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Abstract  

 

In this study, we introduce a crowd-driven data enhancement strategy for the integration of polygons in paid crowdsourcing. First, we 

capture redundant polygons with a web-based tool using one set of crowdworkers. Then, we present the acquired polygons to other 

crowdworkers in a polygon editing tool, with instructions to validate and improve those acquisitions. This procedure is repeated by 

showing a third set of crowdworkers the already edited polygon geometries. Furthermore, a polygon integration procedure is performed 

for every step, i.e., the unedited polygons, those edited once and those edited twice, allowing for a comparative qualitative analysis. 

This analysis is conducted with a focus on both quality and cost control, aiming for small sample sizes in order to optimize costs. 

Additionally, we conduct further investigations to assess the effectiveness of our approach in different use cases, and explore potential 

adaptions for further enhancement. 

 

1. Introduction 

Crowdsourcing, a neologism that combines “crowd” and 

“outsourcing” (Howe, 2006), has been established as a standard 

technique in the acquisition of training data for machine learning 

applications (Jin et al., 2020). This includes obtaining of training 

data for image classification (Saralioglu and Gungor, 2020), 

which is vital for CNNs and other machine learning architectures, 

and therefore in high demand (Stonebraker and Rezig, 2019). 

 

In general, crowdsourcing can be categorized into two types: 

voluntary and paid. Voluntary crowdsourcing is driven by 

intrinsic motivation, where participants engage because tasks 

might align with their interests (Hossain, 2012), thereby often 

resulting in high-quality output (Mason and Watts, 2009). 

However, it can be challenging to generate this interest to 

leverage intrinsic motivation, so paid crowdsourcing is an 

alternative. Paid crowdsourcing involves compensating workers, 

typically through designated platforms such as 

microWorkers.com, which facilitate the recruitment and payment 

of workers (Hirth et al., 2011). Tasks listed on these platforms 

are typically characterized by short durations, modest 

compensation, and low complexity (Hirth et al., 2011). However, 

the rather extrinsic motivation in paid crowdsourcing can 

influence the quality of the output due to various factors such as 

lack of motivation (Chandler et al., 2013), which is why data 

quality in paid crowdsourcing remains a constant topic of 

discussion (Rea et al., 2020). 

 

As a result of these problems, a wide range of strategies have 

been developed to improve data quality (Zheng et al., 2017). 

Typical approaches are „quality control on task design” and 

“quality improvement after data collection” (Zhang et al., 2016). 

In the first approach, the focus lies on defining crowd tasks in 

such a way that they can be solved quickly and easily (Hirth et 

al., 2011), in order to ensure initial quality during a worker’s task 

performance. The second approach involves collecting redundant 

data of multiple different workers to leverage the principle of 

“wisdom of the crowd” (Jin et al., 2020), effectively countering 

the effects of poor-quality submissions (Zhang et al., 2016) that 

can otherwise be hard to identify (Li et al., 2016). 

 

 

The aforementioned low task complexity, a typical characteristic 

of crowdsourcing, enables the majority of crowdworkers to solve 

the respective job effectively. Consequently, the integration of 

their results through majority voting is an effective method for 

improving quality (Zhang et al., 2016; Jin et al., 2020). Majority 

voting is renowned for its robustness and simplicity in 

implementation (Zheng et al., 2017), making it one of the most 

efficient aggregation methods (Tu et al., 2018). Additionally, the 

effectiveness of majority voting is not limited to its simple 

implementation; it can be applied to different kinds of data: 

While the use of majority voting for classifications seems rather 

obvious, majority voting even allows for usage in more complex 

problems such as the raster-based integration of polygons, where 

geometries are integrated on a pixel-level (Collmar et al., 2023a). 

 

Integrating geometric data via such a pixel-level majority vote 

leads to the beneficial effect of an overall improvement in 

quality, but is also dependent on the number of polygons used as 

input, i.e., the amount of redundantly collected acquisitions: A 

large number of acquisitions leads to results of higher quality 

than a small number, making a large number of input data 

desirable for a quality-oriented approach (Collmar et al., 2023a). 

