant-
ages over in high dynamic and low light environment. For
example, event cameras are immune to motion blur due to the
independence of individual pixels (Rebecq et al., n.d.), and
they can transmit data at a speed of 1 MHz with a dynamic
range of 140 dB (Mahlknecht et al., 2022), which effectively
reduces motion blur and enables the device to work in chal-
lenging conditions such as HDR, low light, and fast motion
scenarios (Vidal et al., 2018, Sun et al., 2021).

Their pixels function independently and transmit information
(known as ”events”) only when the scene changes in bright-
ness. Their output shows significant differences compared to
the intensity frames generated by conventional cameras. Event
cameras offer a continuous stream of asynchronous events in-
stead of intensity frames (Gehrig et al., 2020), as demonstrated
in Figure 1. These events exclusively communicate valuable
details concerning local pixel-level brightness alterations (Kong
and Fang, 2021), while each pixel of the event camera functions
independently. Due to their capability to avoid the impact of il-
lumination and fast motion compared to conventional cameras,
event cameras have recently received increased attention.

Figure 1. Schematic diagram of event camera and standard
camera imaging.
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However, event camera also has some drawbacks and problems
that are difficult to solve. Current event camera have low resol-
ution and produce high noise. Besides, integrating event cam-
eras into SLAM is challenging due to the asynchronous nature
of event streams that fundamentally differ from synchronous in-
tensity images (Guan and Lu, n.d.). The main SLAM algorithm
that employs event cameras uses the original polarity data of
the camera, based on time surface (TS), and accumulates im-
ages based on time or number of event points. However, due to
the binary imaging mode of the TS-based event camera, it can
only present edge information while disregarding internal tex-
ture features. Compared with LiDAR-inertial odometry (LIO)
algorithm, this will lead to the event camera has a certain pre-
cision limitation in normal environment, and has the disadvant-
ages of low precision and high cost.

Therefore, it is crucial to integrate event cameras and LiDAR
systems to achieve a robust slam system under multiple mo-
tion conditions. In this paper, the integrated algorithm of two
sensors, LiDAR and event camera, is proposed for the first time,
and its accuracy is verified by collecting multiple sets of data
under natural scenes. A plug-and-play extended Kalman fil-
ter algorithm for event camera and LiDAR systems based on
adaptive weights of normalized uncertainty is proposed. The
algorithm consists of three parts, 1: event camera estimation
system based on spatio-temporal TS and back-end optimiza-
tion; 2: LiDAR SLAM system based on EKF; 3: an adaptive
elastic weighted event camera and LiDAR multi-source sys-
tem framework based on normalized uncertainty. The contri-
butions of this research can be summarized in three key areas.
First, the data from event camera and LiDAR were collected
for event-visual-inertial odometry (EVIO) and LIO in various
environments, under different dynamics and illumination con-
ditions, within a wide range of natural scenes. Secondly, the
LIO degradation detection scheme based on LIO normalized
uncertainty is implemented, and the elastic weight determina-
tion scheme of LIO and EVIO is implemented based on this.
Finally, a plug-and-play multi-source fusion algorithm frame-
work based on EVIO and LIO trajectory post-processing based
on EKF is implemented.

The main structure of this paper is as follows. Section II
discusses the development of LIO algorithms and event-based
visual algorithms. Section III introduces the TS-based EVIO al-
gorithm of the event camera and the LIO algorithm framework,
as well as the plug-and-play multi-source fusion algorithm
framework based on EVIO and LIO trajectory post-processing
based on EKF. Section IV presents the experimental component
of this study. The performance of EVIO and LIO multi-source
fusion algorithms based on EFK is demonstrated in detail using
data collected from self-developed equipment. The conclusions
of this experimentation are then outlined in Section V.

2. Related Works

This section will provide a detailed overview of the research
progress related to event camera, LiDAR SLAM, and LiDAR
SLAM algorithm in the field of anti-degradation.

2.1 Event Camera

Event cameras show significant differences compared to the
data produced by conventional cameras. Event cameras provide
a continuous stream of asynchronous events instead of absolute
intensity frames (Gehrig et al., 2020). Each event point of the

event camera works independently, and these event points only
transmit information related to the relative brightness change
of local pixels. A large number of asynchronous event streams
containing event information are output, which represents the
light change of the pixel point in the logarithmic field (Fu et
al., 2023). Therefore, compared with traditional cameras, event
camera, which can avoid the influence of light and motion blur,
has been paid more and more attention by researchers in recent
years.

