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Abstract

Building outline generation and regularization is an ongoing topic in remote sensing applications. The success of the methods
used for building outline detection impacts studies that depend on the accuracy of the methods applied, such as urban planning,
geospatial analysis, and 3D city modeling. The results of the building outline detection methods can vary due to several factors, such
as the area to which they are applied and/or the parameters used for the methods. Since there are well-established deep-learning
based software and plugins for building outlining, this paper compares the results of such a method, namely an open-source AI
implementation (Mapflow), with the standard non-deep-learning based tools introduced by (Mousa et al., 2019) and (Bulatov et al.,
2014). We present a comparative analysis of these two methods for regularizing building outlines in terms of accuracy, efficiency,
and robustness in dealing with different levels of buildings’ complexity and structures. While the results of (Mousa et al., 2019)
and (Bulatov et al., 2014) are comparable and outperform the AI method, (Mousa et al., 2019) is the method least impacted by the
different parameters, however, has a higher computing time.

1. Introduction

Automating the process of building detection and regularization
from sensor data is an ongoing challenge in photogrammetry,
remote sensing, and geographic information science-related ap-
plications, such as topographic mapping, urban planning, and
3D city modelling. Usually, the output of building detection
methods is in raster format, which needs to be converted into
vector format (e.g., building polygons in shapefile format) to
be usable for further applications. However, extracting accur-
ate building polygons that meet the standards of mapping gen-
eralization is still a challenging task, especially in large-scale
datasets. Manual digitization using remote sensing images con-
sumes significant time and resources, especially in large-scale
scenarios; it is, consequently, not an option applied. Hence,
maintaining the inherent properties of buildings poses a chal-
lenge in their automatic conversion to vector graphics, even
with supplementary digital surface model data available.

Before implementing building regularization methods, it is ne-
cessary to identify buildings at the raster level, which is, in
general, a challenging task. Firstly, buildings come in vary-
ing appearances, e.g. depending on their location (country and
continent, Medieval European historical town center vs new de-
velopment in the surrounding residential areas vs high-density
residential buildings in cities, etc.). Secondly, buildings create
shadow areas, which negatively impact the accuracy of machine
vision algorithms that utilize only RGB (Hossain and Chen,
2022) or multi-spectral images (Ok, 2013). Therefore, addi-
tional information such as elevation, has been proven to be a
very useful source to improve the result of building detection.
In aerial data, Digital Surface Models (DSM) can be retrieved
and filtered to create the Digital Terrain Model (DTM). The dif-
ference between DSM and DTM (a normalized DSM, nDSM)
then makes it possible to determine the building heights. Some
approaches have utilized multiple available data, such as RGB,
NDVI, NIR, and elevation data in the form of nDSM, as pro-
posed by (Qiu et al., 2022).

After building candidates are detected, the regularization of bui-
lding polygons is usually the next step. For this step, some al-
gorithms use optical remote sensing imagery (Kong et al., 2023)
and some require supplementary data resources (e.g., airborne
LiDAR scanning) to increase accuracy. Despite there are still
challenges in generating accurate edges and handling occlu-
sions due to dependencies on curve initialization or limitations
of parametric curves (Zhao et al., 2021), the CNN-based meth-
ods have achieved tremendous progress in recent years and are
considered state of the art, so that they are already implemen-
ted as plugins in well-known and widely-used platforms, such
as QGIS. Examples of such methods are (Mapflow, 2024) or
Polymapper, developed by (Li et al., 2019). However, it re-
mains to investigate how suitable they are in comparison with
the conventional, bullet-proved approaches, such as (Gross et
al., 2005, Bulatov et al., 2014, Mousa et al., 2019), or a contour-
based outlining method (Wei et al., 2023).

The contribution of this paper is to compare one deep-learning-
based method (Mapflow, 2024), freely available online since
only 2024, with two very successful conventional methods for
building outlining, introduced in (Mousa et al., 2019) and (Bu-
latov et al., 2014) and occasionally denoted, for the sake of
brevity, as Al-Muthanna and IOSB method, respectively. For
all methods, classification results have to be available to serve
as the common ground. Finally, a detailed analysis of the de-
pendencies of parameters will be provided.