However, paid crowdsourcing is tightly coupled to the trade-off 

between cost and data quality (Li et al., 2017): Typically, smaller 

sample sizes are chosen to control costs, contradicting the need 

for larger samples to ensure data quality. 

 

In order to address this challenge, i.e., ensuring high data quality 

even for small sample sizes, we propose an approach for 

enhancing the output quality of geometric data integration. This 

method is designed to be feasible even for small sample sizes, 

optimizing the mentioned trade-off in achieved quality and 

acquisitions cost. Fully embracing the “wisdom of the crowd” 

principle, we task crowdworkers with data refinement of 

previously collected polygons before performing the integration, 

asking them to review and optimize acquired geometries via 

editing. Subsequently, data integration is performed on the edited 

polygons. We then evaluate all output data by considering both 

total cost and data quality, allowing us to gain insights about the 

relationship between sample size and respective output. This 

allows us to maintain small sample sizes and thereby reduce costs 

while maximizing the output quality of crowd acquisitions.  
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2. Methodology 

We explore the possibility of crowd-driven data refinement for 

polygon integration in a multi-step process by providing 

crowdworkers with the results of previous crowdsourcing 

campaigns, aiming for an improvement in data quality after 

integration. 

 

The detailed methodology is shown in Figure 1. In the first step, 

depicted as A for acquisition, we ask crowdworkers to capture 

tree outlines via polygons from high-resolution orthophotos. The 

input data consists of k image sections, where each image section 

contains one single tree. Every image section is processed by 

n crowdworkers, leading to n polygons per section. These 

n polygons, in Figure 1 depicted as Pj,1 to Pj,n, where j is the 

number of the image section, are used as input for two different 

procedures: Firstly, a polygon integration that is used to calculate 

a single output polygon per image section j, which is called PIj. 

Secondly, as input for the second crowd campaign, called E1, 

which stands for (first) editing. Here, every previously acquired 

polygon is reviewed and edited by yet another crowdworker, 

leading to n once-edited polygons per image section, named P’j,1 
to P’j,n. A polygon integration procedure is performed here as 

well, leading to an integrated polygon PI’j for each image section. 

In the following step E2, the second editing, these previously 

edited polygons are now reviewed and edited a second time by 

different crowdworkers, leading to n polygons that are named 

P’’j,1 to P’’j,n. Following the same procedures as before, an 

integration is performed again, leading to yet another integrated 

polygon, called PI’’j.  
 

Overall, this leads to three different integrated polygons per 

image section j:  

• The integrated polygons PIj, which are calculated using 

the unedited polygons that were acquired via the 

acquisition procedure (A).  

• The integrated polygons PI’j, which are calculated 

using the results of the first editing procedure (E1). 

• The integrated polygons PI’’j, which are calculated 

using the results of the second editing procedure (E2). 

 

These integrated polygons are compared with ground truth data 

to assess the improvement achieved through the described 

processing methods. 

 

However, there are different costs for the various approaches  that 

must be taken into account: While the unedited polygons, 

acquired via the acquisition procedure (A), only require a single 

crowd step, those of both editing procedures require one or two 

additional crowd steps, resulting in higher total costs: In a case 

where nA stands for the number of acquired polygons in the 

acquisition step (A), the same number of crowd interactions is 

required for the first editing step (E1), resulting in a total number 

of nE1 = nA+nA interactions, and thereby leading to twice the cost, 

since every task is paid the same. If the second editing step (E2) 

is considered, even more crowd interactions are necessary, 

leading to thrice the cost if compared the acquisition step (A). 

