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Abstract

Urban mountains shape the spatial and landscape structure of cities. Rapid urbanization and an increase in real estate developments
have led to the erosion of unique urban landscape features. However, mountain cities boast distinctive terrain and landscapes,
endowing them with a wealth of scenic resources and aesthetic appeal. Residents' growing concern for their living environment's
quality and scenic beauty impacts property values during urban development. Mountain landscapes, vital natural elements of
mountain cities, are studied less in their effect on housing prices compared to water features and urban greenery, despite their unique
appeal to residents. This study integrates various sources of urban data with subjective analysis of human behavior and the multiscale
geographically weighted regression (MGWR) to assess the factors affecting housing prices in mountain cities. It examines the spatial
distribution and influence of street view elements on property values and uses gradient-weighted class activation mapping (Grad-
CAM) to analyze visual perception characteristics of street views. Research findings reveal urban street view elements, especially
mountain views, significantly affect housing prices with pronounced spatial heterogeneity, this spatial unevenness also shifts with
urban development, influencing housing prices.

1. Introduction

As a country dominated by mountainous landscapes, the
majority of China's cities are built on or surrounded by
mountains. This inherent geographical trait not only endows
these cities with abundant scenic vistas but also deep aesthetic
significance.

Over recent decades, the rapid pace of urbanization and
expansion has precipitated an increase in the scale of
construction projects and building heights. Concurrently, the
character of urban landscapes in many Chinese cities has been
fading, leading to a notable trend of homogenization, where the
singular landscape characteristics have become increasingly
prevalent. Mountains, integral to the ecological framework and
natural architecture of urban planning, significantly shape the
spatial structure, layout, and visual character of urban
environments (Qi et al., 2022). Globally, mountain landscapes
are revered, with peaks representing idealized values and
aesthetic principles in Western thought (Beza, 2010), and
associated with sacred symbolism and beliefs (Yu et al., 2023).
In accordance with “Feng Shui” principles, there is a cultural
tendency to favor homes with a southern exposure and
mountains to the rear, promoting harmony between humans and
nature (Mak and Thomas Ng, 2005). This practice has
influenced the choice of locations for many habitable areas (Liu
et al., 2023). However, the accelerated pace of urban
development and the real estate surge have threatened the
uniqueness of cities known for their picturesque and habitable
mountainous environments, leading to a risk of landscape
characteristics uniformity (Yu et al., 2023).

As cities expand, the involvement of real estate developers in
urban economic growth and territorial expansion becomes
evident. This development coincides with residents' growing
concern for the quality and aesthetic appeal of their surrounding
living environments, often influencing their decisions in

housing purchases and consumption behaviors (Jim and Chen,
2009). Factors such as attractive landscapes, expansive views,
and sufficient greenery are known to enhance property values
(Yamagata et al., 2016). Additionally, the visual appearance and
perceived image of neighborhood streets play a pivotal role in
shaping residents' impressions of their communities (Xu et al.,
2022). The quality of street view can directly or indirectly
impact community property values, while broader features like
urban mountains or harbor views serve as significant attractors
of property values (Jim and Chen, 2009). Although in some
Chinese cities, mountain landscapes have significantly boosted
overall housing prices (Wen et al., 2015), the influence of
mountain landscapes on housing prices shows marked spatial
heterogeneity, more so than the impacts of urban river views
(Liu et al., 2019). Consequently, the effect of mountain
landscapes on urban housing prices, compared to other urban
landscape elements such as natural water bodies and street
greenery, has not been fully investigated.

Housing, as a product marked by its heterogeneity, is influenced
by a myriad of factors, including landscapes, as well as by its
structural characteristics and geographical location, all of
which significantly affect price levels (Jim and Chen, 2006).
The presence of essential local infrastructure, such as schools,
hospitals, and transportation networks, also plays a pivotal role
in shaping residents' willingness to pay for properties (Chin and
Foong, 2006; Kopczewska and Lewandowska, 2018). While
foundational data have traditionally underpinned studies on the
determinants of housing prices, recent research efforts have
started to draw connections between urban property prices and
the unique features of certain cities, like the “Shan Shui”
landscapes in Chongqing, China (Liu et al., 2019). Nonetheless,
studies that utilize street view imagery and human perception
data to delve into how distinct urban features, including
landscapes, influence housing prices are still relatively
infrequent.
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The aim of this study is to utilize urban data and human
perceptions to discern factors impacting housing prices in
mountain cities. Objectives include: (1) developing a regression
model with street view elements for Tai'an to uncover price
determinants; (2) analyzing the influence of mountain city
environments on housing prices and their spatial patterns; (3)
applying gradient-weighted class activation visualization to
identify commonalities in human-machine observations.

