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Abstract

Due to the subterranean scene’s poor lighting conditions and variability of the environment, real-time localizing and meshing in
complex underground scenes present a challenging task, with high-potential applications in mining and tunnel protection. In this
work, we propose a method that combines SLAM and NeRF for mesh reconstruction in the underground environment with a
wearable device. First, a LiDAR-Inertial odometry is used for pose estimation. The resulting poses and sequential laser frames are
synchronized to generate a novel data structure, scan-block, which is crucial for improving efficiency and ensuring local precision.
This structure is designed to enhance efficiency and ensure local precision. Finally, the generated scan-blocks are passed to the back-
end NeRF for real-time mesh reconstruction. The experiments are carried out in a complex underground space. The experimental
results proved that this method achieved good results. The demo video can be found at https://youtu.be/_y1vbaW06EM?si=
hFnAl12u-ffU933h.

Figure 1. Helmet equipped with MID-360

1. Introduction

Mesh is a graphical object composed of vertices, edges, and
faces, utilized to depict the geometric structure of a 3D graph.
It holds a central position in the field of 3D reconstruction due
to its capability to accurately represent complex shapes and
scenes. Mesh reconstruction in underground spaces is a pivotal
technological step, playing a significant role across various fields.
It enables precise depiction of the shape and positioning of
underground pipelines, furnishing a database for subsequent
analysis, design, and management (Franzius and Potts, 2005),
thereby contributing to the development of smart cities (Yang
et al., 2023). Furthermore, in geological exploration and min-
eral extraction processes, precise underground 3D models aid
engineers in comprehending underground structures and anti-
cipating potential issues, thereby mitigating risks and enhan-
cing efficiency and safety (Long et al., 2018). Nevertheless,
real-time mesh reconstruction encounters numerous challenges
in underground environments, rendering it a formidable task.

The first challenge in real-time meshing lies in the complexity
of terrain and structures. Underground spaces often feature in-
tricate landscapes and man-made structures like tunnels, sub-
way stations, pipelines, and caves. These structures vary in
shape and size and may exhibit complex connections and in-
tersections, posing a significant hurdle for accurate modeling
(Hashimoto and Saito, 2019). Another obstacle is the diffi-
culty of data collection. Acquiring data in subsurface environ-
ments necessitates specialized equipment and techniques such
as subsurface scanning radar (GPR), laser scanning, and op-
tical measurement techniques (Park et al., 2017). These meth-
ods may encounter various issues underground, including sig-
nal attenuation, noise interference, and insufficient light, all of
which can compromise the accuracy and completeness of the
data (Li et al., 2024, Li et al., 2022). Moreover, real-time data
processing methods and mesh construction present additional
challenges. Transitioning from raw data to the final mesh model
entails multiple steps, such as feature extraction, reconstruction,
and optimization (Remondino, 2003). These processes involve
intricate algorithms that demand substantial computational re-
sources and impose stringent requirements on algorithm effi-
ciency and accuracy.

SLAM (Simultaneous Localization And Mapping, SLAM) is
an essential method for real-time meshing, and in recent years,
it has made considerable advancements, becoming relatively
mature in certain domains. However, many experiments and
applications now occur in urban or indoor settings, which in-
troduces limitations. In particularly challenging environments
like underground scenes, traditional SLAM methods face sig-
nificant hurdles. To address these challenges, researchers have
explored the use of a combined LiDAR-camera-IMU approach
for reconstructing underground scenes. While some progress
has been made, obstacles persist due to the complex terrain,
sparse point cloud data, and poor illumination conditions inher-
ent to underground environments. Furthermore, there has been
limited focus on leveraging SLAM techniques specifically for
mesh reconstruction, with only a few researchers exploring this

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-501-2024 | © Author(s) 2024. CC BY 4.0 License.

 
501

https://youtu.be/_y1vbaW06EM?si=hFnAl12u-ffU933h
https://youtu.be/_y1vbaW06EM?si=hFnAl12u-ffU933h


Figure 2. Pipeline of our algorithm. It consists of three main sections. The final implicit map can be rendered as a mesh.

area (Ruan et al., 2023).