 

Therefore, the integration procedures for all three steps are 

performed not only for all available acquisitions but also by 

varying the number of polygons from 1 to n: If a total of n 

polygons is available per image section, then the integration was 

performed for all possible sample sizes, i.e., ranging from one 

polygon up to n polygons per section. This allows for a direct 

comparison of integrated results that require the same amount of 

crowd acquisitions and subsequently the same cost: If we 

consider nA = 6, then six polygons are acquired through the 

acquisition step (A), leading to a total cost of CA,total = 6. To reach 

the same total cost for step E1, however, we need to set CE1,total = 

CA + CE1 = 6. Since same sample size is required, and therefore 

CA = CE1, we can calculate CE1 = 3. Similarly, CE2 = 2 also 

applies. From this we can derive sample sizes that lead to the 

same total cost, i.e., 6 nA = 3 nE1 = 2 nE2. This relationship enables 

a direct and meaningful comparison in regard of cost. 

 

Even if not primarily driven by a cost-oriented perspective, a 

direct comparison of the same sample sizes, i.e., CA = CE1 = CE2, 

can be valuable in scenarios where the focus is on output quality, 

with total cost being a secondary consideration.  

  

Figure 1. Methodology of the double editing process: Image sections are used for polygon acquisition (A), 

which are subsequently edited (E1), followed by another round of editing (E2). Integration is performed for all steps. 
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3. Dataset 

We apply the presented methodology to a straightforward use 

case: The acquisition of tree outlines geometries in orthophotos, 

aiming for high-quality polygons that can later be used for the 

training of segmentation architectures. We utilize the same 

dataset as (Collmar et al., 2023a): The imagery was captured by 

a DJI FC6310R camera in combination with a DJI Phantom 4 

RTK, and processed to a large-area orthomosaic of orchards. 

k = 115 image sections were extracted, each containing a single 

tree. The ground truth data for the quality evaluation in later parts 

of this work was collected by experts. 

 

4. Webtools 

All interactions with crowdworkers were conducted using web-

based tools. Since the methodology includes two different 

principles, that is acquisition of geometries (step A) and editing 

of previously acquired geometries (steps E1 and E2), two different 

tools were implemented. Firstly, a tool that allows the acquisition 

of polygons (referred to as polygon acquisition tool), and 

secondly, an editor for already acquired polygons (referred to as 

polygon editing tool).  

 

The graphical user interface (GUI) of the polygon acquisition 

tool is shown in Figure 2a, and the interface for the polygon 

editing tool in Figure 2b, respectively. In these figures, both GUIs 

contain letters to mark different sections: Located in the center of 

the interface is the data view, as is indicated by A1 and A2. For 

the acquisition tool, workers are interacting with the provided 

imagery by clicking and therefore setting polygon vertices. In the 

editing tool, workers can move vertices via a drag and drop 

functionality. Additional functionalities are included via control 

buttons, i.e., undo and delete in the acquisition tool (B1). For the 

editing tool, which works via highlighting vertices, 

functionalities like deleting are possible directly in the data view 

(B2). Furthermore, letters C1 and C2 indicate the navigation 

through the respective webtool, since detailed instructions, 

preparatory task and a survey are also included in the acquisition 

process. 

 

 

For the editing process, the symbol size of all vertices was 

increased, making it possible to click on individual vertices for 

selecting. This simplifies the before mentioned drag-and-drop 

functionality, allowing to intuitively relocate single vertices, as is 

demonstrated in Figure 3. Additionally, it is not only possible to 

select and move existing vertices, but also to delete vertices or to 

even add new ones.  

(a)  (b) 

 

→ 

 
 

Figure 3. Relocation of a vertex in the polygon editing tool.  

(a) Position before relocation. (b) Position after relocation. 

  

5. Campaigns 

For a majority voting-based polygon integration, a larger sample 

size, i.e., a larger number of redundantly acquired polygons, 

typically leads to higher quality of the integration output up to a 

saturation point (Collmar et al., 2023a). Since we want to 

consider the factor of cost control, we aim for rather small sample 

sizes. Still, in order to make our results comparable to results of 

larger sample sizes, we decided to acquire each of the k = 115 

image sections of the dataset by 20 different crowdworkers 

through our polygon acquisition tool, as per step A of the 

previously motivated methodology, resulting in a sample size of 

nA = 20. Subsequently, the same sample size was utilized for 

steps E1 and E2, resulting in nA = nE1 = nE2 = 20. This leads to k ⋅ 
n ⋅ 3 (steps) = 6,900 polygons in total. Each worker was paid 

$0.15 for the processing of 5 datasets, resulting in total costs of 

$207. 