The paper is structured as follows: Related works will be intro-
duced in Section 2, followed by the proposed methodology in
Section 3. The dataset and the obtained results are presented in
Section 4. The conclusion is provided in Section 5.

2. Related Works

As previously mentioned, building footprint extraction and re-
gularization from remote sensing data is usually performed in
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two stages. Extracting the building locations (mostly in raster
format) followed by the extraction of building outlines includ-
ing their regularization (usually in vector format).

Building regularization required a pre-processing step to ex-
tract initial boundary points for further simplification and re-
finement. Despite there are some remarkable exceptions like
alpha shapes (Edelsbrunner et al., 1983) or concave hulls (Pohl
and Feldmann, 2016), making use of unorganized 2D or 3D
point clouds, the boundary is mostly retrieved by identifying
only the pixels located on the border and indexing their co-
ordinates. Image processing toolbox can be utilized for this
task (e.g., Moore-Neighbor Tracing algorithm) (Gonzales et al.,
2004). The extracted border points define a vector sequence that
represents the structure of buildings, which often appear as ir-
regular shapes. Therefore, further polygonal simplification or
regularization procedures may not be avoided.

Many algorithms have been developed to generate building out-
lining or regularization from a given list of boundary points.
Generally, these algorithms can be categorized into two groups,
namely, data-driven and model-driven (Mousa et al., 2019). Da-
ta-driven algorithms, such as (Douglas and Peucker, 1973, Pohl
et al., 2017), are defined as a polygonal simplification proced-
ure that is free from predefined criteria or knowledge regarding
the building structures. Thus, such methods could be applied to
extract regular and irregular shapes. In contrast, model-driven
methods yield building polygons according to pre-defined rules
related to building shapes (e.g., Recursive Minimum Bounding
Rectangle) (Kwak and Habib, 2014).

Most recently, AI has been used for the extraction of buildings.
For example, (Kong et al., 2022) used a generative adversarial
network (GAN) to extract building outlines from gridded binary
images with default resolution, whereas no other input para-
meters are required. Furthermore, (Yang et al., 2018) com-
pared four CNN architectures, namely: Branch-out CNN, fully-
convolutional neural network (FCN), conditional random field
as recurrent neural network (CRFasRNN), and SegNet, sup-
port semantic pixel-wise labeling and focus on capturing tex-
tural information on various scales. The CNNs were applied on
1-meter resolution aerial images and achieved satisfying res-
ults. Authors of (Wei et al., 2021) used the U2-net semantic
segmentation model. The extraction results showed that the
U2-net model provides the building outlines with a higher ac-
curacy than other models based on comparisons with semantic
segmentation models (Segnet, U-Net, and FCN) and edge de-
tection models (RCF, HED, and DexiNed). Finally, there are a
few instant outlining approaches that do not perform classifica-
tion explicitly, but work directly on images (Marcos et al., 2018,
Mahmud et al., 2020). Since we consider the classification res-
ult as given, these approaches are not very relevant. Indeed,
there are good reasons to use classification as an intermediate
output, for example, if the superordinate task is of urban terrain
reconstruction, while the building class is simply a by-product
of the more general land-cover classification task (Bulatov et
al., 2019).

3. Methodology

3.1 Freely available AI-based method – Mapflow

Mapflow (Mapflow, 2024) is used in research to extract, among
others, buildings and roads and determine the extent of changes
before and after the liquefaction disaster (Giussani et al., 2024)

and extraction of photovoltaic data within the urban morpho-
logy (Purwanto, 2023). Mapflow can be operated using a web
interface or as a QGIS plugin (QGIS, 2024). For this work, the
QGIS version 3.36.0-Maidenhead, and Mapflow version 2.5.0
are used. While Mapflow can use web imagery providers (Max-
ar, Skywatch, and other premium imagery) for the extraction of
buildings, agricultural fields, forests (optionally, with height),
roads, and construction sites, in this manuscript, we utilize the
same ortho-image input as the other methods for comparability
and focus on buildings only.

