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Abstract

Ultra-wideband (UWB) positioning technology stands out from many indoor positioning technologies with its advantages of high
precision. However, non-line-of-sight (NLOS) propagate leads to heavy range error and reduces position accuracy, this paper
proposes a NLOS identification method based on channel impulse response (CIR), which includes three stages. Firstly, CIR based
feature selection is carried out, which includes correlation analysis of calculated features. Secondly, fuzzy comprehensive evaluation
model is introduced to NLOS identification. Finally, time of arrival (TOA) based location estimation is realized after NLOS ranging
error mitigation. Simulation results show that the average identification rate of NLOS can exceed 86%, and the average positioning
error can be reduced by about 0.5m.

1. Introduction

With the rapid development of society, location-based service
(LBS) has become a critical research hotspot. The Global Nav-
igation Satellite System (GNSS) can accurately determine out-
door positions, meeting basic needs. However, obstacles such
as buildings make it difficult for satellite signals to penetrate in-
doors, rendering indoor positioning impossible. People spend
most of their time in indoor activities, so many technical meth-
ods (Zeakvat et al., 2021) for indoor positioning (Yassin et al.,
2017) have emerged. Among them, UWB (Oppermann and Iin-
atti, 2004) positioning stands out because of its advantages of
high positioning accuracy (Ruming, 2009). It is a range-based
positioning method that relies on accurate signal transmission
time of both positioning parties, but its signal is affected by
obstacles and generates multi-path interference, resulting in re-
duced ranging accuracy. Furthermore, the positioning accuracy
error in some signal blocking areas is significant, which does
not meet people’s needs.

Many scholars have studied the NLOS problem of UWB sig-
nals, which is usually solved from two aspects: identification
and mitigation. NLOS identification can be divided into three
categories from different levels of data processing, including
channel feature based methods, distance based methods and
location based methods. Among them, the location based method
is to identify after position calculation (Schroeder et al., 2007),
and this method is only effective when assisted by redundant
distance information, that is, to identify the exclusion by com-
paring the position coordinates calculated by different distance
information. The distance based identification method is car-
ried out before and after the location calculation (Borras et al.,
1998) by means of data processing methods such as probabil-
ity density function and variance, and to some extent depends
on the limitations of prior conditions such as prior distribution
function. Identification methods based on channel characterist-
ics usually extract channel impulse response and detect differ-
ent characteristics obtained based on it, including total signal
energy, maximum signal amplitude, signal-to-noise ratio, aver-
age delay, etc (Yu et al., 2019). Feature analysis methods are

divided into two categories. One is to analyze the statistical
characteristics of different characteristics and set thresholds for
comparison, so as to identify whether it is NLOS. The other is
to use machine learning such as support vector machine, neural
network to perform classification tasks. Gururaj etc. (Gururaj
et al., 2017) discusses NLOS detection based on kurtosis, mean
excess delay spread, root mean square delay spread, receiv-
ing power and first path power. Zeng etc. (Zeng et al., 2019)
uses features extracted from the CIR (such as kurtosis, standard
deviation, energy, etc.) for classification with the help of ma-
chine learning algorithms. Unlike existing methods, the NLOS
and LOS probability density functions for the correlation coef-
ficients are calculated using the training data. Si etc. (Si et
al., 2023) proposes a novel LOS/NLOS identification algorithm
based on multi-layer perceptrans (MLP), which can utilize both
manually extracted features and CNN features based on raw
CIR inputs, adopting a machine learning approach that has con-
genital limitations due to its large amount of prior information
required. In addition, some scholars use additional environ-
mental information, including the spatial structure of buildings
and maps (Jo et al., 2006), to identify NLOS (Gustafson et al.,
2006), which is similar to the map matching method in indoor
positioning. However, such constraints cannot guarantee access
at any time, so this method has certain shortcomings. There are
usually two kinds of methods for mitigating ranging error in
NLOS environment. One is to correct the range error after the
identification of NLOS, and then use the corrected distance to
solve the position. Heidari et al. Heidari (Heidari et al., 2007)
subtracted the range error from the NLOS range estimate based
on the range error statistics associated with the position of each
class of receivers. The other is to directly discard the ranging er-
ror value in NLOS environment, and use additional localization
sources, such as inertial measurement unit (IMU) and geomag-
netic, to study the multi-source fusion localization algorithm.
In one reference (Xia et al., 2018), the authors propose a Pedes-
trian dead reckoning (PDR) assisted ultra-wideband positioning
method to realize switching between two positioning systems.
The position difference between UWB and PDR is applied to
a formula based on probability distribution. Weighted aver-
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age is chosen as the fusion method. The positioning error of
UWB is reduced by PDR (Tong et al., 2020). As a more ad-
vanced approach, the authors of (Liu et al., 2019) propose a
new method using the position difference of an extended Kal-
man filter (EKF). Kim (Kim and Pyun, 2021) proposes a hybrid
positioning system that fully combines UWB and PDR, which
divides the NLOS of UWB into LOS, weak NLOS and hard
NLOS, uses a fusion method based on Kalman filtering (KF) to
identify the NLOS environment, and alleviates the UWB error
through PDR. In addition, there are also attempts to combine
the two mitigation methods, but the complexity of the system is
increased to a certain extent.