 

(a) 

 

(b) 

 

Figure 2. GUIs of the used webtools for crowd interactions. (a) Polygon acquisition tool. (b) Polygon editing tool. 

 

C1 

A1 

B1 

A2 

C2 

B2 
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6. Results 

6.1 Polygon acquisition step (A) 

The results of the acquisition step (A) are illustrated in Figure 4, 

which shows one of the image sections with nA = 20 polygons 

plotted in yellow. The reference polygon is shown in red.  

 

 
 

Figure 4. Image section with 20 geometries acquired through 

the polygon acquisition tool (yellow) and reference data (red). 

It can be seen that only very few poor acquisitions were 

submitted, whereas most of the worker delivered results of good 

or acceptable quality. A potential reason for these rather positive 

results may lie in the previously addressed inclusion of detailed 

instructions and the preparatory task, effectively leading to 

“quality control on task designing” (Allahbakhsh et al., 2013). 

This inherently leads to the filtering of low-performing workers, 

as explained in (Jin et al., 2020). Overall, an average intersection 

over union (IoU) in comparison to the reference data of 0.692 

was achieved for all 2,300 polygons, with approximately one 

third of polygons (756 or 32.87%) having an IoU value of 0.8 or 

larger. Only few polygons (335 or 14.57%) had an IoU value 

below 0.5, indicating acquisitions of low quality. Subsequently, 

all polygons for each of the 115 image sections were integrated 

using an integration threshold of 50% of the sample size n, as per 

(Collmar et al., 2023a), leading to 115 integrated polygons in 

total. The integration threshold of 50% indicates that a pixel is 

considered part of the integrated shape if it appears in at least half 

of all annotations, effectively resulting in a simple majority vote. 

 

6.2 First editing step (E1) 

After the processing of the acquisition step (A), the unedited 

polygons were used as input for the first editing step (E1), and 

also processed by a single crowdworker each, leading to 2,300 

polygons that were edited once. The integration procedure as 

described in the previous step (A) was applied in similar fashion 

here, resulting again in 115 integrated polygons. In order to allow 

for a cost-oriented comparison, where CA,total =  CE1,total, i.e., same 

total cost, the sample sizes need to be adjusted. Following the 

previous argumentation of Section 2, the ratio in sample sizes 

was set as follows: 2 nA = nE1. This means, in other words and for 

the example of nE1 = 10, that 20 unedited polygons from step (A) 

were integrated per image section, and their results compared to 

the integrated result of 10 edited polygons per image section. 

Edited polygons in that case refers to those that were processed 

in first editing step (E1). IoU values were calculated for all 

integrated polygons and all different sample sizes, leading to 

k = 115 IoU values per sample size. Figure 5 presents the results 

in the form of boxplots: Box limits indicate upper and lower 

quartiles, the horizontal bar within visualizes the median. Dots 

represent outliers, which are calculated by 1.5 of the interquartile 

range, and whiskers show the non-outlier maximum and 

minimum, respectively. 

 

 
 

Figure 5. Boxplots of IoU values for steps (A) and (E1)  

in comparison, adjusted for same cost. 

 

As can be seen from Figure 5, the results of the first editing step 

lead to strictly better values not only in median, but also in box- 

and whisker limits, leading to a more compact distribution. 