The building extraction consists of the following steps. Firstly,
the building roof contours are segmented from high-resolution
satellite or airborne imagery. Building candidates with an area
of less than 25 sqm. are removed. The AI model used is adop-
ted based on the imagery and location. For instance, there are
models for satellite imagery, airborne imagery (GSD of around
10cm), and the so-called high-density housing, designed for
areas with terraced or otherwise densely built buildings, com-
mon in the Middle East, parts of Africa, etc.

Then, buildings are classified into categories apartment buil-
dings (red); single-household dwellings (orange); industrial;
commercial (purple), and other non-residential (green). An ex-
ample is shown in 1. The option that, for each building, its
height can be estimated using its walls and shadow’s lengths,
was not used for this manuscript.

Figure 1. Presentation of building classes in Mapflow

Next, building outlines are simplified to correct the irregularit-
ies of the building contours. The irregular geometries are re-
placed with rectangles, circles, or arbitrary polygons with 90-
degree angles, which fit better the original shape. Also, the
corrected buildings are rotated to align with the nearest roads.

As some areas have a sufficiently large coverage of OpenStreet-
Map (OSM) data, there is the option that for each building, it is
checked whether it has a corresponding object in OSM (Jaccard
index exceeds 0.7). If there is one, Mapflow replaces the result
with OSM contour. This makes the result not based on the im-
age, so the buildings can be shifted from actual positions so that
some changes that have occurred after OSM mapping may be
lost. For this manuscript, we did not utilize the option of using
OSM polygons.
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Details on which approaches are used for the different steps
within Mapflow could not be revealed. According to the web-
site information, Mapflow is an artificial intelligence (AI) map-
ping platform that uses machine learning models.

3.2 Al-Muthanna method

The procedure was firstly introduced in (Avbelj, 2015) and fur-
ther developed in (Mousa et al., 2019) and (Mousa, 2020) to
create building polygons. Assuming that a list of boundary
points representing the building border is given, the simpli-
fication procedure aims to reduce these boundary points to a
minimum while maintaining the original building shape. In
other words, the method aims at identifying only the bound-
ary points that are located at building corners (called vertices)
and eliminating the remaining ones. To achieve this task, the
so-called Likelihood or cornerness function is applied to every
polygon vertex. The method is designed in a mathematical form
that involves building characteristics (e.g., area, right angles or
corners, and edges) to be considered in the following equation:

Li = Ai + α1 ·Di · sin(θi)− α2 · E2
i , (1)

The equation above calculates the values called Li sequentially,
starting from the first point given in the list to the rest of the
boundary points in order. In other words, a boundary point in
which Li is calculated is called the boundary point under eval-
uation while Ai represents the area of simplified polygons that
are estimated from the starting point to the point under evalu-
ation, coming back to the first starting point either clockwise
or anticlockwise. The distance between the starting point and
the point under evaluation is indicated by Di. The sine of θi
is calculated at each boundary point under evaluation while Ei

refers to mean squares orthogonal distances from the boundary
points, located between the starting point and the point under
evaluation. Lastly, α1 and α2 represent fixed coefficients used
to adjust the weighting of various terms, and they are estab-
lished experimentally at 20.0 and 2.0, respectively.

The extracted building polygons from the applied polygonal
simplification method are usually in irregular format; therefore,
a refinement procedure seems required. The first job for refine-
ment is creating right angles at building corners (e.g., rectilinear
buildings). Second, solving the best-fit problem between the
input boundary points and the extracted polygon edges. Both
jobs are solved by implementing the Gauss-Markov model and
the Gauss-Helmert model through the least squares adjustments
procedure as introduced in (Mousa, 2020)

There are two main thresholds in the applied procedure: the-
root-mean-square-error (RMSE) threshold δe and the minimum
distance threshold for angle detection δθ . The RMSE threshold
refers to the distances of the input boundary points to the pre-
dicted polygon edges. In general, a small value of δe threshold
provides a high number of edges or vertices and, therefore, re-
quires a longer processing time. In contrast, high values of δe
result in a high degree of simplification, which means fewer
edges or vertices. Thus, this setting requires less processing
time. However, a very high value of δe (over-simplification)
may also result in insignificant more processing time due to re-
peating more adjustment attempts. The second threshold, δθ
is defined as the minimum length of the sides of the expected
corners. A small or high value of δθ threshold would not signi-
ficantly affect the processing time but could produce a change in
the positions of the detected corners. This threshold δθ should
be set to the shortest building edges.