2. Data and Methodology

This study delineated a methodological framework to assess
housing price determinants in mountain city, as shown in Figure
1. We amalgamated data from varied sources, including road
networks, Baidu Street View imagery, housing price metrics,
and points of interest. Street view element variables were
extracted from street view imagery using semantic segmentation,
while a subset of mountain view images underwent analysis
through an impression evaluation model, grounded in human
perception data. Employing spatial regression model, the study
investigates spatial correlations between behavioral and
objective datasets across the study area. Grad-CAM further
elucidates the interplay between human perception and housing
price data, revealing perceptual commonalities.

2.1 Study Area

In this study, we focused on the central urban district of Tai'an
City, spanning approximately 207.7 km², adjacent to the Mount
Tai Scenic Spot. Mount Tai, standing at 1,545 meters and
renowned as one of China's most significant mountains, has
been honored as "the most revered" of the Five Great Mountains.
It was listed as a World Natural Heritage site in 1987 (Zhang
and Zhang, 2019), underscoring its cultural and environmental
significance.

Figure 2. Study area.

This study area, with sufficient conditions for mountain viewing,
well-developed public service infrastructure, and rich open data
showcasing the city's current state, was chosen to investigate the
influence of diverse human behaviors and urban data on
housing prices in mountain urban areas, as presented in Figure 2.

2.2 Data Source

2.2.1 Housing Prices: Utilizing a web crawler on
(Anjuke.com), data on pre-owned housing sales in the central
district of Tai'an City for 2023 were collected, including
attributes such as community address, construction year, floor
area ratio, greening rate, and number of households. Data
cleansing eliminated duplicates and null values, yielding records
for 1,177 community housing prices. Subsequent analysis,
visualized in Figure 3, elucidated the spatial distribution and
aggregation patterns of housing prices. In the central district of
Tai'an, housing prices exhibited a semicircular distribution
congruent with the mountainous terrain, peaking in areas
proximal to the northern mountains. Conversely, the southern
city regions showed a decline in community density and
associated housing prices.

Figure 3. Study area housing price map.

2.2.2 Open Space: The road network data for the city of
Tai'an was extracted from the OpenStreetMap (OSM) platform
to support the collection of street view imagery and to establish
spatial associations between community locations and points of
interest (POIs). Subsequently, POIs in the central district of
Tai'an were collected using the Amap Open Platform, enabling
the delineation of facility attributes near residential areas. This
effort spanned various functional categories, with a focus on
education, healthcare, and government services. The process
culminated in the aggregation of 8,781 POIs, each accurately
documented with location details.

Figure 1. Research framework and workflow.
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2.2.3 Street View Images: Imagery for this study was
obtained from Baidu Street View (BSV). Street view sampling
points were generated every 50 meters using ArcMap 10.7, and
images were retrieved via Baidu Maps' Application
Programming Interface (API). Due to the varying orientations
of collection vehicles, images at each point were captured
facing four cardinal directions (0°, 90°, 180°, 270°) at a
resolution of 1024 x 700 pixels, totaling 43,680 images.

2.3 Method

2.3.1 Street View Elements Extraction: The study used the
SegFormer-B2 model for semantic segmentation of street
scenes, known for its validated effectiveness on relevant
datasets (Xie et al., 2021), with the module depicted in Figure 4.
The training was performed using the Pascal VOC pre-trained
weights and the AdamW optimizer, known for its effectiveness
on large datasets, with a momentum of 0.9 and an initial
learning rate of 0.0001, ensuring improved performance and
stability (Everingham et al., 2015; Ilya Loshchilov, 2019). The
training process included 300 epochs with an image input size
of 512x512 pixels. Significantly, the Mapillary Vistas Dataset,
embodying a rich array of landscapes including mountainous
terrains and urban scenes, was selected for model training,
resonating with the study's emphasis on mountain urban
environments (Neuhold et al., 2017).