Serrano-Gotarredona et al. (Serrano-Gotarredona et al., 1999)
introduced the event cameras firstly in 1999, and the related
products and the principle of event cameras were systematic-
ally introduced by the University of Zurich team (Lichtsteiner
et al., 2008). The team from Technical University of Mu-
nich has researched event cameras utilizing particle filtering
algorithms (Weikersdorfer and Conradt, n.d.). However, it is
essential to note that this study primarily focuses on planar mo-
tion, and its scope is limited. Scaramuzza’s team (Censi and
Scaramuzza, n.d.) introduced the first visual odometry system
that combines a DVS with a standard CMOS camera to provide
absolute brightness values, while translation is challenging due
to the sparse event generation caused by minimal apparent mo-
tion. In 2016, Kueng et al. (Kueng et al., n.d.) proposed a
method to estimate camera motion using both intensity frames
from traditional cameras and event stream data from event cam-
eras, based on the event-based feature tracking algorithm. Al-
though this method utilizes the high frame rate of the event
camera to track fast-moving feature points, it still relies on the
traditional intensity image frame in the feature extraction stage.
Therefore, it is not possible to completely eliminate the impact
of motion blur on image feature extraction. In 2018, the Scara-
muzza team released the Event+Frame+IMU algorithm (Vidal
et al., 2018, Rebecq et al., n.d.) Ultimate SLAM. This al-
gorithm fused event stream data, standard frame data, and in-
ertial measurement data in a tightly coupled manner for the first
time. However, the system is required to remain static and it
has not been tested on large-scale outdoor data. This paper re-
veals serious scale and operational efficiency issues during ac-
tual large-scale scene tests. Guan et al. (Guan and Lu, n.d.)
conducted a study of EVIO in a large environment for the first
time. However, the author also acknowledges the limitations
of event cameras in low-texture environments and suggests im-
proving global robustness and accuracy through multi-source
fusion with sensors such as lidar.

2.2 LiDAR SLAM

The LiDAR SLAM can be divided into pure LiDAR odometer
(LO) and LIO, depending on whether it is combined with IMU.
LiDAR can directly measure distance and provide precise spa-
tial position and shape information of objects, allowing for the
construction of high-precision maps that improve the accur-
acy and stability of SLAM systems over long periods of time.
Therefore, LiDAR SLAM is widely used in indoor navigation,
3D reconstruction, and autonomous driving.

The LOAM (Lidar Odometry and Mapping) algorithm, pro-
posed by Zhang in 2014 (Shan and Englot, n.d.), is a pure lidar
odometry algorithm that has inspired subsequent laser SLAM
algorithms. The algorithm utilizes the feature point method to
compute the curvature of points within a local range. It classi-
fies the feature points into two categories: edge feature points
and plane feature points based on the magnitude of curvature.
The algorithm assumes uniform motion of LiDAR and com-
pensates for the motion using the linear interpolation method.
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However, the algorithm may drift in large-scale scenarios and
scenarios with many loop-closure detection due to the lack of
back-end optimization and loop-closure detection module, res-
ulting in a significant reduction in accuracy. In 2018, Shan et
al. added the loopback detection function to the open-source
LeGO-LOAM (Shan et al., n.d.a) algorithm, which is based on
LOAM. The algorithm introduced the concept of key frames
and used them, along with their local data frames, to form Loop-
Submap. This greatly reduced the amount of computation and
filtered redundant data. The algorithm detects loop-closure by
matching the current data frame with the Loop-Submap. How-
ever, the algorithm places high demands on the ground envir-
onment. Although the author fused the IMU sensor with loose
coupling in the algorithm later, the improvement is limited com-
pared with the tight coupling algorithm. The LIO-SAM (Wisth
et al., 2021) algorithm is a classical tightly coupled laser-inertial
odometer based on smoothing and mapping. The algorithm’s
odometer component builds upon the LOAM concept, utiliz-
ing IMU data to rectify point cloud distortion and establish the
initial pose transformation value between data frames. At the
back end, a factor graph is used to optimize the architecture,
eliminate cumulative errors, and perform global optimization.
However, the LIO-SAM algorithm is based on the feature point
method, which has limitations inherent to the LiDAR sensor.
As a result, the algorithm may fail in degenerate or unstruc-
tured scenes. The FAST-LIO series LIO algorithm (Xu and
Zhang, 2021) utilizes an iterative extended Kalman filter that is
tightly coupled to fuse lidar feature points with IMU data. This
approach achieves robust navigation in fast-moving, noisy, or
cluttered environments.