Based on the above existing research on NLOS identification
and mitigation in UWB positioning, this paper proposes a CIR
based NLOS identification method. Through correlation ana-
lysis of different channel characteristics, features with large dif-
ferences are selected for identification, and then fuzzy compre-
hensive evaluation (FCE) model is adopted for quantification.
Determine NLOS situation by comparing it with the experience
threshold. In the ranging error mitigation of NLOS, the range
correction is determined by ranging error statistical character-
istic. The advantage of this method is that it does not require
too much prior information and the complexity of the algorithm
is much lower than other methods such as machine learning.
In addition, the NLOS identification and the positioning errors
before and after mitigation are compared and the proposed al-
gorithm is validated.

The remainder of the paper is organized as follows. In section
2, it introduces the concrete methods of NLOS identification
and ranging error mitigation; the third section describe the used
dataset and some simulation experiments are conducted in this
section to verify the performance of the proposed algorithm.
And conclusions are given at last.

2. Method of NLOS Identification

The overall block diagram of the system is shown in Figure 1,
and the system is divided into three stages as a whole, includ-
ing feature selection based on CIR, NLOS identification based
on FCE, and localization estimation based on TOA. In the first
stage, it mainly consists of feature calculation and correlation
analysis of the raw data based on CIR to screen out the features
for NLOS identification; in the second stage, the FCE model
is used for NLOS identification; finally, the ranging values in
the NLOS environment are calibrated by analysing the statist-
ical characteristics of the ranging error values and the location
estimation is performed using the calibrated ranging values.

2.1 CIR Based Feature Selection

2.1.1 Feature Calculation Based on CIR, a variety of typ-
ical features are extracted from the signal waveform for the
identification of NLOS. When the signal is blocked by obstacles,
there will be a multi-path effect, the energy will be greatly atten-
uated, the noise will also be accompanied by a great change, and
the pulse rise time will change significantly. In the case of LOS
without multi-path interference, kurtosis (KUR) is higher, but
in the presence of multi-path interference, KUR will decrease
significantly. Based on this, the following six potential influ-
ence characteristics are selected in this paper, which are total
energy (TE), maximum amplitude (MA), signal-to-noise ratio
(SNR), rise time (RT), mean excess delay (MED) and KUR.
These features are calculated as follows:

Figure 1. Overall block diagram.

1) TE.

ε =

N∑
i=1

|r(ti)|2, (1)

where r(ti) = the amplitude of ith UWB signal waveform
sample

N = the number of samples

2) MA.
rmax = max{|r(ti)|}, (2)

3) SNR.