NeRF (Neural Radiance Field) proposed in recent years can re-
construct high-quality 3D scenes and render from sparse pic-
tures, thus solving the problem of poor reconstruction effect due
to sparse data. iMAP (Sucar et al., 2021) was the first to com-
bine SLAM with NeRF, and NICE-SLAM (Zhu et al., 2022)
was modified from iMAP to significantly improve the accuracy
and efficiency of the optimization. NeRF-LOAM (Deng et al.,
2023) used the LiDAR data to construct a comprehensive 3D
representation of large-scale environments, solving the prob-
lem of building maps with sparse but accurate data. LONER
(Isaacson et al., 2023) is the first real-time NeRF-based LiDAR
SLAM. However, NeRF-based LiDAR SLAM is computation-
ally intensive, and its current front-end pose estimation is overly
simplistic. As a result, it struggles to match the positioning and
reconstruction accuracy of existing traditional SLAM methods.

Building upon these challenges, this paper proposes an approach
to mesh reconstruction by integrating NeRF with SLAM and
evaluating the complex underground environment. The front
end of the system employs traditional SLAM techniques to com-
pute poses. The resulting poses and LiDAR frames are then
used to generate scan-blocks and forwarded to the back-end for
NeRF training and mesh reconstruction. To optimize computa-
tional resources and ensure efficiency, keyframes for back-end
construction are selected based on temporal criteria.

The primary contributions of this paper encompass the follow-
ing aspects:

1) Compared to most SLAM systems that use the least square
method for front-end pose estimation, we employ the more
robust extended Kalman filter for pose estimation to im-
prove system reliability.

2) We use a novel data structure, the scan block, as a way to
guarantee local geometric accuracy while boosting the real-
time performance of the system.

3) We use a real-time NeRF-based SLAM system for mesh
reconstruction of underground scenes and conduct experi-
ments in several environments to validate the effectiveness
of our proposed method.

The remainder of this paper is organized as follows. The wear-
able sensing system is briefly introduced in 2. The method is
revealed in Section 3. In Section 4, the experimental studies are
undertaken to evaluate the proposed method, after which con-
clusions are drawn in Section 5.

2. Sensors and Configuration

Our wearable sensing system comprises a MID-360 LIDAR
with its integrated IMU, housed within a helmet featuring signal
transceiver functionality, as illustrated in Fig. 1. The hardware
design of the helmet aligns with that of the WHU-helmet (Li
et al., 2023), with detailed specifications outlined in the ref-
erenced paper. During data collection, the LIDAR measures
the data while the IMU gathers inertial measurements. Sub-
sequently, the collected information is transmitted to a mini-
ature laptop via a signal transmitter.

The MID-360 LiDAR distinguishes itself from traditional mech-
anical LiDAR by offering a horizontal field of view of 360°
and a vertical field of view of 59°. This wider field of view
enables it to capture more comprehensive point cloud data for
measurements. Moreover, the helmet is lightweight, facilitating
prolonged portability for underground workers during extended
periods of work.

3. Method

3.1 System Overview

The workflow of the system is depicted in Fig.2. Similar to
typical SLAM systems, this system comprises two main par-
allel structures: front-end tracking and back-end mapping. The
front-end thread handles incoming LiDAR scans and IMU meas-
urements, with state estimation performed by an iterative Kal-
man filter (Xu et al., 2022). Subsequently, the estimated pose
and point cloud are jointly processed to create a local data block.
Concurrently, at a lower frequency, the mapping thread updates
the trained neural scene representation using the current data
block and selects previous data blocks as keyframes.

3.2 Tracking

The tracking thread receives the data emitted by the helmet and
passes it into the front-end odometry. The raw LiDAR points
sampled sequentially are first accumulated in certain time peri-
ods. The accumulated point cloud is called a scan. Since LiDAR
usually collects point one by one, the resulting points are sampled
at different poses during the continuous motion of the LiDAR.
To correct for this in-scan motion, we use the method in FAST-
LIO (Xu and Zhang, 2021) to back-estimate the LiDAR posi-
tion of each point in the scan based on the position of the IMU
pre-integrated value with respect to the time of the end of the
scan thus back-estimating the LiDAR position for each point
in the scan, thus projecting all the scanned points to the end
moment based on the exact sampling time of each point in the
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Figure 3. Generation of scan block. This picture clearly gives the flow of forming a scan block. Multiple laser scans and poses are
synchronized in time, and the frames of the block are aligned to the first frame by pose to form a local block.

scan. Thus, the projected scan points can be viewed as sampled
simultaneously at the end time of the scan.

