
Improving Underwater Photogrammetric 3D Reconstruction Processing of Shipwreck Sites 
 
 

Daniel Adams1,2, Petra Helmholz3, David McMeekin1, Andrew Woods2 

 
1School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Australia, david.mcmeekin@curtin.edu.au 

2Curtin HIVE (Hub for Immersive Visualisation and eResearch), Curtin University, Perth, Australia, daniel.adams1@curtin.edu.au 
3School for Earth and Planetary Sciences, Curtin University, Perth, Australia, petra.helmholz@curtin.edu.au 

 
Keywords: Underwater Photography, Computer Vision, Image Processing, Digital 3D Models. 
 
 
Abstract 
 
Applying image processing algorithms to enhance the clarity of underwater images can significantly assist in the visual interpretation 
of subsea environments. Taking advantage of techniques to maximise the information extracted from the captured input data to produce 
the highest quality output ensures a higher utilisation of the valuable recorded content which may have been collected at the high cost 
of a laborious diver survey or an expensive ROV (Remotely Operated Vehicle) expedition. Adopting photogrammetric 3D 
reconstruction processing in underwater imaging has enabled the creation of high-fidelity digital 3D models which have been used to 
map subsea infrastructure for maintenance and repair, coral reefs for ecological monitoring, and in the primary context of this article, 
shipwrecks sites for maritime archaeology and accident investigation. Alongside exploring algorithms to reduce the characteristic haze 
of underwater photography, this article illustrates the advantages of optimising the processes utilised at distinct stages of the 
photogrammetric 3D reconstruction workflow to improve the photorealism of the digital 3D models. 
 
 

1. Introduction 

Photogrammetric 3D Reconstruction (P3DR) processing 
involves taking hundreds or in some cases hundreds of thousands 
of photographs of a static object or environment from multiple 
perspectives to create a digital 3D model of the object or location. 
The process works by comparing mathematically unique 2D 
features (Olvera et al., 2014) detected in each image to the 
features detected in every other image of the photographic set (Tu 
& Dong, 2013). A bundle adjustment (Brown, 1976) process is 
then used to triangulate the location of matched 2D features to 
estimate the relative position and orientation of the images at the 
point of capture. It also allows for solving the intrinsic parameters 
of the camera. A sparse reconstruction algorithm/spatial 
resection can then reproject triangulated 2D features into a sparse 
3D point cloud (Wu, 2013). Once the images’ intrinsic and 
extrinsic properties are known a much denser 3D point cloud can 
be generated and a mesh can be wrapped over those points. The 
original photographs are then projected back onto the mesh to 
give it a photorealistic appearance. 
 
P3DR processing of underwater cultural heritage sites 
(McCarthy, 2016) has grown to prominence in recent years 
allowing maritime archaeologists, researchers, and the general 
public to analyse and explore shipwreck sites that were 
previously inaccessible (Drap, 2012). The resulting 3D 
reconstructions are not limited to viewing on a flat screen - they 
can be easily incorporated into interactive visualisations, 3D 
printed, or even loaded onto a VR (Virtual Reality) headset 
allowing people to travel back in time to when the photographs 
were captured to dive on a virtual shipwreck or explore a site in 
an immersive experience (Figure 1).  
 
For VR and immersive applications, the geometry of the 
reconstructed object should be spatially accurate and should also 
look visually accurate, in other words: photo-realistic. Focusing 
on the P3DR of underwater objects, the physical properties of the 
underwater medium present several challenges when compared 
to in-air P3DR processing. Firstly, unlike in-air drone 
photography, underwater photography is often only semi-
structured and so accurate flight planning for optimal geometry 
can be difficult to achieve. Secondly, light is attenuated with 

depth and distance to the object of interest, where the faster 
absorption of its longer wavelengths results in a greenish-blue 
colour cast, and scattering effects often add a hazy appearance 
(Treibitz & Schechner, 2009). 
 

 
Figure 1. a) “Holo-wreck” – a 3D visualisation of the Batavia 

wrecksite, b) HMAS AE1 wreck as a full-colour 3D print, c) 3D 
print of HMAS AE1 featured in the “Brickwrecks: Sunken 
Ships in LEGO® Bricks” exhibition launched at the WA 
Maritime Museum in Fremantle alongside “Holo-wreck”. 