δsnr = 10log10(
r2max

2σ2
n
), (3)

where σn = the standard deviation of the thermal noise

4) RT.
trise = tstop − tstart, (4)

with

{ tstart = min{ti : |r(ti)| ≥ 0.1rmax}
trise = min{ti : |r(ti)| ≥ 0.9rmax}
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where ti = the time of ith UWB signal waveform sample

5) MED.

τmed =
1

ε

N∑
i=1

(ti|r(ti)|2), (5)

6) KUR.

κ =
1

Nσ4
r

N∑
i=1

(|r(ti)− µr|)4, (6)

with

µr =
1

N

N∑
i=1

(|r(ti)|), σ2
r =

1

N

N∑
i=1

(|r(ti)− µr|)2.

Before the correlation analysis of the signal characteristics, it is
necessary to eliminate the abnormal values in each character-
istic value, and some extreme values will affect the correlation
judgment between the two characteristics.

2.1.2 Correlation Analysis The correlation coefficient re-
flects the direction and degree of the change trend between the
two variables, and its absolute value ranges from 0 to 1, 0 indic-
ates that the two variables are not correlated, larger values in-
dicate stronger correlation. Correlation coefficients usually in-
clude Pearson, Spearman and Kendall correlation coefficients.
Pearson correlation coefficient has high requirements on data,
that is, the overall normal distribution of two variables, and the
observed values are continuous and independent of each other.
The signal characteristic data such as TE and MA in this paper
do not meet the conditions. In contrast, Spearman and Kend-
all correlation coefficients have no additional data condition re-
quirements, so this paper chooses these two correlation coeffi-
cients for comparative analysis.

Spearman’s correlation coefficient is calculated by equation (7).

ρ = 1−
6
∑

d2i
n(n2 − 1)

, (7)

Take two pairs of data TE and MA as an example, di repres-
ents the difference of the position value of the ith data pair; n
represents the total number of observed samples.

Kendall coefficient is based on the idea of collaboration. For
the two pairs of observations, if the observations are positively
correlated, it says that the two pairs of observations are har-
monious, otherwise they are disharmonious. The calculation is
shown in equation (8).

ρ =
2(m− k)

n(n− 1)
, (8)

Taking TE and MA as two pairs of data, m represents the logar-
ithm of harmonious observations between the two sets of data, k
represents the logarithm of disharmonious observations between
the two sets of data, and n represents the total number of ob-
served samples.

Finally, the correlation coefficients between the six character-
istics are obtained, and the correlation is strong. Only one of
the two eigenvalues is used for NLOS identification.

2.2 FCE Based NLOS Identification

In the identification of NLOS, the idea of FCE is adopted. This
comprehensive evaluation method transforms qualitative evalu-
ation into quantitative evaluation according to the membership
theory of fuzzy mathematics, and gives a general judgment on
the NLOS identification problems related to various signal char-
acteristics based on CIR. The steps are as follows:

1) Factor set: The factor set is the signal feature screened by
correlation analysis;

2) Comments set: The review sets are LOS and NLOS;

3) The weight of each factor, that is, the role of each factor in
the comprehensive evaluation. In the case of data, this paper
adopts the entropy weight method to determine the weight of
each factor. For the normalization of index values, this paper
adopts the maximum-minimum normalization method, and as
shown in equation (9).

Yij =
Xij −min(xi)

max(xi)−min(xi)
, (9)

where Xij = the original value of different features
Yij = the normalized value of different features

Calculate the weight pij of the index value of the ith item of the
jth index, and as shown in equation (10).

pij = Yij/

n∑
i=1

Yij , (10)

Calculate the entropy of the jth index, and the formula is in
equation (11).

Ej = − ln (n)−1

n∑
i=1

pij ln pij , (11)

Calculate the entropy of each index, and the formula is in equa-
tion (12).

Wi =
1− Ei

k −
∑

Ei
, (12)

Then it gets the weight set A.