Interestingly, a total of two acquisitions already lead to a large 

improvement. Two total acquisitions are achieved by a sample 

size of nA = 2 for the acquisition step (A), meaning two polygons 

per image section are acquired by separate workers. For the first 

editing step (E1), a sample size of nE1 = 1 means that a single 

polygon per image section is edited once by another worker, 

leading to two total acquisitions. While one could argue that the 

improvement in quality for such a low number of total 

acquisitions might be an outlier, the results for higher 𝑛𝑒 show 

the systematic improvement: The edited results not only 

consistently outperform the unedited results for the same number 

of total acquisitions, but even for unedited results of a larger 

number: A total number of six edited acquisitions appears to 

surpass the unedited results even of a much higher number in 

total acquisitions.  

 

Figure 6 further illustrates this point. Comparing the edited 

results for two acquisitions per image section (that is, as 

mentioned, a single acquired and edited polygon) to the unedited 

results in terms of median, as is done in Figure 6a, shows their 

gap in quality: Results for four unedited polygons are 

outperformed, although only a half of the number of total 

acquisitions is needed, resulting in reduced costs by factor two. 

Increasing the number of total acquisitions to six for the edited 

results confirms these findings, as is illustrated in Figure 6b, 

where the results of 11 unedited polygons are outperformed. 

Increasing the number of total acquisitions to 10 for the edited 

polygons even surpasses the results if all 20 available unedited 

polygons are used, both in terms of median values and 

compactness of the data distribution. 
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A potential explanation could be formulated as follows: Initially, 

let’s consider a quote of q = 15% of crowdworkers that yield low-

quality results. This number is based on the observation of the 

first acquisition process, as was described in the beginning of 

Section 6 on the previous page. While this assumption cannot be 

generalized, it serves as a preliminary basis for explanation, 

pending verification through later research. The assumed 

quote q, while appearing very specific, is interchangeable with 

any number less than 50%, leading to analogous conclusions, i.e., 

a chance of (1-q)² for poor acquisitions.  

 

However, assuming that the number of 15% of crowdworkers 

delivering low-quality results can be generalized for all crowd 

interactions, including the second step, the data enhancement 

through polygon editing, this leads to the following calculations: 

If all crowd assignments are random, then 15% of all previously 

acquired data are assigned to low-quality crowdworkers during 

the editing step. Therefore, a mere 2.25% of acquisitions would 

be handled by low-quality workers in both steps. Conversely, a 

substantial 72.25% of crowd acquisitions would be processed by 

exclusively good workers in both phases. The remaining 25.5% 

of acquisitions have potential for lots of discussion: These are 

processed by both a low- and high-quality worker, in any order. 

If a low-quality worker precedes a high-quality one, it is plausible 

that the latter significantly improves the low-quality acquisition 

that was submitted in the first step, effectively cancelling out the 

low-quality submission and improving overall data quality. In the 

other case, where a high-quality worker precedes a low-quality 

worker, it is likely that the latter’s engagement with the editing 

tool is minimal, leaving the initially high-quality acquisition 

mostly unchanged, especially since it takes more time and effort 

to compromise an already good acquisition than to just apply 

minimal changes.  

 

To summarize, one could infer that the impact of low-quality 

workers is substantially mitigated when their work is followed or 

preceded by a worker of high-quality. The observations in 

comparison to the unedited polygons appear to support these 

claims. However, it is imperative to underscore that these are 

assumptions, and further empirical research is needed in order to 

prove or disprove these hypotheses. 

6.3 Second editing step (E2) 

As was shown in the previous section, performing a single editing 

step allows for a smaller sample size while leading to results of 

similar or higher quality. This raises the question if the edited 

results can be further enhanced by applying the secondary editing 

step. As per the argumentation in section 2, we only consider 

multiples of six for the number of total acquisitions. This allows 

us to align the results for all three methods, i.e., acquisition 

step (A), first editing step (E1), and second editing step (E2), 

enabling a direct comparison between these. The following 

Figure 7 visualizes and compares this alignment. 

 

 

 
 

Figure 7. Boxplots in comparison for all three steps (A, E1, E2). 