 
This effect can be observed in a typical example of underwater 
image data used as the input for 3D reconstruction processing 
(Figure 2). If a situation arises where the camera utilises an 
automatic white balance mode or there is the absence of a colour 
chart in the scene, an accurate colour calibration of the 
photography is not possible. Alternative image enhancement 
algorithms in this case become more acceptable to employ to 
assist in creating photorealistic models. 
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Figure 2. Original image of the SS Bonnie Dundee (1877-1879) 

Shipwreck (Stern). 

 
Whether a particular dataset is suitable for reliable P3DR 
processing will depend upon a variety of factors, some of which 
can negatively impact the photographic textures and geometric 
detail of a reconstruction or the amount of coverage in the model. 
This may include the geometry of the landscape, the turbidity of 
the water, the quality of the lighting, the amount of backscatter in 
the images, the amount of sand that might be moving across the 
site, the sharpness of the photography, the amount of motion blur, 
the amount of film grain or sensor noise in the images, and how 
much the environment changes from image to image. Poor 
visibility in the captured images can often lead to matching 
errors, image triangulation errors, low visual fidelity, and large 
gaps in the final model.  
 
This paper contributes to the creation of photo-realistic 3D 
reconstructions in the absence of a colour calibration charts by 
proposing an image processing pipeline designed to enhance 
underwater images. It also outlines a modified set of steps in the 
P3DR workflow which can be utilised to extract as much detail 
as possible out of the input data. In some cases, this workflow 
can overcome challenges that would otherwise prevent turnkey 
P3DR packages from being able to generate complete 
reconstructions from the full dataset all in one go. 
 
The paper is structured as follows: in Section 2, a literature 
review is performed investigating existing methods and the 
challenges using them. The new methodology is introduced in 
Section 3 as well as illustrating the cascading advantages of these 
image enhancement operations on the final 3D model, followed 
by the evaluation (Section 4) and conclusions (Section 5). 
 

2. Background 

The impact of underwater imaging spans across many different 
disciplines of scientific research and its relevance goes beyond 
just maritime archaeology. It has applications ranging from 
understanding the effect of climate change in coral reefs and coral 
growth rates, corrosion detection of subsea infrastructure to the 
localisation and mapping systems for ROVs (Liu et al., 2020). 
Underwater operations are often complex, so it is important that 
we navigate and interpret these subsea environments reliably. 
With respect to maritime archaeology and cultural heritage, it’s 
important to remember that these stories of centuries lost 
merchant vessels and sunken warships, are very much human 
stories. Given that these stories often take place during significant 
times in human history, these virtual recreations can serve as a 
digital time capsule reminding us of where we’ve come from. 
 
While many image processing algorithms have been investigated 
to enhance image quality (Mangeruga, et al., 2018) such as 

Contrast Limited Adaptive Histogram Equalisation (CLAHE) 
(Hitam et al.,  2013), Unsharp Masks (Zheng et al., 2016), 
automatic colour correction (Ancuti et al., 2018) (Akkaynak & 
Treibitz, 2019) (Berman et al., 2021) and even a weighted fusion 
(Ancuti et al., 2012) (Ancuti & Ancuti, 2013) of all the above, 
they are not without their shortfalls. Dehazing methods often 
assume uniform natural lighting or are calibrated for in-air 
photography and may not perform well in the underwater 
environment where wavelengths of light are attenuated at 
different rates with depth and distance. Problems can arise using 
weighted fusion-based methods if the weights are either not 
initialised wisely or are not flexible enough to handle dynamic 
lighting conditions. Some 2D convolution matrices have the 
tendency to over amplify noise and other methods such as basic 
histogram equalisation can create large ugly changes to the global 
contrast if the image contains clusters of extreme bright and dark 
spots. Most importantly their effect on complete photogrammetry 
datasets and the entire P3DR pipeline from feature detection 
through to the final model texturing is relatively unexplored 
(Agrafiotis et al., 2017), which leaves room for new discoveries 
and optimisations. 
 
When it comes to improving the visual fidelity of underwater 
photogrammetry models for scientific analysis or museum 
exhibitions, commonplace image processing algorithms in the 
field of computer science can be used to enhance the initial image 
clarity as a pre-processing step and offer significant advantages. 
The general idea is that given a hazy underwater image, how can 
distinguishable features be made to stand out more, in order to 
improve the outcome of any process that derives from the use of 
those images, such as feature detection, feature matching, object 
classification, anomaly detection etc. Our goal is for these 
processing tasks to operate more robustly in the presence of 
outliers, make less mistakes, converge to solutions faster, those 
solutions containing less noise, and this resulting in fewer gaps 
in the coverage. This work tries to address these issues by 
employing techniques to maximise the information extracted 
from the captured input data to produce the highest quality 
output. 
 