2.3 LIO anti-degradation

In order to address the issue of serious degradation of LIO
in challenging scenarios, some scholars have conducted re-
search on the degradation problem of LiDAR by introducing
new sensors. Currently, multi-source sensor fusion that com-
bines camera and LiDAR is a popular research topic. This is
because the camera can gather abundant semantic information
and compensate for the limitations of LiDAR (Lin et al., 2021).

LVI-SAM (Shan et al., n.d.b) consists of a Lidar-Inertial System
(LIS) and a Visual-Inertial System (VIS). LIS provides accurate
depth information and improves the accuracy of VIS. LIS uses
the initial pose estimation of VIS for scan matching. The al-
gorithm’s advantage lies in its ability to function normally even
if one of VIS or LIS fails, thus making LVI-SAM highly robust
in environments with few textures and lack of features. Lin
et al. (Lin et al., 2021) from the University of Hong Kong
propose R2LIVE, which utilizes LIO and error state iterative
Kalman filtering to fuse measurements from three sensors for
state estimation. The system is further optimized by a factor
graph to improve overall accuracy. However, the vision system
adopts the feature point method and may fail in unstructured
environments. Zheng et al. (Zheng et al., n.d.) proposed the
tight coupling laser-inertial-vision odometry (LIVO) algorithm
FAST-LIVO, which couples the two sensors at the measurement
level. This algorithm can still operate reliably in scenes with
LiDAR degradation and drastic changes in light. However, in
scenes of intense movement, the fusion of fuzzy images does
not improve the accuracy of the odometer. Its advantages are
better reflected in low-speed movement scenes.

Therefore, combining the event camera sensor, which has
strong robustness in high dynamic and low light environments,

with the LiDAR sensor, which has high accuracy in normal mo-
tion scenes, can effectively enhance the robustness and position
accuracy of the two sensors in different scenarios.

3. Methodology

In this section, the event camera, LiDAR and IMU multi-
source fusion integrated navigation algorithmic framework will
be demonstrated in detail. The framework encompasses three
key components: LiDAR inertial odometer part, event camera
inertial odometer part, and EKF-based LiDAR and event cam-
era track loose combined post-processing part.

3.1 Back-end error modeling of LIO algorithm based on
filter

The LiDAR odometer part mainly refers to the FAST-LIO al-
gorithm. The algorithm consists of two parts, the front-end and
the back-end optimization part. The front-end mainly includes
the pre-processing part of LiDAR data frame matching (scan-
to-map), and the back-end of the algorithm is the error model-
ing part based on IMU and LiDAR. Here is a brief introduction
to LIO back-end error modeling.

Assume that the LiDAR residual term is rl(·), a point in the
point cloud frame observed under the LiDAR system is Lpj ,

and the current updated state is
∨

xk+1 , then the form of the re-
sidual term is as follows:

rl(
∨

xk+1,
Lpj) = u⊤

j (
Gpj − qj) (1)

According to the current pose estimate
∨

xk+1 , the LiDAR sys-
tem point Lpj can be transferred to the world system to get Gpj ,
and then the neighboring point cloud cluster of Gpj in the point
cloud map can be searched to fit the plane, thus obtaining the
normal vector u⊤

j of the fitting plane and qj of a certain point
on the fitting plane.