4)The fuzzy comprehensive judgment matrix is determined, and
membership function is selected to calculate membership de-
gree. The membership function is shown in equation (13).

rij = 1−
∣∣∣∣ xij − ((max(xj)−min(xj))/2)

max(xij , (max(xj)−min(xj))/2)

∣∣∣∣ , (13)

where xj = the index value of the all item of the jth
evaluation index

Yij = the normalized value

The evaluation matrix R which is consisted in rij is obtained.

5)The model formula of FCE is shown in equation (14).

B = A ∗R, (14)
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Finally, the computed affiliation B is compared with the em-
pirical threshold to determine whether it is in NLOS situation.
Thresholds are selected from empirical values of a priori in-
formation processing of established environments, between 0.2
and 0.5.

2.3 TOA based localization estimation

In this paper, the ranging error mitigation process will make
a statistical analysis of the obtained range error value, mainly
including its mean and variance. The specific error correction
formula is in equation (15).

d =
dmean

1− dvar
, (15)

Where dmean is the mean ranging error and dvar is the ranging
error variance. The participation of the mean is to effectively
reduce the range error, while the participation of the variance
is to adjust the error substantially in case of extreme outliers of
the error.

The overall description of the method proposed in this paper is
shown in Table 1.

Algorithm 1 NLOS identification, mitigation and location
estimation
Input: raw data of UWB signal measurements
Output: identification rate, range and position estimation
corrected value

for ii = 1:the number of groundtruth Coordinate in one
environment

[NLOS identification and mitigation:]
for h = 1:the number of base stations

feature calculation absed on raw data of UWB signal
measurements, correlation analysis and choose
better feature set;

end
The entropy weight method calculates the weights
and is used for fuzzy comprehensive evaluation,
which gets membership value;

if membership value < threshold value
determine as LOS and correct range;

else
determine as NLOS;

end
[Location estimation:]
if the number of LOS base station ≥ 3

TOA is used for location estimation;
else

LOS base stations are selected and NLOS base
stations were randomly selected for location
estimation;

end
end

Table 1. The proposed algorithmic process.

3. Simulation and Result

3.1 Dataset Description

The simulation validation data for this paper comes from Pro-
fessor Klemen Bregar of the Jozef Stefan Institute, SensorLab,
Slovenia (Bregar, 2023). The dataset consists of measurements
from different indoor environments, each with eight fixed an-
chor devices and one mobile positioning device. The device
was selected as a low-cost, commercially available DecaWave

DW1000 (now named Qorvo DW1000) UWB transceiver in the
form of a certified and integrated RF module DWM1000 with
a sampling frequency of 64MHz. The environments are shown
in Figure 2.

(a) scenario 1

(b) scenario 2

Figure 2. Experiment scenarios (figure from open dataset
description)

In each environment, a person walking path is defined in ad-
vance, and the location of the positioning device is obtained by
evenly sampling the path. At each location, multiple ranging
and CIR data between the positioning device and each anchor
point were collected. A total of about 0.6 million sets of meas-
urement data were collected in two environments. Each piece
of data contained 27 parameter information such as label posi-
tion, anchor point position, RSS, maximum noise, etc., part of
them are as shown in Table 2.

3.2 Feature Selection Analysis

The correlation among the six candidate features is shown in
Figure 3. The two feature values with an absolute value less
than 0.4 are weakly correlated. The two eigenvalues of 0.4-0.6
are moderately correlated. Two eigenvalues greater than 0.6 are
considered to be strongly correlated. It can be seen that there are
significant correlations between RT and MED, RT and MED,
and MED and KUR. Other features showed weak correlation
at different levels. Therefore, this paper intends to select four
features, such as TE, MA, SNR and RT as selected features, and
compare and analyze them with full features and other feature
subsets.
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Member Description

x tag Tag position on x-axis
y tag Tag position on y-axis
z tag Tag position on z-axis
x anchor Anchor position on x-position
y anchor Anchor position on y-position
z anchor Anchor position on z-position
NLOS NLOS situation
range Measured range
rss Measured max RSS value for UWB packet
rss fp Measured first RSS value for UWB packet
max noise Max value for noise from UWB packet reception
stdev noise Std for noise from UWB packet reception
cir List of CIR values in a complex form
cir power Max absolute value of CIR
fp point1 Absolute value of first CIR point

Table 2. Raw data parameter information.
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Figure 3. Figure of correlation coefficient matrix.