There are two algorithms that showed the most promise in  the 
literature review for their simplicity and  robust performance - 
Contrast Limited Adaptive Histogram Equalisation (CLAHE) 
and Grey World colour constancy. Both these algorithms can 
work effectively in their own right to enhance underwater 
photography and overcome some of the characteristic haziness of 
the transmission medium, but when structured in a logical 
pipeline the cascading effects of extracting as much visual detail 
from the dataset is noteworthy. 
 

3. Methodology 

The proposed image processing pipeline can be broken down into 
several distinct steps that are used to transform the original input 
image observed in Figure 2 into the final pre-processed image in 
Figure 7. Then how these enhanced images are used to create a 
photorealistic 3D model. We propose a three-stage strategy 
(Figure 3). Firstly, a local image enhancement is applied to each 
individual image. Then, using the enhanced images, a 
photogrammetric 3D reconstruction is performed. After the 
model is created, a global texture enhancement is performed on 
the model textures.   
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Figure 3. Image enhancement workflow. The Local Image 
Enhancement stage is performed per image and the Global 
Texture Enhancement is performed once on the final 3D 

reconstruction texture. 

 
3.1 Local Image Enhancement - Pre-processing 

It is important to maximise the information extracted from the 
data collected during a laborious diver survey or a costly ROV 
expedition to produce the highest quality output. The Local 
Image Enhancement pre-processing is structured as follows. First 
a colour space conversion. Next, CLAHE is applied, followed by 
an OTSU binarization to create a mask that finally feeds into the 
Grey World colour constancy algorithm.  
 
3.1.1 Colour Space Conversion 
As a preliminary step every standard RGB image is converted to 
the LAB colour space, which in a 3-channel image lets you 
separate out the luminance channel from the other two colour 
channels. The Alpha and Beta channels represent the two 
opponent colour components related with chrominance ranging 
from Red to Green (± a) and Yellow to Blue (± b) (Connolly & 
Fleiss, 1997). The advantage of splitting the LAB image into its 
three independent channels, is that it allows the application of a 
histogram equalisation solely on the luminance channel. 
 
3.1.2 Contrast Limited Adaptive Histogram Equalisation 
(CLAHE) 
Contrast Limited Adaptive Histogram Equalisation (CLAHE) 
works by applying a localised histogram equalisation across the 
image within a sliding window. The dimension of the sliding 
window is the first parameter that can be configured in the 
algorithm, the second  parameter is the clip limit also known as 
the contrast limit. CLAHE redistributes any pixel intensities that 
exceed this contrast limit and would otherwise be clipped so that 
they are uniformly distributed across the histogram. This process 
is intended to boost the contrast in the image.  
 
In Figure 4 a histogram of a sample image is shown for the 
original image of the SS Bonnie Dundee (Figure 2), where the X 
axis represents the luminance values from 0 – 255 and the Y axis 
representing the frequency that pixels in the image have those 
intensities. From the blue line in Figure 4 depicting the intensity 
distribution in the original image, it can be observed that values 
are clustered in a narrow range of the full intensity spectrum. In 
this particular example, the two peaks along the blue line 
represents the lighter regions and the darker regions in the image. 
An exception to this includes cases where images contain high 
levels of gaussian noise. This condition presents as a single peak 
in a unimodal histogram and can cause issues with the subsequent 
OTSU thresholding step. 
 

When CLAHE is utilised solely on the luminance channel of the 
image to stretch and redistribute pixel intensities across the full 
intensity spectrum (observed along the red line in Figure 4), the 
three individual channels are merged back together producing a 
single image (Figure 5). This also has the noticeable effect of 
smoothing out the luminance histogram as seen in Figure 4 when 
comparing the blue line before any image processing and the red 
line after CLAHE is applied.  
 

 
Figure 4. Luminance histogram before (blue) and after (red) 

CLAHE, with the OTSU threshold line (yellow). 