Figure 4. SegFormer-B2 module diagram.

This research employed classification indices from the street
view dataset (Neuhold et al., 2017) to scrutinize the impact of
various elements, natural (mountains, sky, vegetation, water),
constructed (buildings), and flat surfaces on housing prices.
Quantification of these distinct components enabled the
derivation of objective metrics to ascertain their influence on
property valuations.

2.3.2 Human Perception Score Extraction: A survey was
conducted using the Tencent questionnaire platform
(https://wj.qq.com/) to evaluate volunteer satisfaction with
images of mountain views selected from segmented street view
imagery. From this selection, 500 images containing mountain
elements were randomly chosen for evaluation. Each participant
rated their satisfaction on a five-point scale across 20
questionnaire sets (Joshi et al., 2015), each featuring 25 unique
mountain images. Post-survey, data cleansing led to the
calculation of average satisfaction scores per image and across
all images. Satisfaction levels for each image were then
categorized based on the standard deviation of these average
scores, facilitating an analytical framework for interpreting
perceptions of mountain views in urban landscapes.

We evaluated the street view images based on human perceptual
scores using the ConvNeXt-base model, which was trained on
satisfaction survey images with satisfaction levels as the target
criteria. Known for its high accuracy and fast inference

capabilities, the structure of this model was shown in Figure 5
(Liu et al., 2022).

Figure 5. ConvNeXt-base module diagram.

2.3.3 Spatial Association: In this study, we established
spatial associations among street view elements, community
structural characteristics, and their proximate attributes. Data on
factors like building age, floor area ratio, greenery rate, and
household count were extracted as structural characteristics. A
500-meter buffer was used to gauge the community's
surrounding characteristics, calculating averages to determine
objective neighborhood characteristics (Sung et al., 2014). The
neighborhood profile included variables such as the density of
parks and government facilities within a 1-kilometer radius.
Mountain view observations connected the nearest community
data through image sampling points. The Manhattan distance
metric provided a realistic assessment of pedestrian travel in
urban blocks, linking community attributes more accurately to
their spatial context.

2.3.4 Hedonic Price Model: Housing prices were analyzed
using the Hedonic Pricing Model (HPM), which segments price
determinants into attributes with differential impact levels.
Research has extensively adopted this method for assessing the
built environment's effect on property values (Chen et al., 2020;
Xu et al., 2022). Influences on housing prices were
acknowledged to extend beyond structural characteristics, such
as building age and floor area ratio, to include proximate
features like community location and surrounding scenery (Liao
et al., 2022). Primarily based on Ordinary Least Squares (OLS)
regression, the HPM implied a linear relationship between the
price and a set of various predictive variables. The HPM
employed in this study was expressed in Eq1：

𝑃𝑖 = 𝛽0 + 𝑗=1
𝑘 𝛽𝑗∑ 𝑥𝑖𝑗 + 𝜖𝑖 (1)

Where 𝑃𝑖 = the price of the 𝑖th property
𝛽0 = the intercept
𝑘 = the total number of explanatory variables
𝑥𝑖𝑗 = the 𝑗th characteristic of the 𝑖th property
𝛽𝑗 = the regression coefficient for each characteristic
𝜖𝑖 = the error term

2.3.5 Spatial Regression Analysis: Spatial variability,
typically unaccounted for in HPM applying OLS, conceals the
nuances of spatial relationships. This study rectified this by
integrating the geographically weighted regression (GWR) and
the multiscale geographically weighted regression (MGWR),
with GWR elucidating spatial heterogeneity through localized
parameters. The GWR model's implementation was as specified
in Eq2:

𝑃𝑖 = 𝛽0 + 𝑗=1
𝑘 𝛽𝑗∑ 𝑢𝑖, 𝑣𝑖 𝑥𝑖𝑗 + 𝜖𝑖 (2)