3.3 IOSB method

The method was first published in (Gross et al., 2005) and fur-
ther developed in (Bulatov et al., 2012, Bulatov et al., 2014). To
determine the dominant building direction, straight lines (Burns
et al., 1986) are obtained in the slightly smoothed DSM. If an
orthophoto is available, straight lines can be computed from a
gray image, as well. Their slopes are stored in a histogram
modulo 90◦. The histogram entries are weighted by the lengths
of the line segments and by the data source. Per default, the
weights for DSM and orthophoto are 3/4 and 1/4, respectively,
chosen to emphasize the importance of 3D data for building de-
tection. However, if the elevation map is rather noisy, a higher
weight can be conceded to the orthophoto. An assessment of
orthogonality is performed for each building. If the histogram
has a strong peak, resulting from the ratio second-best to best
falls below a threshold η, the dominant direction corresponds to
this peak. Otherwise, there is no dominant direction.

To obtain the ground-plan polygon of a rectilinear building,
the axes of the minimum bounding rectangle are given by the
dominant directions of the building orientation. Using the bin-
ary mask, the contours are refined for each blob by recursively
adding and removing rectangular subparts until the area of the
remaining blob lies under a threshold µA. The subparts cor-
respond to the small convexities or indentations in the building
contour with respect to the minimum bounding rectangle while
µA, similar to the other thresholds for the building reconstruc-
tion, reflects the maximal deviation of areas that one is ready to
accept. All thresholds depend on resolution, quality of the data,
etc. To generalize the orthogonal polygon, we first check col-
linear points and, finally, make sure that no rectangular subpart
of an area below a threshold and whose one side is the currently
shortest building edge can be added.

For non-orthogonal polygons, pixel-wise polygonization rely-
ing on a standard contour-tracing algorithm (Gonzales et al.,
2004) is performed followed by a three-module generalization
routine. The first step is the exploitation of line constraints to
reduce the number of vertices. To do this, similarly to the previ-
ous section, two steps, namely computing vertices’ usefulness
and deleting low-usefulness vertices, are performed alternat-
ingly. In the second step, this number is further reduced by
checking whether too short edges can be replaced by the inter-
section point of the adjacent edges. The key parameter here is
whether the intersection point lies far away from the edge in
question. The third and last step presupposes enforcing rect-
angularity, wherever possible, and thus improving the positions
of vertices. Differently to Section 3.2, this is not an optimiza-
tion process. That is, previously formed orthogonalities can be
destroyed – again – by the new ones, leaving to the theoretic-
ally infinite process. However, using iterative calculations, we
could find some sensible heuristics.

A special case for outlining orthogonal and non-orthogonal po-
lygons is if a polygon has one or a few holes of non-negligible
size. Such holes are easy to detect. Every hole is declared as
unvisited at the beginning of the hole-outlining algorithm, and
the outline is just the exterior polygon. The shortest diagonal
between one vertex belonging to an unvisited hole and the other
one belonging to the outline is traced and added to the outline
polygon. The vertices of the hole are added in between, after
which the hole is declared visited. Then the process starts from
anew, and it terminates if there are no unvisited holes anymore.

There are a few important parameters in the method, and we
will concentrate on two: the rectangularity threshold η defines
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the ratio between the second-best and best edge direction. The
lower it is, the fewer buildings will be outlined as rectangular
ones. The area tolerance threshold µA can be defined in abso-
lute and relative in terms of total building size terms. The soft-
ware may consider both, but our focus lies on the latter choice.

4. Evaluation

4.1 Dataset and classification algorithm

The dataset considered in this paper is from the German city of
Munich; since this dataset covers a large part of the inner city,
it enables us to evaluate our method on a quite large area with
many nested buildings. The data was provided by the Institute
of Photogrammetry of Stuttgart (IfP) as a result of photogram-
metric reconstruction, that is, a DSM and an ortho-photo were
available Additional features, such as nDSM and planarity (that
is, how likely a neighborhood of single pixel can be approxim-
ated by plane), can be computed as in (Bulatov et al., 2014) and,
respectively, (Gross and Thoennessen, 2006) from the DSM.