 

Figure 5. CLAHE image of the SS Bonnie Dundee (1877-1879) 
Shipwreck (Stern). 

 
Viewing the original image (Figure 2) against the CLAHE 
processed image (Figure 5), the application of CLAHE on the 
luminance channel has clearly improved the image contrast. The 
resultant image appears to have a wider dynamic range, the edges 
appear sharper, there is better clarity in the fine details and the 
algorithm preserved all original colour information up to this 
point by solely operating on the luminance channel. 
 
3.1.3 Colour Effects 
As light travels through water, red wavelengths are attenuated at 
a greater rate than other wavelengths such as blue and green. This 
effect increases as the path distance increases – either due to 
increased water depth, or longer path distance between the light 
source, object of interest, and the image sensor.  These processes 
have the effect of giving underwater images their distinctive 
blue-green look, which in turn negatively affects the perceived 
photorealism of the images.  The next stages of processing 
addresses aspects relating to underwater light attenuation and 
colour. 
 
3.1.4 OTSU Thresholding 
If the input image can be classified as a bimodal image, OTSU 
thresholding (Otsu, 1979) is a technique which can be used to 
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create a binary mask separating the well-lit and lighter areas from 
the darker regions. In our experience underwater images are often 
bimodal in nature. An image can be classified as a bimodal image 
if the luminance histogram (Figure 4) has two peaks. OTSU 
binarisation operates by selecting the threshold point in a bimodal 
image where the variance between the two peaks is close to equal. 
This point can be observed on the yellow line in Figure 4 and the 
resultant mask can be observed below in Figure 6. 
 

 
Figure 6. OTSU binary mask segmenting image 

 
3.1.5 Grey World Colour Constancy 
The OTSU binary mask generated is fed into the Grey World 
colour constancy algorithm which attempts to estimate the 
average colour cast of an image relative to a neutral grey and then 
applies a colour shift to remove it. Using the original image in 
Figure 2 as an example, averaging the pixel values along the 
Alpha channel in the LAB colour space from Green to Red, one 
might deduce that the average pixel value is leaning more 
towards the Green side. To account for this, all pixels values in 
the Alpha channel are shifted back by the difference from this 
mean value to the midpoint in the colour range. This operation is 
also applied independently on the Beta channel from Yellow to 
Blue. The benefit of utilizing the OTSU binary mask is that it 
makes the algorithm more robust. For example, if the scene is not 
uniformly lit and there are harsh spotlights in use or there are 
areas in the image that are over exposed, this can sometimes bias 
the average colour estimate and the colour shift will drastically 
overshoot in the opposite direction. Limiting the application of 
the colour processing based on the OTSU mask results in the final 
pre-processed image in Figure 7 which offers much better clarity 
when compared over the original (Figure 2). 
 

 
Figure 7. Final Pre-Processed image of the SS Bonnie Dundee 

(1877-1879) Shipwreck (Stern). 
 
3.2 Photogrammetric 3D Reconstruction 
The next stage is P3DR processing – creating 3D models from a 
series of still images of an object.  The workflow is structured as 
follows: First the alignment of the pre-processed images. Next, 

3D points from the sparse reconstruction are filtered, then image 
depth maps are generated from the filtered point cloud, followed 
by the meshing of the depth maps. Finally, the 3D mesh is 
textured with the local image enhancement pre-processed images 
to create the first fully textured 3D model. The consumer 
photogrammetry software used for this article is Agisoft 
Metashape Professional 2, however we are also developing our 
own software pipeline that will run on a supercomputer. 
 
3.2.1 Align Images 
The challenges of processing underwater imagery can present in 
several ways, the most impactful on the quality of a 
reconstruction or the amount of coverage in the model being the 
initial image alignment. For this reason, the most reliable way to 
reduce the likelihood of problems with the imaging system or 
harshness of the real-world scene impeding a successful 
alignment, is to maximise the number of features detected and 
matched from image to image. These features are heavily boosted 
by algorithms like CLAHE, but this sort of preprocessing works 
best when the settings are configured optimally in the 
photogrammetry software. Images were processed at their native 
resolution and not downscaled, the maximum number of 
keypoints allowed for detection and matching was limited to 
2,000,000 with no limit on the number of tie points reprojected 
into the sparse reconstruction and guided matching is a setting 
always used if available.  
 
