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Abstract

The accessibility to basic facilities and services plays a pivotal role in every society and city planning. Spatial accessibility can vary
between cities and countries and is mainly defined by the ease at which facilities can be accessed by communities. Facilities can
provide essential services and/or products such as pharmacies, clinics, schools, universities, etc. Spatial accessibility is dependent
on the spatial impedance between a facility and the target population and can be illustrated with catchment areas. We propose a
fuzzy lattice catchment area method which uses a semi-supervised learning algorithm to create overlapping catchment areas. This
methodology is applied to determine the accessibility to hospitals in South Africa and provides an illustration on the difference for
regions with high accessibility compared to low accessibility. The application can easily be adapted in a variety of fields based on
industry type, drive-time thresholds, supply capacity and the target population.

1. Introduction

1.1 Background

Ease of accessibility to essential facilities is an important com-
ponent of any society. This is important for several reasons in-
cluding equality in provision of resources and services (Wang,
2014). Unfortunately, due to geographic, and non-geographic,
barriers not all communities receive equal accessibility to ba-
sic facilities (Rader et al., 2022). This is especially true for
disadvantaged population groups considering factors like in-
come and minority groups. Globally there is also a dispar-
ity between countries when considering basic services such as
health care, for which low- and middle-income countries tend
to have poorer accessibility than first world countries (Peters et
al., 2008).

Access can be classified into one of four categories namely:
potential spatial, potential aspatial, realised spatial and realised
aspatial access as defined by (Khan, 1992). Aspatial access fo-
cusses on social disparities between communities and identi-
fies nongeographic barriers such as wages, gender, race, child-
care services, educational attainment, linguistic barriers etc. as
discussed in (Wang, 2014; Rader et al., 2022). Potential and
realised spatial access is however based on geographic distance
as well as the distribution and size of facilities. Services or
products offered within geographic accessibility of communit-
ies are potential spatial access and only when it is utilised, is it
referred to as realised spatial access.

Potential spatial accessibility can be defined by the ease at which
a facility, or any point of interest, POI, is arrived at from a de-
mand location (Wang, 2014). POIs are facilities which provide
services and/or products and can be grouped by sub-industry
level (laboratories, pharmacies, clinics, schools, universities,
etc.) or industry level (health care, education etc.). Spatial ac-
cessibility is dependent on the spatial impedance (drive-time or
Euclidean distance) between the POI and demand location and
on the capacity of the POI in question (Tao et al., 2018; Luo and
Wang, 2003; Shao and Luo, 2022).

This paper proposes a method to identify fuzzy lattice catch-
ment areas, which represent potential spatially accessible re-
gions. Fuzzy in this context refers to assigning degrees of mem-
bership as a probability ranging from 0 to 1. The method em-
ploys a semi-supervised approach to classify overlapping catch-
ment areas. The fuzzy lattice catchment areas approach is com-
pared to existing methods to highlight how the distribution in
resources and demand is affected when using a weighted ap-
proach as opposed to assigning equal weights. Finally it is used
as an application to create fuzzy lattice catchment areas for hos-
pitals in South-Africa and illustrates how areas with high and
low accessibility can be influenced by the weighted distribution
of resources.

1.2 Literature review

A catchment area is the geographical area from which a POI
attracts communities that utilises its services or products. It is
usually defined by the maximum traveling distance users are
willing to travel to a POI and can either be created naturally to
a point that people are drawn to, by natural geographic bound-
aries or as a predefined establishment (Luan et al., 2020).

There are an array of methods available to determine catchment
areas in spatially accessible areas. These methods include the
circular buffer approach (Andersen and Landex, 2008) and Eu-
clidean buffer-based method (Lin et al., 2020) to more special-
ised methods such as the floating catchment, two-step floating
catchment area (2SFCA) (Radke and Mu, 2000; Luo and Wang,
2003), gravity based methods (Wang, 2014), distance decay
functions and variable catchment areas as summarised in (Tao
et al., 2018). As highlighted in (Wang, 2014), spatial access-
ibility is dependent on the capacity of a POI and/or the spatial
impedance between a POI and demand location.