 

As Figure 7 shows, editing the same acquisition twice appears to 

not be feasible: Whereas the second editing step (E2) leads to 

mostly similar but slightly worse results for a larger number of 

total acquisitions than the first editing step (E1), the results of the 

second editing step (E2) for smaller numbers are clearly 

 

(a) 

 

 

(b) 

 

Figure 6. Comparison of boxplots for IoU values of integrated polygons after the editing step for selected n to those before.  

 (a) For two polygons per section (one unedited, one edited). (b) For six polygons per section (three unedited, three edited). 

Faded boxplots indicate median IoU values lower than the one compared to. 
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outperformed by those of the first editing step (E1). Since not 

even the unedited acquisitions from step (A) can be outperformed 

for a small number of acquisitions, it can be concluded that the 

second editing step does not yield any benefit in the considered 

case.  

 

The reason behind this might become obvious when looking at 

the low number of acquisitions, for example for the value 12. 

Here, 12 unedited polygons per section are integrated and their 

quality represented through the boxplot in Figure 8. If a single 

editing step is applied, then 6 unedited polygons are edited and 

optimized once each, leading to a total number of 12 acquisitions, 

whereas this leads to only 6 polygons being integrated. If a 

second editing campaign is conducted, this number decreases 

further: In order to reach a number of 12 acquisitions in total, 

only 4 polygons can be enhanced through the two editing steps, 

therefore leading to a mere number of 4 polygons as input for the 

integration. Since it was shown in previous studies that the 

integration performs better for larger input sample sizes (Collmar 

et al., 2023a), it appears that the double editing process leads to 

sample sizes too small in relation to their respective costs. Also, 

no improvement is observable even for larger sample sizes, 

making this approach inferior in terms of quality for the 

considered, cost-oriented scenario. 

 

Given a quality-oriented case instead of a cost-oriented case, 

where total cost is not a relevant factor, a direct comparison 

between all three steps with equal sample size and therefore equal 

cost, i.e., CA = CE1 = CE2, might be of interest. Figure 8 shows 

this case, and is not adjusted for the number of total acquisitions. 

 

 
Figure 8. Boxplots in comparison for all three steps, not 

adjusted for number of total acquisitions. 

Interestingly, Figure 8 only shows a clear improvement of quality 

for the first data point, which is a sample size of one for all steps: 

One single polygon per section was acquired in the acquisition 

step (A), and subsequently edited in the first step (E1), followed 

by a second editing (E2). For all other number of acquisitions that 

are shown in Figure 8, however, the results of the second editing 

step (E2) appear to be approximately the same as those of the first 

editing step (E1), only achieving slightly compacter distributions 

as is indicated by the whiskers. This observation is consistent 

with the argumentation of section 6.2, which argued that 

potentially only a low number of acquisitions are of obviously 

poor quality after a single editing step (e.g., 2.25%). Therefore, 

the potential for improvement by a second editing step is rather 

small, since only these 2.25% offer big potential for further 

improvement in quality. Overall, the analyzed data suggest that 

implementing a second editing step does not offer substantial 

benefits: Coming with higher cost in both time and money, as 

well as mostly similar results as the first editing step (E1) in terms 

of quality, we deem the second editing step (E2) not feasible for 

the highlighted cases. 

 

 

7. Further investigations 

7.1 Larger sample sizes and filtering 

Another way for the enhancement of post-integration results for 

polygons is performing a filtering process before the integration, 

as was shown in (Collmar et al., 2023). This naturally leads to an 

important follow-up question: which approach is more effective; 

editing or filtering? Also, it was previously shown that results of 

the first editing step (E1) outperform even larger sample sizes. 

This raises the question to what extent polygon editing can 

outperform the results of larger sample sizes.  

 

To address both questions, we first raised the sample size for the 

polygon acquisition step (A) to 100 polygons per image section 

and then applied the same filtering as is described in (Collmar et 

al., 2023). Since the filtering process is performed before the 

integration, poor acquisitions are effectively eliminated, thereby 

enhancing the quality of input for the integration, making the 

process directly comparable to our editing pipeline. We used the 

filtering approach that led to best results in the previously 

referenced work, i.e., a combined moment filtering for a p value 

of 75%. This was applied to all acquired data, including those of 

large sample size. Following the filtering process, all remaining 

polygons were integrated for various sample sizes.  