Even if the situation arises where lower quality settings are still 
able to yield a valid image alignment, the general philosophy 
followed is to maximise the detail one can squeeze out of the 
dataset early in the processing which can be easily filtered in a 
later stage. This is in opposition to the practice of using lower 
quality settings early on, which just leaves less data to work with 
later. Less detail in the sparse reconstruction can result in lower 
quality depth maps, which then in turn creates less detailed mesh 
geometry, and the cascading effects of leaving data on the table 
becomes self-evident by this point. 
 
3.2.2 Filter Sparse Reconstruction 
The approach to outlier filtering follows two workflows, the first 
being a manual selection of points that can be visually identified 
as noise for deletion. Having the cleanest sparse point cloud 
conforming to the real shape of the object or environment will 
yield the cleanest depth maps and therefore less problematic 
mesh geometry. The second approach being an iterative selection 
of all points falling outside a specified RMS (Root Mean Square) 
reprojection error, and then deleting them before rerunning the 
bundle adjustment. The process is iterative in the sense that the 
new bundle adjustment can reposition points outside of the 
chosen RMS threshold and the process can be repeated until the 
remaining points are of a negligible quantity and realignment no 
longer has a noticeable effect. 
 
3.2.3 Create Depth Maps 
The generation of the image depth maps is a step that can require 
a small amount of finetuning based on the quality of the sparse 
reconstruction. Often the optimal quality level or smoothing 
factor for the depth map generation won’t reveal itself until the 
subsequent step of meshing the depth maps is completed. Thus, 
this process can be repeated at multiple levels starting at the 
medium setting then creating a mesh, inspecting if the mesh has 
holes, gaps or artefacts resembling dissolving structures apparent 
in Figure 8.  
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Figure 8. Dissolving thin structures on the SS Bonnie Dundee 

(1877-1879) Shipwreck (Stern). 
 
If there are problems with the mesh, the depth map quality can be 
reduced, introducing a higher smoothing parameter. 
Alternatively, if the mesh looks correct, the depth map quality 
can potentially be increased, reducing the amount of smoothing 
which will bring out more of the finer detail. 
 
3.2.4 Build Mesh 
After the image depth maps have been created, the mesh 
generation is performed directly from the depth maps. The 
distinction should be made that the common process of building 
the dense reconstruction is skipped entirely in preference to 
building the mesh straight from the image depth maps. This 
avoids introducing common problems with using the dense 
reconstruction to generate a mesh whereby even the smallest 
amount of noise can negatively impact the quality of the mesh in 
terms of total coverage, holes, poor resolution in the finer details 
and frequent issues reconstructing thin structures. Building the 
mesh directly from the depth maps also removes the need to 
perform another stage of point filtering and cleaning to account 
for this sort of noise. Meshing the depth maps are run with no 
depth filtering to get the closest representation to the original data 
as possible, and with extrapolation settings enabled if available 
to maximise the extent of the final 3D model coverage. Any 
excess mesh geometry created and often cocooning the 3D model 
due to the extrapolation setting as seen in Figure 9 can be 
manually removed. 
 

 
Figure 9. Extrapolated mesh cocooning the SS Bonnie Dundee 

(1877-1879) Shipwreck (Stern). 
 
3.2.5 Generate Textures and Export 
The final stage of generating the photogrammetric 3D 
reconstruction is to project the original images onto the mesh to 
create a near photorealistic 3D model. In order to maximise the 
visual fidelity of the 3D model, a total of four 8K texture files are 
generated. This maximises visual texture detail. These textures 

are finally exported to multiple JPG or PNG files to feed into the 
next Global Texture Enhancement stage. 
 
3.3 Global Texture Enhancement - Post-processing  

It has been our experience that the texture files from the previous 
step can still benefit from some additional image enhancement.  
First, all the texture files generated from the reconstruction are 
concatenated into a single global texture image. Next, the Grey 
World colour constancy algorithm is used to estimate the global 
colour cast of the reconstruction and remove it, then finally the 
global texture image is split back into the four texture files and 
imported back onto the reconstruction in place of the original 
texture files.  
 
3.3.1 Concatenate Textures 
To achieve a global texture enhancement of the entire 3D 
reconstruction, the data must first be structured in a way that 
enables global colour cast estimate to be calculated over the 
whole dataset. If each texture was processed independently from 
each other, the resultant textures when loaded back onto the 
model would produce a patchwork of inconsistent colours with 
visible seams following the shape of the UV map. Thus, it is 
necessary to concatenate all exported texture files into a single 
texture image (Figure 10) which can be then fed into the Grey  
World colour constancy algorithm. 
 