Where 𝑃𝑖 = the price of the 𝑖th property
𝛽0 = the location-specific intercept term
𝛽𝑗 𝑢𝑖, 𝑣𝑖 = the spatially varying coefficient for the 𝑗th

explanatory variable
𝑥𝑖𝑗 = the 𝑗th characteristic of the 𝑖th property
𝜖𝑖 = the error term at the 𝑖th location
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In the MGWR model, flexibility was introduced by permitting
variable-specific bandwidths, unlike GWR which assumes a
uniform bandwidth across all variables. The equation governing
the MGWR model was delineated as follows:

𝑃𝑖 = 𝛽0 𝑢𝑖, 𝑣𝑖 +
𝑗=1
𝑘 𝛽𝑗𝑖∑ 𝑢𝑖, 𝑣𝑖 𝑥𝑖𝑗 + 𝜖𝑖 (3)

Where 𝑃𝑖 = the price of the 𝑖th property
𝛽0 𝑢𝑖, 𝑣𝑖 = the spatially varying intercept term
𝛽𝑗𝑖 𝑢𝑖, 𝑣𝑖 = the spatially varying coefficient for the 𝑗th

explanatory variable
𝑥𝑖𝑗 = the 𝑗th characteristic of the 𝑖th property
𝜖𝑖 = the error term at the 𝑖th location

2.3.6 Visualization of Class Activation Map: We used a
ConvNeXt-base model trained with SVIs satisfaction survey
data to classify the satisfaction levels of images. This approach
allowed for the exploration of dynamics in human perception
through Class Activation Map (CAM) visualization of images
from various satisfaction categories. The study utilized CAM
for deep visualization, identifying focal points in images to
clarify the model's focus on SVIs. Grad-CAM, with model
weights, generated heat maps for class activation, improving
model interpretability (Zhao et al., 2024). This method
highlighted the visual allure of street view elements and
revealed the model's perceptual priorities in mountain urban
settings.

3. Results

3.1 Spatial Distribution of Urban Street View Elements

The SegFormer-B2 semantic segmentation model achieved an
accuracy of 89.40%. Using the natural breaks method, we
mapped the spatial distributions of six key elements: building
view index (BVI), flat view index (FVI), mountain view index
(MVI), sky view index (SVI), water view index (WVI) and
green view index (GVI), with their average values calculated to
be 0.09871, 0.21299, 0.00086, 0.32914, 0.00031 and 0.23410.
Figure 6 showed that higher BVI values were predominant in
the core areas of the central urban district, characterized by
dense construction and the highest concentration of residential
communities. Conversely, SVI displayed an inverse distribution
pattern, gradually increasing from the core area to the periphery.
GVI's distribution was dense not only in the central area but
also significantly high along the northern mountainous roads, as
well as in the western and southern suburbs. MVI was primarily
concentrated along the northern mountain line, with other areas
presenting lower and average levels.

3.2 Correlation Analysis of Human Perception Scores

Figure 7. Pearson correlation analysis of perception scores.

From 534 valid questionnaire responses, including 238 males
and 296 females, an average satisfaction score of 2.77 emerged,
aligning with a normal distribution trend and a standard

deviation of 0.54. This facilitated dividing satisfaction into five
levels, with volunteers showing lower preferences for extreme
mountain view ratings. Pearson correlation analysis linked street
view elements to mountain view satisfaction, as illustrated in
Figure 7, revealing positive correlations with mountains (0.39)
and greenery (0.32), and a strong negative correlation with
buildings (-0.50).

Figure 6. The spatial distribution of urban street view elements.
(a) building view index; (b) flat view index; (c) mountain view
index; (d) sky view index; (e) water view index; (f) green view

index.

Acknowledging a general preference for moderation, a three-
classification model was formulated to assess satisfaction with
mountain views, dividing photo data into an 80-20 split for
training and testing. The model achieved a 66.70% accuracy
after 300 epochs, with a learning rate decreasing from 0.0002 to
0.0001, Using the Adam optimizer enabled satisfactory
performance even on small datasets (Diederik P. Kingma,
2017). Satisfaction for street attractions was predicted across
43,680 SVIs. For clearer results presentation, we applied the
natural breaks method in ArcMap 10.7 to relate satisfaction
scores with housing prices, as shown in Figure 8. High visual
satisfaction areas from mountain views, primarily at elevated
locations except for the central city and north along the
mountain ring, aligned more closely with housing prices.