The noise contained in the LiDAR observation is mainly af-
fected by the absolute ranging accuracy of the LiDAR point,
and for a certain LiDAR point Lpj in the LiDAR frame, it has

Lpj=
Lpgt

j + nj (2)

nj ∼ N (0,Σnj ) (3)

where Lpgt
j represents the true value of the point and nj rep-

resents the observed noise of the point. When in the real state,
the residual term constructed by the LiDAR point truth value is
zero, and the residual term can be linearly expanded as follows:

0 = rl(xk+1,
Lpgt

j ) = rl(
∨

xk+1 ,
Lpj) +Hl

j

∨
δxk+1 + αj (4)

Hl
j =

∂rl(
∨

xk+1 δ
∨

xk+1 ,
Lpj)

∂δ
∨

xk+1

∣∣∣∣∣
δ

∨
xk+1 =0

(5)

αj = Fpjnj ∼ N (0,Σαj ) (6)

Σαj = FpjΣnjF
⊤
pj

(7)

Fpj = (
∂rl(

∨
xk+1 ,

Lpj)

∂Lpj
) =

∨
GRIk+1

iRL (8)
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For the LiDAR residual measurement matrix Hl
j , the form is as

follows:

Hl
j = u⊤

j [−G
∨
R Ik+1

[
IRL

Lpj+
IpL

]
× I 03×15] (9)

rl(
∨

xk+1 ,
Lpj) +Hl

jδ
∨

xk+1 ∼ N (0, FpjΣnjF
⊤
pj
) (10)

Thus, the residual term for a single LiDAR point of the LiDAR
frame can be obtained as described in the above equation 10.

3.2 EVIO algorithm based on TS and graph optimization

3.2.1 Reprojection error: Referring to the USLAM al-
gorithm, we use the time surface-based event camera image
reconstruction algorithm to convert the event stream data into
a frame format that can be used by the visual VIO algorithm.
Besides, the FAST corner detection method was employed
to identify its features. Subsequently, the Lukas-Kanade op-
tical flow algorithm was used to track these detected feature
points continuously. The projection process can be effectively
modeled as

P̃ = πc(R
c
b(R

b
wL

w + pb
w) + pc

b) + nc (11)

where P = [u, v]T is the coordinate of the feature point on the
pixel plane coordinate system and Lw represents the 3D land-
mark position in the local world frame. πc(·) represents the
camera projection function and nc is the measurement noise.
Therefore, the reprojection error linking these two frames can
be formulated as follows: if a feature represented by a landmark
l has an inverse depth of ρl in frame i, and this feature is sub-
sequently observed again in frame j, then the reprojection error
is

rC(Z̃l,X ) = P̃
ctj
l − πc(X̂

ctj
l ) (12)

X̂
ctj
l = Rc

b(R
btj
w (Rw

bti
(Rb

c
1

ρl
π−1
c (P̃cti

l )+pb
c)+pw

bti
)+p

btj
w )+pc

b

(13)
where {Rb

c, t
b
c} are the extrinsic parameters between the event

camera and IMU.

3.2.2 IMU pre-integration: The IMU pre-integration tech-
nique (Lupton and Sukkarieh, 2011) has widely been used in
VIO systems. This algorithm removes the need to re-integrate
state dynamics at each optimization step. An IMU can measure
specific force and angular rate in the IMU’s body frame. The
specific force bâ and angular rate bω̂ can be calculated as

bâ = ba+Rb
w

wg + bba + bna (14)

bω̂ = bω + bbg + bng (15)

where bba, bbg , bna and bng are the biases and noises from the
accelerometer and the gyroscope in the IMU frame, respect-
ively, g is the gravity vector in the world frame.

We assume that the additional noise in the accelerometer and
gyroscope readings is Gaussian white noise (Qin et al., 2018),
na(0, σ

2
a) and nw(0, σ

2
w) . Additionally, the acceleration bias

and gyroscope bias are modeled as a random walk, whose de-
rivatives are also Gaussian white noise and can be expressed
as

.

b at = nba(0, σ
2
ba) (16)

.

bwt = nbw (0, σ
2
bw ) (17)

The IMU measurement data at intervals [tk,tk+1] was collected
between two successive event frames bk and bk+1. While sim-
ultaneously accounting for the influence of IMU bias, this data
was integrated into the local frame bk as

α
bk
bk+1

=

∫∫
t∈[tk,tk+1]

R
bk
t (ât − bat) dt

2 (18)

β
bk
bk+1

=

∫
t∈[tk,tk+1]

R
bk
t (ât − bat)dt (19)