 
Figure 10. Concatenated textures of the SS Bonnie Dundee 

(1877-1879) Shipwreck (Stern). 
 
3.3.2 Grey World Colour Constancy 
As described previously the concatenated texture image is again 
converted from the RGB colour space into the LAB colour space. 
This enables the estimation of the average global colour cast to 
be performed on the isolated Alpha (Red to Green) and Beta 
(Yellow to Blue) channels and for pixels to be shifted back by the 
difference from this average to the midpoint in the colour range. 
 
3.3.3 Import New Textures onto Model 
The final step of the processing pipeline is to split the global 
texture image that has just been colour enhanced back into the 
individual texture files. This process must maintain the original 
resolution and order of concatenation. Order is important as the 
names of the textures will need to match the original UV maps. 
The output of this final step in the processing pipeline can be 
observed below in Figure 11 alongside the Sketchfab link to the 
explorable 3D reconstruction. 
 

 
Figure 11. 3D Reconstruction of the SS Bonnie Dundee (1877-

1879) Shipwreck (Stern) https://skfb.ly/oEWYn 
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4. Evaluation 

In this section we perform some evaluation of the results and 
methods presented above in the context of two underwater 
cultural heritage (UCH) datasets – the SS Bonnie Dundee and the 
American B17 Bomber "Black Jack". 
 
The distinction should be made that the approach to evaluation 
outlined in this section does not refer to the validation of an 
accurate radiometric colour correction. There were no physical 
colour charts used in the survey to compare in-air and underwater 
colour correction values. Thus, in the context of this research 
paper, the evaluation process seeks to demonstrate how the 
parameters will give consistent results from the proposed method 
across multiple datasets. 
 
4.1 The Datasets 

The dataset which has been the primary focus of this research 
paper so far is the SS Bonnie Dundee, a 40-metre-long steamship 
built in Scotland in 1877 for its Australian owners.  This dataset 
shows the Stern of the historic wreck, which is located in 25 
meters water depth off the coast near Swansea, New South Wales 
(NSW), Australia where it was lost on 10 March 1879 following 
a collision with another vessel, the SS Barrabool. 742 photos 
were captured with a NIKON D90 DSLR camera by recreational 
diver Grant Thomas and the digital 3D model was generated by 
Daniel Adams at the Curtin University HIVE. 
 
The second dataset is the American B17 Bomber "Black Jack" 
(lost 1943). The “Black Jack” was on a bombing mission to 
Rabaul from Port Moresby, but bad weather and engine failure 
forced it to ditch on the return journey. It was 23 metres long and 
had a wingspan of 32 metres. It ditched in waters 50 meters deep 
on 11 July 1943 off the coast of Papua New Guinea near Boga 
Boga (~300km East of Port Moresby) and all 10 crew survived 
the ditching. 1,983 photos of the wreck were captured with a 
Canon EOS 5D Mark III by recreational divers Grant Thomas 
and Andrew Hamilton in June 2023 and the digital 3D model was 
generated by Daniel Adams at the Curtin University HIVE. 
 
4.2 Impact of CLAHE parameters 

The parameters requiring finetuning in the Local Image 
Enhancement stage are those required to configure the CLAHE 
algorithm. The first being the size of the sliding window and the 
second being the clip limit. The size of the sliding window 
represents how many pixels are considered in the local histogram. 
The default used in OpenCV – the library this image processing 
code has been implement in - is a window size of 8x8 pixels. With 
high resolution imagery this setting may create a little too harsh 
an effect and result in a bright halo around edges of widely 
varying contrast. For this reason, the window size used in this 
pipeline was 16x16 for a milder enhancement. The chosen sliding 
window works alongside the clip limit parameter which acts as a 
contrast limit on pixel intensity values after histogram 
equalisation stretches the image. Any pixel intensities that exceed 
this contrast limit and would otherwise be clipped are uniformly 
distributed across the histogram. The default value used in 
OpenCV is 2.0, which for datasets where images are already of 
an already decent quality may be too high and may result in an 
over-enhancement where edge detail appears too bright and 
unnatural. This is not to say that if a dataset is particularly hazy 
and unclear, that a value of 2.0 may be suitable, but for the two 
datasets analysed in this article a value of 1.0 was found to be 
sufficient. The effect of the CLAHE parameters can be observed 
below in Figures 12 and 13. From left to right, the first image 

being the original, the second image being the recommended 
16x16 sliding window and clip limit 1.0, and the third image 
being the default 8x8 sliding window and clip limit 2.0. 
 