Figure 8. Comparison of predicted satisfaction and housing
prices, including housing prices (RMB/m²) for the location
shown on the right. Levels of satisfaction perception: Level 1

(Low), Level 2 (Medium), Level 3 (High).
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3.3 Results of Spatial Regression Analyses

Before developing the spatial regression model, we evaluated
the variance inflation factors (VIF) of identified variables to
detect multicollinearity, ensuring robustness. Variables
demonstrating no multicollinearity, indicated by a VIF less than
5, were selected for inclusion in the model (Marquardt, 1970).
Finally, we obtained descriptive information on variables that
included structural characteristics, neighborhood characteristics,
and street element characteristics, as detailed in Appendix Table
A1.

Table 1. Comparison of models.

Table 1 demonstrated that both the 𝑅2 and adjusted 𝑅2 of the
GWR and MGWR models outperformed those of the HPM. In
the broader study, GWR and MGWR models explained 58.2%
and 61.3% of the variance in housing prices, respectively. In the
mountain view area, GWR and MGWR models explained
89.3% and 91.1% of the variance, respectively. Overall, MGWR
model surpassed traditional HPM and GWR model, making it
the preferred regression model for this study.

Table 2. Comparison of parameter bandwidth (macro scale
bandwidth = 1177, mountain view area bandwidth = 475).

*p < 0.05; **p < 0.01; ***p < 0.001.

Table 3. Regression Coefficients and Standard Errors.

3.3.1 Spatial Scale Analysis: In the MGWR model, variable
bandwidths were employed to mitigate scale disparities among
variables, reflecting their distinct spatial distributions. Uniform
impacts across locations were observed for variables such as
GR, D_School, D_Government, D_Park, and N_Park, attributed
to globalized bandwidths. Conversely, spatial variability was
exhibited by AGE, HS, and D_Hospital, leading to differential
impacts on housing prices. Spatial non-uniformity was also
demonstrated by visual landscape elements, represented by MVI,
BVI, and GVI, resulting in variable effects on housing prices
across regions. It was highlighted through statistical analysis in
the Mountain View area that variables like N_Park, FVI, SVI,
and GVI were impacted globally, indicating consistent effects
over larger spatial extents. In contrast, significant spatial
heterogeneity was shown by AGE, FR, HS, D_School, and BVI,
as evidenced in Table 2.

3.3.2 Regression Coefficient Analysis: In the global
regression model presented in Table 3, the analysis underscored
how specific factors, including HS and GR, exerted a significant
influence on housing prices across various regions. Research by
D_Park and N_Park further demonstrated the substantial impact
of proximity to parks on price, emphasizing the critical role of
environmental considerations in residential choices.
Additionally, the MVI emerged as a significant determinant of
prices through its influence on street view elements, with its
effects exhibiting spatial heterogeneity reflective of distinct
neighborhood characteristics. The GVI, while generally
positively associated with housing prices, showed a slight
negative correlation in mountain view areas in Table 3.

As Table 4 illustrated, in the structural characteristics of both
macro scale areas and mountain view areas, the GR emerged as
the most significant predictor, indicating appreciable growth in
housing prices with increases in GR.

Model
Macro scale Mountain view

𝑅2 𝑅𝑎𝑑𝑗
2 𝑅2 𝑅𝑎𝑑𝑗

2

HPM 0.346 0.334 0.419 0.392
GWR 0.582 0.521 0.893 0.841
MGWR 0.613 0.560 0.911 0.881

Variables
Model 1

(macro scale)
Model 2

(mountain view)

MGWR MGWR
Structural characteristics
AGE 152 43
FR 911 54
HS 373 43
GR 1171 296
Neighborhood characteristics
D_Bus 436 88
D_Hospital 112 144
D_School 1152 48
D_Government 1176 86
D_Park 1176 51
N_Government 361 119
N_Park 1176 474
Street element characteristics
MVI 193 177
BVI 80 43
FVI 975 463
SVI 293 425
WVI 951 271
GVI 268 459

Variables

Model 1
(macro scale)

Model 2
(mountain view)