Due to the presence of LiDAR measurement noise Lnj , each
measurement point is usually polluted by measurement noise,
and removal of this noise yields the true point position Lpj in
the local LiDAR coordinate system. At moment k, this real
point should lie exactly in the small local plane under the pro-
jection to the global coordinate system using the corresponding
LiDAR position GTIk =

(
GRIk ,

G pIk
)

and the extristric para-
meter GTL, i.e., the measurement model is:

0 =G uT
j (

GT I
IkTL(

Lpj +
L nj −G qj) (1)

where Guj is the normal vector in the corresponding plane and
Gqj is a point located in the plane. Both GTIk and ITL are
contained in the state vector xk.

We use an iterative Kalman filter for state estimation, consist-
ing of two key steps: propagation of each IMU measurement
and iterative updating for each LiDAR scan. Typically, since
IMU measurements are more frequent than LiDAR, multiple
propagation steps are required before the update. The forward
propagation takes place when the IMU measurements arrive
and continues throughout. After the current state is obtained
through forward propagation, residual computation is performed
through the measurement equations, and finally an iterative up-
date is performed to obtain the current state estimate x̂k and the
point cloud

{
Gpj

}
.

3.3 Scan Block

We divide the point clouds measured by the Wearable Laser
Scanning System into several groups of scan blocks based on
time intervals and trajectories (Yang and Li, 2022), as shown in
Fig. 3. Each scan block receives poses estimates from tracking
Ti,j(j = 1, 2, . . . , 10) and a single-frame point cloud framei,j ,
and performs the time synchronization to form a local scan
block, denoted as SCi.

In this SCi, we use the point cloud of the first frame framei,1
as the reference point cloud and the pose of the first frame Ti,1

as the reference pose. Since we already know the pose Ti,j and
point cloud framei,j of each frame estimated by tracking, we
can use Eq:

frame
′
i = framei,1⊕(T−1

i,1 ∗Ti,j∗framei,j), j = 2, 3, . . . , 10
(2)

to transform other frames to the first frame. The notation ⊕
denotes the stitching point cloud operation.

Simplify the processed localized scan block as:

SCi = ((frame
′
i, Ti,1), . . .)

The scan block is updated and sent to the mapping thread at
1Hz for NeRF training.

3.4 Implicit Map Representation

We used the method mentioned in (Isaacson et al., 2023) to rep-
resent the scene with an MLP containing a hierarchical feature
grid. With online training, the parameters of the MLP and the
feature grid are synchronously updated to predict the volume
density σ of each point in space. For a LiDAR ray −→o with an
origin −→o and direction vectors −→

d , we select N samples along
the ray. Occupancy state σi will be predicted by feature gird
and trained MLP. Cumulative transmittance Ti and weight wi

are calculated by the following equations:

Ti = exp(−
i−1∑
j=1

σjδj) (3)

wi = Tiσi (4)

where δj represents the distance between two sampling points.
The weights wi represent the probability of where each line will
end up along the direction vector. Therefore, the depth along
each line can be predicted as:

ÊD(−→r ) =

N∑
i=1

witi (5)

3.5 Mapping

The mapping thread receives the scan block from the tracking
thread and decides whether to form a keyframe. If the scan
block is successfully received, the map will be co-optimized
with the pose.

3.5.1 Keyframe Keyframes are selected based on a tem-
poral criterion. Whenever a certain time interval t has elapsed, a
new keyframe is added to the mapping thread. During each op-
timization update, the current keyframe and NKF −1 randomly
selected past keyframes are jointly optimized.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4-2024 
ISPRS TC IV Mid-term Symposium “Spatial Information to Empower the Metaverse”, 22–25 October 2024, Fremantle, Perth, Australia

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-2024-501-2024 | © Author(s) 2024. CC BY 4.0 License.