 
Figure 12. An illustration of the effect of CLAHE processing 
parameters on a single image of the SS Bonnie Dundee (1877-
1879) Shipwreck (Stern). a) original image. b) recommended 

parameters. c) default parameters. 
  

Figure 13. An illustration of the effect of CLAHE parameters on 
a single image of the B17 “Black Jack” Aircraft wreck (1943). 

a) original image. b) recommended parameters. c) default 
parameters. 

 
4.2.1 Analysis 
The advantages of applying CLAHE to the input images extends 
beyond revealing more detail in the final 3D model textures. The 
reduction in the underwater haze achieved by increasing the 
contrast and sharpness of the images also has the benefit of 
boosting the number of SIFT keypoints extracted from the dataset 
– as shown in Figures 14 and 15.  
 

Figure 14. Comparison of SIFT keypoints vs CLAHE 
parameters on a single image from the SS Bonnie Dundee 

(1877-1879) Shipwreck (Stern). a) original image. b) 
recommended parameters. c) default parameters. Red markers 

indicate extracted keypoints. 
  

Figure 15. Comparison of SIFT keypoints vs CLAHE 
parameters on a single image from the B17 “Black Jack” 

Aircraft wreck (1943). (a) original image, (b) recommended 
parameters, and (c) default parameters. 

 
A comparison of the detected SIFT keypoints for the SS Bonnie 
Dundee and the B17 “Black Jack” is summarised in Table 1 
below. In both Figure 14 and Figure 15, the first image (a) being 
the original image, the second image (b) being the recommended 
16x16 sliding window and clip limit 1.0, and the third image 
being the default 8x8 sliding window and clip limit 2.0.  
 

SIFT keypoints Figure 14 Figure 15 
a) 4,801 799 
b) 17,669 8,299 
c) 28,254 21,322 

Table 1. Comparison of the detected SIFT keypoints 
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It could be argued that CLAHE processing may amplify noise in 
the image and by extension increase the number of false positive 
feature matches in the subsequent image alignment step, so there 
is a trade-off to be considered. But in the case of the datasets 
analysed in this article, the noise can be minimised by using the 
recommended settings over the default sliding window and clip 
limit. Counter to this argument, there are some cases whereby the 
underwater haze has seemingly prevented the alignment of 
certain images and as a result can leave gaps in the 3D model 
coverage. So, in this case an algorithm like CLAHE that boosts 
the number of features available to match between images 
becomes advantageous to experiment with. All things 
considered, given that the parameters are trained by eye and can 
be finetuned to each dataset, the benefits of using this technique 
will often outweigh the costs. Ultimately the noisy features 
reprojected into the subsequent sparse reconstruction point cloud 
can always be filtered through the same method previously 
described in section 3.2.2.   
 
4.2.2 Visual Inspection 
When we evaluate the cascading effects of the local and global 
(pre- and post-processing) enhancement procedures on the two 
datasets, it can be observed in Figure 16 that the most noticeable 
improvement comes from the local enhancement. This is not to 
say that the global enhancement hasn’t produced more subtle 
improvements that still add to the clarity and ease of 
interpretation. Even from a distant viewpoint, the global 
enhancement paints less a murky picture of the SS Bonnie 
Dundee (3D model visible here: https://skfb.ly/oEWYn)  wreck 
over the original unprocessed images. The dynamic range in the 
scene has improved considerably with more detail visible 
between both the lighter and darker areas, the sand has a more 
visually accurate white point as the characteristic bluish-green 
haze is measurably reduced and the two Wobbegong sharks 
resting on top of the steam engine are clearly visible. 
 
In the case of the B17 “Black Jack” Aircraft (3D Model visible 
here: https://skfb.ly/oJpZr), the wreck rests in deeper water with 
lower levels of natural light penetration which can add to the 
challenge of recovering detail. Despite this, the global 
enhancement in Figure 16 can be observed bringing out much 
more edge detail and visual resolution over the unprocessed 
version. The overall effect the global enhancement pipeline has 
on the final 3D reconstructions is to almost remove the visual 
characteristics of the water itself.  
 