 

Figure 9 shows boxplots, comparing the IoU values after 

integration of the unedited results from the acquisition step (A), 

the results after the first editing step (E1) as well as the filtered 

acquisitions. Again, the comparison is done on a cost-oriented 

base, ensuring that the total acquisitions and thereby total cost are 

equal. What can be seen from Figure 9 is that filtering before 

integration indeed leads to results of improved quality as is 

measured by the mean IoU values, independently of the number 

of acquisitions or sample size, respectively. Still, not only the IoU 

values are improved, but also the compactness of the data 

distribution, as is indicated by the box limits and whiskers.  

 

However, it's crucial to note that the IoU values after editing 

consistently surpass those achieved through the filtering process. 

Not only is this the case for a total number of acquisitions from 

10 to 40: A number of 20 unedited polygons, each edited a single 

time in the first editing step (E1) and thereby resulting in 40 total 

acquisitions, outperform not only the results of 40 filtered 

acquisitions, but even score slightly higher median IoU values 

than even 100 filtered acquisitions. To illustrate this fact, a blue 

dashed line was included in Figure 9, indicating the median value 

of the largest available sample size after editing, i.e., 40.  

 

While this is already interesting from a quality point of view, it 

is much more impressive from a cost-optimization perspective: 

Data filtering leads to better results than using raw data, however, 

still a rather large amount of crowd acquisitions is necessary to 

achieve high IoU values. On the other hand, this is not the case 

when applying a first editing step (E1): 40 total acquisitions can 

outperform more than double their sample size in terms of 

median IoU values. Also, not only median values appear to be 

superior, but also the data compactness that is indicated by the 

whiskers in Figure 9.  
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In conclusion, applying an editing step like it was done in (E1) 

outperforms larger sample sizes not only when unedited polygons 

are used for the integration, but also after filtering was applied 

for input data, therefore allowing to cut acquisition numbers and 

subsequently necessary costs significantly. Furthermore, filtering 

might not be applicable for very low numbers of polygons 

(e.g., 2), whereas polygon editing still delivered impressive 

results. On the other hand, since filtering does not require an 

editing step, a second crowd campaign as well as the 

development of an editing platform, such as the polygon editing 

tool, is not necessary, making it a faster and easier alternative for 

cases where the optimization of cost and quality is not necessary. 

 

7.2 Editing of integrated results 

It has been established that a single editing step (E1) can be used 

to enhance both cost-efficiency and data quality. However, in 

previous sections, this approach has only been applied to 

polygons before their integration. This leads to the question, if 

similar improvements can also be achieved if the crowd 

enhancement is applied after the integration. To address this 

question, we utilized the integrated results of the unedited 

polygons from the acquisition step (A) with the respective sample 

size of 𝑛𝐴 = 20, consisting of 115 integrated polygons (i.e., one 

integrated polygon per image section) of high geometric quality. 

These polygons were then presented to crowdworkers via the 

polygon editing tool in a new editing campaign, referred to E*. 

For this new editing step (E*), we picked a small sample size in 

order to keep costs to a minimum, i.e., nE* = 5.  

 

In the previously observed cases, polygons acquired by 

crowdworkers were edited, mostly consisting of a rather small 

number of vertices. Since we used integrated polygons as input 

for the editing tool in this new editing step (E*), and given the 

fact that integrated polygons typically have a complex geometry 

and a large number of vertices (Collmar et al., 2023b), a reduction 

of vertices is needed for effective processing using the polygon 

editing tool. To achieve this, we employed the Douglas-Peucker 

algorithm for line smoothing (Douglas and Peucker, 1973). This 

led to only minimal deviations in IoU values (approx. 0.2% or 

0.0002), while substantially reducing the number of vertices. 