 
503



3.5.2 Optimization When a window for the optimized key-
frames is selected, the map and the keyframes’ poses will be
jointly optimized within the optimization window. For a key-
frame with an estimated pose x̂k, a vector δ̂i ∈ R6 is used as
optimization variable. In the forward propagation stage, this
vector is converted back to a pose x̂i and used to compute the
origin of the ray. In the back propagation stage, the gradient
will be computed for the MLP from the vector δ̂i along with
the parameters of the MLP. The final optimized vector will be
transformed into a pose x∗

i . At the same time, the optimization
will be synchronized to the tracking thread, so that subsequent
tracking is based on the optimized poses.

3.6 Loss Function

There are two terms that comprise our loss function, the JS loss
and the depth loss. The loss function is as

L(θ) = LJS + λ1Ldepth (6)

3.6.1 JS Loss Formulation For a given LiDAR ray r⃗, we
sample this ray with samples si = o⃗ + tid⃗. z∗ represents the
depth of each along the ray, ti represents the distance of each
point along the direction vector to the origin, and wi represents
the weight predicted by the MLP for that point. We define a
truncated Gaussian distribution K. The truncation parameter
of this Gaussian distribution is ϵ, i.e., K = N(0, ( ϵ

3
)2) as the

training distribution. Therefore, the target weights are w∗
i =

K(ti − z∗). This JS loss can be defined as:

LJS(θ) = ∥w∗
i − wi∥1 +

∥∥∥∥∥1−∑
i

wi

∥∥∥∥∥
1

(7)

However, in practical SLAM applications, both the continuous
optimization and the constantly updated scene will lead to dif-
ferent regions having different degrees of learning, at this time,
it will be inappropriate to use a uniform margin ϵ to adapt to the
learning of the scene.

Thus, in this method, we learn LONER (Isaacson et al., 2023)
and use the dynamic margin JS loss as the computational term
of the loss function. For a region of unknown geometry, we
use a larger margin to help converge quickly, while a smaller
margin for a better-learned region. This allows the system to
retain and refine learned regions while being able to learn new
regions. We use JS divergence to measure the target distribu-
tion and the sample distribution on each ray to know how well
the map on that ray is learned. Define the target distribution as
T = N(z∗, σ∗), where σ∗ = ϵmin/3 define the sample dis-
tribution as S = N(µw, σw), where µw and σw are signed as
mean and standard deviation of the predicted weight along the
ray respectively. The dynamic margin is defined as :

ϵdyn = ϵmin(1 + αJ∗) (8)

For J∗ , its value depends on the JS score of T and S. If it is
less than the minimum threshold JSmin, then J∗ is 0. If it is
greater than the maximum threshold JSmax, then J∗ takes the
maximum threshold, and the obtained score in other cases.

3.6.2 Depth Loss We follow the paradigm in (Rematas et
al., 2022, Carlson et al., 2023) by adding a depth term to the

loss function. Since LiDAR measures the exact depth, it is nat-
ural to include a depth loss. The depth loss is the difference
between the rendered depth image and the depth image meas-
ured by LiDAR, i.e.

Ldepth(Θ) = ||D̂(r̂)− z∗||22 (9)

3.7 Meshing

To visualize the scene in an explicit way, a virtual LiDAR is
placed at optimized Keyframe poses. When multiple weights
fall on the same uniform mesh, the maximum value is retained.
The marching cubes algorithm (Lorensen and Cline, 1998) is
then used to form the mesh.

4. Experiments and Analysis

Figure 4. Example diagram. The example shows a typical
underground area in a natural lava cave with dim lighting and

complex pathways.

Figure 5. Schematic representation of experimental data. The
collected experimental data were processed by the FASTLIO2

algorithm and visualized in Rviz.
In order to verify the effectiveness of our method, we conducted
experiments in a lava cave data for testing, which was measured
in a typical underground scene, consisting of an underground
tunnel and some bifurcated paths, in line with our original in-
tention of reconstructing the mesh of the underground scene as
shown in Fig.4. In this experiment, we first started the helmet
and miniature laptop to test the data link, and after the connec-
tion was stabilized, we carried out the data acquisition work. As
shown in Fig.5, the irregular morphology and twisted shapes in-
dicates the highly complex structure of the cave.