γ
bk
bk+1

=

∫
t∈[tk,tk+1]

1

2
Ω(ω̂t − bwt)γ

bk
t dt (20)

where

Ω(ω) =

[
−[ω]× ω

−ωT 0

]
[ω]× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (21)

where {α, β, γ} represents the relative position, velocity, and
rotation information between frames bk and bk+1. Finally, the
relationship between the residual and the system state and the
pre-integrated IMU measurements can be expressed as

rpre(Z̃
btk
btk+1

,X ) =



δα
btk
btk+1

δβ
btk
btk+1

δγ
btk
btk+1

δba

δbg



=



R
btk
w (pw

btk+1
− pw

btk
+ 1

2
gw∆t2k − vw

btk
∆tk)− α̂

btk
btk+1

R
btk
w (vw

btk+1
+ gw∆tk − vw

btk
)− β̂

btk
btk+1

2

[
qw−1

btk
⊗ qw

btk+1
⊗

(
γ̂
btk
btk+1

)−1
]
v

babtk+1
− babtk

bwbtk+1
− bwbtk


(22)

where δα
btk
btk+1

, δβ
btk
btk+1

and δγ
btk
btk+1

represent the relative error
in 3D euclidean space and []v represents the imaginary compon-
ent of the quaternion.

3.2.3 Graph optimization based on event cameras and
IMUs: The nonlinear optimization approach was adopted in
the EVIO algorithm’s back-end, which is widely adopted in cur-
rent SLAM research (Leutenegger et al., 2013). This method
incorporates three parts: visual reprojection error, IMU pre-
integration error, and a keyframe marginalization strategy. The
problem can be structured as a factor graph, with sensor meas-
urements serving as a sequence of factors that constrain the
states of the system (Figure 2).

During graph optimization, the state of the system in the sliding
window can be defined as

X =
[
x0, x1, . . . , xn, x

b
c , δ0, δ1, . . . , δl

]
(23)

xk =
[
pw

wbk ,q
w
bk , v

w
wbk ,bgk ,bak

]
, k ∈ [0, n] (24)

xb
c =

[
pb

bc, q
b
c
]

(25)
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Figure 2. Factor graph model during EVIO.

where xk includes the position, attitude, velocity, and IMU bias.
Additionally, xb

c represents the extrinsic parameter between the
event camera and the IMU, while δ refers to the inverse depth
parameter of the landmark. We formulate the optimization
problem as a maximum a posteriori estimation problem, where
all observations are independent, and the noise is assumed to
follow a zero-mean Gaussian white noise distribution and can
be expressed as

X ⋆ = argmaxXp(X|z)
= argmaxXp(X )p(z|X )

= argmaxXp(X)

n∏
i=1

p(zi|X )

= argminX

{
∥rp −HpX∥2 +

n∑
i=1

∥r(zi,X )∥2Pi

} (26)

where z represents the combination of n independent sensor
measurements, and [rp,Hp] embodies the prior information of
the system state. The residual function of each measurement is
denoted by r() and ∥∥P denotes the Mahalanobis norm.

Therefore, the maximum a posteriori estimation problem can be
formulated as

minX

∥rp −HpX∥2 +
∑

k∈[1,n]

∥∥∥rPre

(̃
Pre
k−1,k,X

)∥∥∥2

ΣPre
k−1,k

+
∑
l∈L

∥∥∥rV (̃
Vi,j

l ,X
)∥∥∥2

Σ
Vi,j
l

(27)
where rPre is the residuals of the IMU pre-integration meas-
urements, and rV is the residuals of the visual measurements.

3.3 Integrated navigation of LIO+ EVIO based on EKF

The section describes a framework for a plug-and-play multi-
source fusion algorithm based on EVIO and LIO trajectory
post-processing using EKF. As illustrated in Figure 3, this pa-
per proposes a post-processing algorithm framework. The EKF
Kalman filter is used to fuse the processing results of LIO and
EVIO, along with the raw data of IMU, achieving multi-source
fusion.