The argument could be made that producing a rendition of a 
wrecksite free of the underwater haze and representing it in a way 
that is more visually familiar to people, exploring these 3D 
reconstructions can feel more realistic and immersive. If artefacts 
on a site are less obscured and more easily identifiable, these 
algorithms have the potential to increase people’s connection to 
the data and the history.  
 
4.3 3D Reconstruction of Original vs Global Texture 
Enhanced 

Without the presence of physical ground control points in the 
datasets, it’s difficult to compare the accuracy of the final mesh 
geometry derived from the original images against one derived 
from the enhanced images. Instead, the percentage of aligned 
images and coverage in the final 3D reconstructions can be 
compared to validate the original hypothesis. That being if 
techniques to maximise the information extracted from the 
captured input data to produce the highest quality output are 
employed, it may result in fewer gaps in the coverage. 
 

When reprocessing the SS Bonnie Dundee dataset from start to 
finish there is less observable difference between the total 3D 
model coverage comparing the original vs the image enhanced 
models. All 742 images are correctly aligned in both 
reconstructions, and the sparse point cloud which the geometry 
is built on top of has a difference of 58,213 points (1,093,524 in 
original and 1,151,737 in enhanced). Although this difference in 
the density of the sparse reconstruction is not insignificant, the 
actual geometry remains fairly consistent when the same 
parameters are used. This is a testament to the quality of the 
original images and clarity of the water column. Natural light in 
this dataset has also been able to penetrate further at 35 meters 
water depth, which has translated to less underwater haze that 
might otherwise hinder image alignment. 
 
Contrary to the first case and resting at 50 meters water depth, 
reprocessing the B17 “Black Jack” dataset from start to finish 
tells a slightly different story. 1,978 out of the total 1,983 images 
in the dataset are aligned when the original images are used, and 
1,981 out of 1,983 images in the dataset are aligned when the 
enhanced images are used. This has resulted in the sparse point 
cloud available to build the geometry from having a difference of 
786,298 points (9,377,354 in original and 10,163,652 in 
enhanced) when processing with the same parameters. In this 
case, the increase in the density of the points and number of 
images aligned in the reconstruction from the enhanced dataset 
has improved the resolution and resolved some errors in the final 
3D model, most notably around the 2 thin barrels of the upper 
gun turret. Although this improvement has come as a result of 
aligning only a few extra images, these sorts of problems become 
more likely to be resolvable when encountering hazier images or 
datasets with less overlap. In these cases, every extra image 
aligned can translate to a greater difference in the final result. 
 

 
Figure 16. 3D Reconstruction of the SS Bonnie Dundee (1877-
1879) Shipwreck (Stern) (left, https://skfb.ly/oEWYn) and the 

B17 “Black Jack” Aircraft wreck (1943) (right, 
https://skfb.ly/oJpZr), using original images (top), using local 

enhancement only (middle) and using local and global 
enhancement (bottom). 

 
5. Conclusion 

This article has illustrated how image processing and 
photogrammetric 3D reconstruction processing techniques can 
be applied and optimised for generating high quality photo-
realistic 3D models of underwater cultural heritage sites 
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(including wrecksites). The cascading effects of these algorithms 
is remarkable when structured in a logical pipeline where 
extracting as much visual detail from the dataset is the objective. 
When it comes to reducing the bluish-green haze often 
characterising underwater photography, the techniques discussed 
in this paper enhance the clarity of the original images. 
Enhancing the clarity of underwater photography and 
postprocessing the final 3D model textures has the potential to 
provide a much richer understanding of underwater sites. When 
it’s not as challenging to differentiate objects from one another, 
and finer details are less obscured, these virtual recreations can 
be an excellent source of new information allowing 
archaeologists and the broader public revisit and explore 
underwater heritage locations as if they’re frozen in a time 
capsule. 
 
This paper has described one stage of our P3DR processing 
pipeline. We are continuing to explore a range of options to 
improve the performance of P3DR processing. One of those 
improvements is using supercomputer and cloud computing to 
increase the processing speed of large-scale datasets, and hence 
increasing the size of dataset that can be processed in a 
reasonable time. That development is ongoing. We are also 
working on other improvements which will be reported in future 
papers. 
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