We implemented the proposed method on a desktop with Intel®
Core™ i7-14700KF CPU and NVIDIA GeForce RTX 4090 GPU
and achieves real-time efficiency. We used the proposed method
to process the acquired data and perform mesh rendering and
the rendered results are shown in Fig.6 and Fig.7. The figures
indicate that our proposed method works well in this case.

Fig.6 shows our results for different cases of the same ray range
with the mesh resolution. We can see that different ray range
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Figure 6. Comparison of different ray ranges with the same
resolution. The values of ray range are 35, 45, 50, 70. The ray
ranges used in the training and rendering are the same. These

meshes are contained within the same bounding box size.

have a partial effect on the reconstruction of the scene. When
the ray range is in the range of 35-70, the reconstructed mesh
noise is the least in the ray range of 35, but there is a partial
layering phenomenon, while with the increase of the ray range,
the reconstructed mesh noise will increase a little, but the mesh
details appear better. The ray range should be dynamically ad-
justed according to the actual situation of the map scene, when
the scene is larger, a larger ray range is used, and vice versa.

Moreover, in Fig.7, we used multiple resolution rendering op-
erations of 0.2, 0.3, and 0.4. In this figure, there’s a noticeable
decrease in the detail and complexity among the meshes. The
image with resolution = 0.2 results in a smoother and more de-
tailed geometry, which is visually represented by continuity and
a high level of surface detail. When you want to render a mesh
in real time, you need to set a larger resolution and keyframe
step to improve the rendering efficiency, when the computation
time is enough, a smaller resolution and smaller keyframe step
can render better results.

We also tested our method in WHU-Helmet dataset (Li et al.,
2023). In this dataset, we chose the underground tunnel scen-
ario as the test. In this test, we set ray range as 45 and the
rendering resolution as 0.3, both of which we considered to
be the most appropriate parameters in this scene. The recon-
struction results are shown in Fig.8. In this scene, the mesh
of the underground tunnel is supposed to be relatively smooth,
and our method is also able to fit the smooth tunnel wall well.
The right part of the Fig.8 shows the absolute error between
the result and the ground truth value after reconstruction by our
proposed method. In MeshLab, we use Hausdorff Distance to
compare the tunnel reconstructed by the proposed method with
the ground truth value and visualize it. In the visualization, we
set the minimum value to 0, identified by blue color, and the
maximum value to 1, identified by red color. The heat map
shows that the deviation of our proposed reconstruction method
compared to the ground truth value is within tolerance and good
results are achieved.

Although the proposed method achieves satisfactory results in
complex underground environments, there is still room for fur-
ther improvement. First of all, there are some noise points
on the top of the mesh, which is caused by the poor control
of NeRF’s ray range parameter during rendering. Lowering
the ray range can make the mesh less noisy, but at the same
time, the phenomenon of layering will occur. Therefore, how

to choose the appropriate ray range for trade-off is a question
worth exploring. Secondly, NeRF is slow and not smooth enough
when rendering the mesh in the back-end. Our future work will
explore how to construct an incremental mesh with online speed
and minimize the amount of data while guaranteeing geometric
accuracy. Finally, using the real-time rendered mesh to promote
front-end odometry thus forming a complete SLAM process in-
cluding loop closure optimization, is also worth investigating.

5. Conclusion

In this paper, we introduce a novel approach for mesh recon-
struction within a NeRF-based SLAM algorithm and evaluate
its performance in an underground environment. To achieve an
optimal balance between local positional accuracy and global
optimization efficiency, we propose an innovative scan-block
methodology designed to effectively retain local information.
This approach aggregates multi-frame point clouds within a tem-
poral window, with synchronized poses and point clouds aligned
to the first frame. The aggregated scan-block is then processed
as a cohesive unit in the back-end. Furthermore, to refine the re-
construction process, we incorporate NeRF training for precise
mesh reconstruction of subterranean scenes. Leveraging the
Marching Cubes algorithm, we efficiently extract a mesh dir-
ectly from the implicit representation offered by NeRF, facilit-
ating a more detailed and accurate portrayal of the underground
environment. Experimental results validate that the proposed
method strikes a compelling balance between reconstruction ac-
curacy and computational efficiency. Additionally, the predict-
ive interpolation capabilities of implicit neural fields provide
further support for the reconstruction process.
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