It is worth noting that according to previous studies, the EVIO
algorithm is highly robust and can function effectively in chal-
lenging environments, including those with high dynamics and
low light. The LIO algorithm has high accuracy in conventional
motion environments, but its pose accuracy fluctuates greatly
in high dynamic motion, fast rotation, and low texture envir-
onments. However, even if the LIO position error fluctuates

Figure 3. Algorithmic framework for EVLINS.

greatly, the absolute value of the position and attitude uncer-
tainty of the output still remains in the range of 10−5 to 10−4.
Therefore, the error uncertainty is significantly different from
the actual position error, and it cannot be used directly to de-
termine whether the LIO trajectory is degraded.

This paper proposes using normalized LIO uncertainty as a cri-
terion to determine whether LIO is degraded. If the normalized
uncertainty of LIO exceeds a certain threshold, it is considered
that LIO is in a degraded scene. At this time, the EVIO and
IMU data are utilized as input for obtaining corresponding pose
data through EKF fusion. This data is then used to correct the
LIO trajectory and provide feedback for LIO data repair. On
the contrary, When the uncertainty of LIO does not exceed a
certain threshold, it is considered to be in a non-degraded en-
vironment. In this case, the results from EVIO are not used in
integrated navigation. Instead, the result data from LIO is used
as input data along with IMU data through EKF to obtain cor-
responding pose data. The feedback correction of the LIO data
is a result of repairing the EVIO trajectory.

4. Accuracy evaluation of integrated navigation of LIO+
EVIO based on EKF

For data processing, the LIO results are obtained by the open-
source algorithm FAST-LIO (Xu and Zhang, 2021), while the
Event Camera algorithm is developed based on the classic
EVIO algorithm (Vidal et al., 2018).

For all experiments conducted in this study, the DVXplorer, In-
tel RealSense, and Livox Avia lidar sensors are the data record-
ing devices (Figure 4). Notably, the DVXplorer has a 640×480
pixels event camera and a 1 kHz IMU, while the RealSense
sensor merely provides standard images for display purposes
rather than feature tracking.

We tested the performance of our algorithm in an indoor office
environment. During the collection process, there will be a vari-
ety of dynamics and environments such as facing the wall for a
long time, turning quickly, and walking normally. It is used to
fully simulate the applicable and challenging environments of
event cameras and LiDAR, respectively, and run LIO and EVIO
algorithms. In this paper, higher precision and more expensive
IMUs, as well as high resolution industrial cameras and LiDAR
sensors are used as truth values.

The result of LIO algorithm will output position, attitude and
uncertainty information, but its error uncertainty is seriously
untrustworthy. As shown in Figure 5, when the trajectory of
LIO faces a smooth wall, its trajectory has begun to diverge seri-
ously compared with the true value, but the position uncertainty
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Figure 4. The equipment used in this paper.

is only 10−4 (Figure 6). If it is directly used as the weight in-
formation of LIO and EVIO multi-source fusion, it is obviously
irrational and inconsistent with the real situation. Therefore, in
order to make reasonable use of the uncertainty information, the
three-axis uncertainty information is normalized to accurately
describe its variation trend in the error uncertainty interval.

Figure 5. Comparison of LIO and ground truth.

Figure 6. LIO three-dimensional position uncertainty.

Figure 7 displays the normalized uncertainty. Additionally, Fig-
ure 8 shows the LIO trajectory along with the part that exceeds
the normalized uncertainty threshold used to determine if LIO
is degraded. The threshold value is obtained by synthesizing
the uncertainty and error of the whole trajectory. Combined

with Figure 5, the divergence trend and divergence of error un-
certainty are consistent. Before the movement, the computer
screen briefly obstructs the data acquisition equipment, render-
ing it unable to obtain effective scene structure information, res-
ulting in a brief degenerate state. During the initial stages of
movement, LIO can gather detailed structural information from
the surroundings, resulting in a trajectory that closely aligns
with the actual value. However, between 6s and 8s, while walk-
ing towards a deteriorated environment and facing a wall that
required a turn, the experimenter abruptly changed direction by
180 degrees. This sudden change caused the LIO trajectory to
rapidly diverge, resulting in a brief peak in its normalized un-
certainty that exceeded the threshold.

Figure 7. LIO position normalization uncertainty and threshold.

Figure 8. Comparison of LIO trajectories and uncertainty.