𝑬𝒔𝒕. SE 𝑬𝒔𝒕. SE
Structural characteristics
AGE 0.023 0.035 0.138** 0.040
FR 0.029 0.024 0.171*** 0.040
HS -0.111*** 0.027 -0.314*** 0.041
GR 0.124*** 0.035 0.277*** 0.041
Neighborhood characteristics
D_Bus -0.052 0.027 -0.029 0.046
D_Hospital 0.007 0.033 -0.008 0.067
D_School -0.064* 0.032 0.075 0.070
D_Government 0.084** 0.029 0.083 0.044
D_Park -0.105*** 0.028 -0.116* 0.048
N_Government -0.014 0.040 0.076 0.051
N_Park 0.076* 0.033 0.237*** 0.045
Street element characteristics
MVI 0.251*** 0.025 0.124*** 0.038
BVI 0.051 0.031 -0.219** 0.072
FVI 0.130*** 0.035 -0.004 0.044
SVI -0.258*** 0.045 -0.188* 0.078
WVI -0.021 0.025 -0.041 0.038
GVI 0.272*** 0.032 -0.067 0.077
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Table 4. MGWR regression coefficient statistical description.

Notably, within neighborhood characteristics, the distance to the
nearest park suggested that closer proximity to parks was
associated with higher urban housing prices. Furthermore, the
number of parks significantly elevated housing prices, with this
effect distributed evenly across the area. Parks enriched urban
areas with green spaces and provided residents with areas for
rest, exercise, and leisure (Helbich et al., 2019), increasing
buyers' willingness to invest (Wu et al., 2022). Moreover,
accessible transportation could enhance property values in the
neighborhood. However, it was noteworthy that for every
additional kilometer from bus stops, housing prices could
decrease by 2.8% and 6.9%, respectively. Additionally, in areas
already afflicted by noise, an excess of bus stops could further
aggravate noise pollution and traffic congestion, potentially
diminishing property values in those communities.

Our study focused on assessing the impact of mountain urban
environment characteristics on housing prices. Incorporating six
street view elements' estimated coefficients, we explored their
collective influence on housing prices, as depicted in Figure 9.
At a macro scale, a unit increase in the MVI corresponded with
a substantial 63.0% rise in housing prices, potentially reaching
up to 178%. This highlighted the significant influence of
mountain view on property values, particularly within the urban
core, as shown in Figure 9. The spatial distribution of housing
prices among neighborhood clusters revealed MVI's positive
impact on central areas, attributed to residents' appreciation for
scenic beauty. In contrast, the mountain view area showed a
clear preference for the city's northern mountain ridge,
extending westward. Despite favorable views, residential
preferences shift from the urban core, boosting infrastructure
demand in surrounding areas. Significant influences on central
housing prices come from indices like the BVI, SVI, and GVI,
with the WVI notably higher in the northwest due to abundant
lakes and water bodies, thereby raising housing prices. This
underscores the combined impact of natural elements like
mountains and water on property values. A general trend reveals
that the MVI positively correlates with housing price increases,
albeit with significant spatial differences. Structural and street

view elements across neighborhoods contribute to property
value disparities.

3.3.3 Grad-CAM Visualization Results: The study
leveraged Grad-CAM to elucidate focal points in the ConvNeXt
model's predictions of satisfaction levels across mountain view
images, exploring their implications for housing prices. Figure
10 revealed that in images with higher satisfaction levels, the
model primarily highlighted natural features such as mountains
and greenery, suggesting that superior mountain views were
associated with higher community property values. However,
for images with lower satisfaction levels, the model's focus
shifted towards flat and architectural elements, indicating that
street elements in these instances did not significantly enhance
housing prices. Through Grad-CAM visualizations, this analysis
provided a fresh perspective on the influence of visual
perceptions of natural versus built elements on real estate
valuation, highlighting the distinct effects of environmental and
architectural factors on housing market dynamics.

Figure 10. Grad-CAM visualization class activation heat map
with mountains marked with boxes.