After the smoothing process, the resulting polygons were then 

processed in the polygon editing tool. Subsequently, IoU values 

to the reference were calculated both before and after integration 

for all sample sizes nE* = [1…5]. Their respective results are 

visualized in Figure 10, again in the form of boxplots, with the 

input data for comparison. 

 

As can be seen from Figure 10, an editing step after the 

integration led to strictly inferior results independently of the 

number of acquisitions per step (i.e., sample size) in mean, 

median and standard deviation values, if no integration step is 

performed. It can thereby be concluded, that for the case where 

no integration is performed, editing integrated polygons does not 

yield a beneficial effect in regards of quality. This is not 

surprising if the nature of the input data is considered: Integrated 

polygons already include a large number of details (Collmar et 

al., 2023b), where an editing step following the integration could 

lead to a loss of details, especially, if no integration is performed.  

 

Therefore, another integration process was applied after the new 

editing step (E*), leading to obviously better results as can be 

seen in Figure 10. Whereas the integrated results after the new 

editing step (E*) appear to be of worse quality, those of a higher 

number of acquisitions seem to be of similar quality to the input 

data.  

 

While it is possible to achieve similar or marginally better IoU 

results, adopting this new workflow introduces significant 

complexity: Starting with data acquisition in step (A), followed 

by integration, as well as editing of the integrated results as per 

step (E*), and then performing another round of integration. This 

not only complicates the processing pipeline but also extends its 

duration, without yielding substantially improved outcomes. 

Furthermore, one output polygon in this new editing step (E*) 

requires already integrated polygons as input, which are 

calculated from the results of the acquisition step (A). These 

prerequisites appear to be the same as for the single editing step 

of the main methodology (E1). However, the integration process 

with a subsequent polygon smoothing is required in between, 

effectively leading to a more complex version of the first editing 

step (E1) and resulting in no better quality for higher complexity. 

This hinders the automation of the whole process, making the 

new approach not interesting for the considered case.  

  
Figure 9. Boxplots in comparison for unedited results (“raw”), 

filtered unedited results, and edited results. The blue dashed line 

indicates the median value of the edited results for the largest 

sample size available, i.e., 40. 

 

Figure 10. Boxplots in comparison for IoU values, if an 

editing step (E*) is performed after integration.  
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8. Conclusions 

We adopted a new methodology where polygons are acquired 

through crowdsourcing in an acquisition step (A) and then 

presented to another set of crowdworkers in a polygon editor. 

This tool allows crowdworkers to edit and improve the 

previously acquired polygon geometries, resulting in the first 

crowdsourced editing step (E1). The editing step was repeated, 

presenting the already processed results of the first editing 

step (E1) to yet another set of crowdworkers, resulting in the 

second editing step (E2). We integrated all acquired and edited 

polygons after every step for a comparative qualitative analysis. 

 

We demonstrated that the quality of the integrated data can be 

notably improved when applying the first editing step (E1). The 

results of this initial editing step were of such high quality that 

they surpassed the performance of even much larger samples of 

the acquisition step (A), which did not involve any editing. 

Conclusively, this allows for the same or even higher data quality 

when using considerably smaller sample sizes. Despite the extra 

costs for the editing step, this allows for a significant reduction 

of overall acquisition costs, making the approach attractive for 

any sample sizes. Additionally, robust results were achieved even 

for very small sample sizes.  

 

Further investigations were conducted, highlighting the 

advantages of our presented methodology in comparison to the 

already existing method of polygon filtering, as well as showing 

its effectiveness even for large sample sizes, allowing for further 

cost-saving opportunities.  

 

Conducting a second editing step (E2), as well as processing 

already integrated polygons (E*), did not yield significant 

benefits. However, more research might be necessary to confirm 

our findings.  

 

For future work we plan to perform a continued validation with 

different use cases and evaluation metrics. This could help to 

further demonstrate the efficiency of our proposed methodology. 
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