To obtain a land cover classification of this dataset, the ap-
proach of (Qiu et al., 2022) was employed. This approach
was developed to process combined multi-source data, such as
optical and elevation data. In a nutshell, the original archi-
tecture of the state-of-the-art DeeplabV3+ approach (Chen et
al., 2018) is modified to have two input branches. The first is
the RGB orthophoto, and the second is the synthesized image
with channels made up of truncated nDSM, NDVI, and planar-
ity map. Given that the backbone of the DeeplabV3+ approach
is ResNet-encoder (He et al., 2016), both images are passed
through their first residual block, after which the corresponding
features are averaged and processed by the remaining ResNet
blocks together. The standard cross-entropy function was our
choice for the loss function.

Since the DeeplabV3+ is a supervised method, we need some
reference data. For the Munich dataset, (Bulatov et al., 2019,
Häufel et al., 2018) showed that it is possible to obtain training
data for buildings and some other larger classes using heurist-
ics, such as freely available (OSM) data, segmentation results,
and simple features such as the aforementioned ones. However,
to obtain more accurate outlines (and also to be able to extract
some less frequent classes), we annotated a few training patches
and fine-tuned the previously computed Potsdam model (Qiu et
al., 2022). The Postdam dataset is an openly available ISPRS
benchmark with an abundant amount of labeled data (Rotten-
steiner et al., 2014).

4.2 Qualitative Analysis

We refer to Figures 2 to 6 for the qualitative results. We denote
by cyan, blue, yellow and green color: the Mapflow result, Al-
Muthanna result, IOSB result with a too high value for η, and a
regular, maybe slightly too low value of η in Figures 3 and 6.

Figure 2 shows a relatively simple example of building out-
lining using all methods. The Mapflow result looks artificial
and reminds more manual than automatic tracing of the out-
line. In the Al-Muthanna result, one part seems to be over-
generalized while in IOSB result, the non-rectangular building
seems to be reliably reconstructed.

In another, relatively easy example in Figure 3, we can see in
the left-most image that Mapflow produces the by far cleanest

outlines for the church. Contrarily, the building with two holes
has not been reconstructed in a uniform format by Mapflow.
Furthermore, the method developed by Al-Muthanna produces
an incorrect outline of the small building between the church
and the large building (left image). The outlines obtained by
the IOSB look relatively similar. Here, the yellow results look,
intuitively, slightly more sensible, e.g., the long narrow pas-
sage to the South of the church and the church itself. However,
we see a few mis-detections that were not suppressed and will,
therefore, negatively impact the performance on the vector level
(see Section 4.3).

In Figure 4, we see that, despite the results of Mapflow are
meaningful, they exhibit subdivision of connected buildings as
if the OSM-Data were used. Al-Muthanna and IOSB methods
perform almost equally, only that the structure surrounded by
the dark-red circle in the IOSB result seems to be an outlier.
One can see that the numerous holes are being handled well by
these methods.

Figure 5 shows two parameter settings for the Al-Muthanna
method, whereby white means a larger threshold de, leading to
more artifacts. We can see from this figure that only a few build-
ings are fully rectangular and were reconstructed by GHM pro-
cedure. We specified them by dark-red dashed circles. Finally,
Figure 6 shows a building in which how too many rectilinear
walls are fitted in both building complexes because they were
spuriously assigned to the rectilinear building category. Due to
over-generalization, one edge does not satisfy this rectilinear-
ity constraint. By a more adjusted choice of η, the green out-
lines in Figure 6, bottom, intuitively better fit the actual build-
ing mask, however, there are some very adventurously looking
inner courts. The surrounding, partly visible in Figure 6 build-
ings, have a simpler shape and, hence, both green and yellow
outlines practically coincide and look both fairly correct.

Figure 2. Qualitative comparison of methods: Easy example.