In contrast, the event camera has good robustness under high-
speed motion turns in the same scene due to its feature of event
camera without motion blur, and its divergence on the trajectory
is smaller than the LIO result (Figure 9). However, event cam-
eras also have scaling issues. This is because event cameras
can only generate corresponding event information when the
change of light exceeds a certain threshold. Therefore, in the
normal motion state, fewer event points are triggered compared
to the high dynamic state, resulting in less texture information
being formed and a significant scale problem.

Therefore, it is necessary to combine the characteristics of high
accuracy of LIO trajectories under normal motion conditions
and the characteristics of robustness under EVIO challenge
scenarios. This paper proposes EVLINS, a post-processing al-
gorithm framework for fusing LIO and EVIO trajectories based
on EKF. The framework includes a method for judging whether

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-477-2024 | © Author(s) 2024. CC BY 4.0 License.

 
482



Figure 9. Comparison of EVIO and ground truth.

LIO is degraded by checking if the normalized uncertainty of
LIO exceeds a certain threshold. By setting the threshold for
LIO normalized uncertainty, LIO and EVIO tracks are fused
flexibly. The integrated navigation results, as shown in Figure
3, are used to perform feedback correction on the tracks that
do not participate in the fusion. The results are presented in
Figure 10. It is evident that the fusion of LIO and EVIO has
resulted in a significant improvement in the trajectory. The al-
gorithm proposed in this paper is capable of timely switching to
the more robust EVIO system when the LIO is in a degraded en-
vironment, and carrying out continuous trajectory repair for the
subsequent divergent LIO trajectory. When the system detects
that LIO is no longer in a degraded environment, it takes over
the entire system again. Compared to the unused integrated
navigation, its trajectory is closer to the true value, effectively
addressing the problem of LIO in degraded environments. Fur-
thermore, it improves the inaccuracy and divergence of EVIO’s
trajectory to a certain extent. In comparison to EVIO, it ad-
dresses the issue of scale inaccuracy that has been present since
the beginning of the movement. It is possible that the entire
system is now running more robustly.

Figure 10. EVLINS integrated navigation results based on EKF.

The positional errors of the three algorithms are calculated sep-
arately, as presented in Table 1. It is evident that EVLINS has
better position accuracy than the original algorithm. In com-
parison to LIO, EVLINS can reduce the maximum position
error by approximately 30% and increase the overall position
accuracy by 32%. However, upon comparing the position er-
rors of the X-axis and Y-axis (refer to Figure 11), it becomes
evident that the EVLINS algorithm performs poorly in the X-
axis direction due to the significant scale influence of the EVIO
algorithm. While the algorithm shows some improvement in

the Y-axis direction when compared to LIO, it effectively con-
strains the divergence of its error in the Y direction. Compared
to the LIO and EVIO algorithms, the EVLINS algorithm can
improve two-dimensional position accuracy by approximately
75% and 65%, respectively.

Algorithm max (m) rmse (m) std (m)
EVLINS 0.68 0.35 0.21

LIO 0.98 0.43 0.31
EVIO 0.84 0.43 0.25

Table 1. MargComparison of 2D position error between the
EVLINS algorithm and other algorithms.

Figure 11. X-axis error for LIO, EVIO, and EVLINS algorithms.

Figure 12. Y-axis error for LIO, EVIO, and EVLINS algorithms.

5. Conclusion

This paper presents a framework for a plug-and-play multi-
source fusion algorithm based on EVIO and LIO trajectory
post-processing using EKF. The aim is to combine LIO’s high
accuracy in conventional motion environments with EVIO’s
strong robustness in highly dynamic environments. The EKF
Kalman filter is used to fuse the processing results of LIO and
EVIO, along with the raw data of IMU, achieving multi-source
fusion and provide feedback for the LIO and EVIO. The exper-
imental results indicate that the proposed algorithm effectively
addresses the problem of LIO in degraded environments. Ad-
ditionally, it mitigates the scale inaccuracy and divergence of
the EVIO trajectory to some extent. Compared to LIO, the al-
gorithm can reduce the maximum position error by approxim-
ately 30% and increase the overall position accuracy by 32%.
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Additionally, it can significantly constrain the divergence of er-
rors in the Y direction, improving its accuracy by about 75%
and 65% compared to the LIO and EVIO algorithms, respect-
ively.
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