3.3 Performance of NLOS Identification

Table 3 is a comparison table of identification rates under dif-
ferent candidate feature combinations in four scenarios. It can
be seen that the identification rate of NLOS is close to that of
other combination of feature values when considering four fea-
tures and six features and Computational resource consumption
based on four features is slightly lower than six features.

Figure 4 shows the range statistics of the NLOS identification
rate in the four scenarios under the five candidate features, and it
can be seen that the NLOS identification rate is lower than 80%
at all the trajectory points only at individual trajectory points,
and more than half of the trajectory points have a identification
rate of greater than 85%, with the highest identification rate ex-
ceeding 95%.

Feature set Identification rate

Ex.1 Ex.2
TE,MA,SNR,RT,MED,KUR 89.6% 87.1%
TE,MA,SNR,RT 88.9% 86.3%
TE,MA,RT 87.5% 85.5%
TE,MA 87.4% 83.3%

Table 3. Identification rate in different scenarios.
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(b) scenario 2

Figure 4. Identification rate of different trajectory points in
different scenarios

3.4 the Result of Location Estimation

The statistics of mean ranging errors in different scenarios are
shown in Table 4. The statistical diagram of ranging errors of
all track points in the two scenarios is shown in Figure 5.

environment mean range error/m

before mitigation after mitigation
Ex.1 0.306 0.259
Ex.2 0.177 0.146

Table 4. Mean ranging error in different scenarios.
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Figure 5. Different trajectory of range error in different scenarios

As can be seen from Table 4 and Figure 5, compared with be-
fore NLOS ranging error mitigation, the error after mitigation
is reduced by more than 0.1m on average, effectively correcting
the ranging value, and the positive effect will be multiplied and
reflected in the accuracy of subsequent position estimation. For
some extreme ranging outliers, it can be seen that this part of
the error is also effectively mitigated.

From the perspective of positioning performance estimation,
the mean value, standard deviation and cumulative distribution
function of positioning errors are used as evaluation indexes.
The positioning accuracy performance pairs of different posi-
tioning methods are shown in Table 5, and the CDF curve is
shown in Figure 6.

environment positioning error/m

mean STD RMS
Ex.1 before 2.435 3.046 3.446
Ex.1 after 1.873 2.302 2.943
Ex.2 before 2.116 2.442 2.932
Ex.2 after 1.775 1.883 2.157

Table 5. Location estimation error in different scenarios.
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Figure 6. The curve of CDF in different scenarios

As can be seen from the walking trajectory map in Figure 2,
the experiments in the two environments were greatly affected
by NLOS due to the influence of building walls etc., while the
average positioning error of all the trajectory points before and
after NLOS identification and ranging error mitigation by this
paper has been reduced by 0.5m, which effectively improves
the problem of error attenuation caused by NLOS.

4. Conclusion

UWB is one of the slam dunks among many technical means for
indoor positioning, which has the absolute advantage of high
positioning accuracy, but is slow to be promoted in the field be-
cause it is affected by NLOS. In this paper, based on the exist-
ing research, a NLOS processing method based on channel im-
pulse response is proposed, including CIR based feature selec-
tion, FCE based NLOS identification and TOA based localiza-
tion estimation. Simulation experiments and analysis show that
this method can effectively identify NLOS, the average identi-
fication rate can exceed 86%. Besides, the range error can be
effectively corrected, which contributes to the position estima-
tion error reduced by about 0.5m. The methodology proposed
in this paper provides new insights for subsequent research on
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NLOS identification, and promotes the study of more effective
methods in NLOS ranging error mitigation.
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