4.3 Quantitative Analysis

For quantitative results on the raster level, we use the typical in
Remote Sensing measures for overall accuracy (OA) and Co-
hen’s kappa. On the vector level, we upsample the building
edges of the prediction p and the reference r to a desired tol-
erance (here 1 pixel), and from every detected vertex vp, we
determine the closest point vr belonging to the reference build-
ing mask. From the distance dp = minr(d(vp, vr)) between
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Figure 3. Extended building with inner courtyard. Cyan, blue, yellow, and green color: Mapflow, Al-Muthanna, IOSB results (too
high value of η, and a regular η).

Figure 4. Difficult example on building outlining using the
considered methods, colors as in Figure 3.

Figure 5. Difficult example on building outlining using the
Al-Muthanna method, with two different parameter settings.

Figure 6. Example on building outlining from Figure 5 using the
IOSB method, with too high (top) and regular, slightly too low

(bottom) value for η.
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the corresponding pairs vp and vr , we derive several measures:
The average distance (L1), the root-mean-square distance (L2)
but also the median of maximum per-building values of dp.

dm = medianBi

(
max
p∈Bi

dp

)
, (2)

where Bi denotes the building index under evaluation. Switch-
ing the roles of r and p and taking the maximum, we obtain the
symmetric distances for the aforementioned measures.

We note that the deviations are computed between the recon-
structed outlines and the reference data, not the classification
result. That is, all methods are accurate up to classification.
However, the state-of-the-art result of (Qiu et al., 2022) achiev-
ed more than 95% on overall accuracy for this dataset, as stated
in (Böge et al., 2024). Moreover, all methods had the same
basis for comparison.

The results of the Al-Muthanna method are comparable to those
of the IOSB method (see Table 1). Both achieve OA of over
90% and peak values exceeding 95%. The highest kappa val-
ues are also comparable, with around 92%. In contrast, OA and
kappa are considerably less for the Mapflow method, which is
caused due to the missing buildings in the detection. A sim-
ilar trend is visible for the L1 value. The Al-Muthanna method
outperforms the IOSB method significantly for µA = 0.9 and
slightly for µA = 0.99. In contrast, for the L2 comparison,
the results for µA are quite similar, which leads to the conjec-
ture that the IOSB method could be slightly more robust with
respect to outliers handling, as seems to be confirmed by qual-
itative results.

Looking more closely at the dependencies of the results on the
achieved accuracies, for the Al-Muthanna method, it can be
summarized that all results are little impacted by the change
of the parameters. As for the IOSB method, the parameter
µA seems to be decisive for the quantitative evaluation. With
µA = 0.99, the absolute change between the initial and the
reconstructed outline can only be relevant for very big build-
ings. The rectangularity threshold η only impacts qualitative
evaluation and on computation time; the quantitative results are,
unsurprisingly, stable. The procedure for generalization of the
non-rectilinear building outlines is time-consuming since every
point is checked in an iterative procedure, resulting in roughly
quadratic processing time.

5. Conclusion and Future Works

Accurate building outlines are crucial for urban planning, geo-
spatial analysis, and 3D city modeling. If decision-makers are
dependent on this data, then the data should be not only accur-
ate but also relatively insensitive to the input parameters.

This paper analyzed the parameter dependencies on results of
the methods introduced by (Mousa et al., 2019) (Al-Muthanna)
and (Bulatov et al., 2014) (IOSB). Both methods can achieve
very high overall accuracies with over 90% and kappa values of
around 93%. These results outperform an AI implementation
(Mapflow) which is freely available. The main reason is the
completeness of the extracted buildings. Mapflow missed a few
buildings due to an unknown yet reason. Finding out this reason
and trying out possible alternatives to Mapflow will comprise
the future works.

Investigations showed that Al-Muthanna method is the least im-
pacted by the different parameters. However, it seems that the
method requires longer processing times compared to the IOSB
method, especially if the RMSE threshold de is small.
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Table 1. Quantitative assessment: The parameters for the Al-Muthanna method are δθ and δe, given in meters, while the parameters
for the IOSB methods are η and µA, both given in percent points. L1 and L2 denote the absolute and RMSE errors, respectively, while
dm is the only per-building measure explained in (2). These measures are given in pixels while the raster-based OA and kappa are in
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