Variables
Model 1

(macro scale)
Model 2

(mountain view)
Mean STD Min Max Mean STD Min Max

Structural characteristics
AGE -0.003 0.110 -0.254 0.261 -0.112 0.416 -1.400 0.550
FR 0.044 0.026 -0.019 0.075 0.176 0.140 -0.148 0.528
HS 0.010 0.121 -0.158 0.279 0.043 0.663 -1.697 1.117
GR 0.115 0.004 0.100 0.122 0.257 0.069 0.158 0.333
Neighborhood characteristics
D_Bus -0.028 0.073 -0.195 0.059 -0.069 0.133 -0.321 0.281
D_Hospital 0.128 0.231 -0.284 1.078 0.692 0.231 0.370 1.099
D_School -0.058 0.020 -0.085 -0.010 -0.231 0.457 -1.451 0.793
D_Government 0.076 0.001 0.075 0.080 -0.006 0.102 -0.298 0.171
D_Park -0.059 0.003 -0.067 -0.056 -0.274 0.319 -0.947 0.346
N_Government -0.020 0.142 -0.190 0.304 0.146 0.588 -0.541 0.978
N_Park 0.214 0.001 0.212 0.218 0.087 0.002 0.083 0.090
Street element characteristics
MVI 0.630 0.558 -0.185 1.780 0.045 0.076 -0.018 0.364
BVI 0.153 0.329 -0.560 1.593 -0.041 0.187 -0.448 0.525
FVI 0.054 0.040 -0.001 0.111 0.026 0.016 0.008 0.050
SVI 0.040 0.137 -0.441 0.237 -0.092 0.014 -0.109 -0.072
WVI -0.019 0.036 -0.057 0.045 0.042 0.041 0.005 0.135
GVI 0.327 0.118 0.325 0.514 -0.037 0.004 -0.047 -0.034
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4. Conclusion

In this study, we combined SVI, data from varied sources,
geographically weighted regression analysis, and deep learning
techniques with subjective behavioral perception forecasts to
assess how environmental features impact housing prices in
mountainous urban areas. Utilizing SVI and open urban data
facilitated the analysis of the spatial distribution of urban street
view elements. An increase in mountain view and green
visibility was found to significantly boost satisfaction ratings
for urban streets, despite the uneven distribution of some street
view elements. Moreover, the variation in housing prices was
scrutinized through the adoption of geographically weighted
regression models for both macro scale areas and mountain
view areas. This method uncovered varied results, emphasizing
the spatial heterogeneity in housing price determinants across
different models. Analysis revealed that street view elements
significantly impact urban housing prices, with mountain view
factors specifically showing pronounced spatial variability in
their influence on property values. Finally, based on the
subjective evaluations of sample images by volunteers, a human
perception model was constructed. Through this, the
observational characteristics of Grad-CAM in mountain city
street view were explored, aiding in the discussion of a distinct
pattern in the distribution of housing prices in cities with
mountainous environmental features. It was observed that
residents in core residential areas exhibit varying levels of
demand for mountain views, with a preference for the
accessibility of essential infrastructure, such as transportation
and healthcare services. An increase in the mountain view index
significantly elevated housing prices, attracting individuals with
higher purchasing capacities towards residences with
picturesque mountain views. Conversely, in neighboring areas
rich in mountain view resources, the influence of additional
factors on housing prices was found to be amplified.

This study focuses on housing price evaluation and the factors
influencing it in cities with distinct characteristics, aiding in the
analysis of property valuation and pricing trends across diverse
urban settings. Future work will involve collecting extensive
resources and open data, along with in-depth subjective

perception analysis, to enhance our understanding of what
affects housing prices in mountain cities.
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Appendix A

Variables Description

PRICE RMB/m², dependent variable
Structural characteristics
AGE Age of the building
FR Floor-area ratio
HS Number of households
GR Green coverage rate (%)
Neighborhood characteristics
D_Bus Distance to the nearest bus stop (km)
D_Hospital Distance to the nearest hospital (km)
D_School Distance to the nearest school (km)
D_Government Distance to the nearest government (km)
D_Park Distance to the nearest park (km)
N_Government Number of governments within 1000 m

walking distance
N_Park Number of parks within 1000 m walking

distance
Street element characteristics
MVI Mountain view index
BVI Building view index
FVI Flat view index
SVI Sky view index
WVI Water view index
GVI Green view index

Table A1. Descriptive statistics of variables.
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