Catchment areas formed around POIs can be classified into one
of the following three categories: in potential spatial access-
ible areas it can either be i) overlapping or ii) non-overlapping
(Challen et al., 2022) and beyond spatial accessible areas, iii)
spatially inaccessible (Wang, 2014). Overlapping catchment
areas indicates a choice for the POI being visited and is a more
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realistic approach than imposing non-overlapping spatial bound-
aries (Challen et al., 2022). Non-overlapping catchment areas
provide a simplification to modelling techniques. There is how-
ever the disadvantage that demand could be incorrectly assigned.
If a community is only assigned to one catchment area, when
more than one is available, the result will tend to be spatially un-
even (Challen et al., 2022). Spatially inaccessible areas, also re-
ferred to as off-network areas (Lin et al., 2020), occur when the
distance or time impedance falls beyond the distance or drive-
time threshold of the spatially accessible areas (Wang, 2014).
Communities which falls in the spatially inaccessible areas are
typically excluded from any further analysis (Lin et al., 2020).

The spatial impedance or threshold distance between a POI
and demand location can be based on different methods such
as a distance buffer, distance-decay, drive-times etc. (Wang,
2014). A welfare approach was taken by (Green et al., 2016)
to define threshold distances by classifying different services
and products by answering the fundamentals of “who gets what,
where and how”. Using this approach essential services, such
as basic education, healthcare etc., should be available to the
majority of the population and should have a smaller threshold
distance (and catchment area) than facilities providing inessen-
tial services. As discussed in (Green et al., 2016), low-order ba-
sic facilities define access to essential services such as schools
and naturally form small catchment areas around communit-
ies. Middle-order POIs serve more communities than low-order
POIs and can be located at a further distance such as 24-hour
health care and Home Affairs/State Department offices. Finally
high-order POIs have the largest possible catchment areas as
people are willing to commute further to POIs that provide high
value services or products such as higher education and leis-
ure centres. According to (Green et al., 2016), middle-order
POIs should ideally have a maximum distance of 30 km and
should be accessible to 91% of the population. The fifteen-
minute city concept specifies that all critical urban services and
facilities should be within a 15 minute walking, cycling or driv-
ing distance for optimal and sustainable city planning and de-
velopment (Pozoukidou and Angelidou, 2022). The distance
and time associated with low-, middle- and high-order POIs can
differ vastly between cities and each region should be analysed
individually based on its road networks and infrastructure.

It is important to quantify the capacity or supply of a POI and
the demand at surrounding communities for optimal resource
and facility planning (Green et al., 2016). Supply is quantified
based on whether an activity or algorithmic approach is used to
model catchment areas (Challen et al., 2022). An activity based
approach takes into account the daily movement of communit-
ies between different regions to access a specific service. An
algorithmic approach uses static measures in an area at a spe-
cific point in time by considering the size, capacity and ease
of access to quantify supply. Demand is calculated in a similar
fashion by taking the population size of an area at a point in
time. For our application in section 3 an algorithmic approach
will be used to compare hospital bed capacity and demand at a
specific point in time.

In this paper a similar approach is used as in (Challen et al.,
2022) to define catchment areas using network structures, spe-
cifically considering label propagation (Raghavan et al., 2007).
Network structures takes into account how nodes (or users) are
linked and incorporates information from neighbours to clas-
sify unlabelled nodes. There are multiple methods for node
classification in network structures available. These include

community score, multi-objective optimisation, modularity op-
timisation, genetic algorithm, label propagation, game theory,
clustering etc. as summarised in (Bedi and Sharma, 2016).

The fuzzy lattice catchment areas methodology that is proposed
herein will however differ from the approach in (Challen et
al., 2022) where the final result is overlapping catchment areas
rather than non-overlapping areas. Non-overlapping catchment
areas occur when a node is associated with only one label at the
end of the iteration process. In our method a probabilistic ap-
proach is followed where each node will have a probability to
be assigned to each label in the network structure. Drive-time
thresholds are applied to ensure that the probability structure
also takes into account the geographical boundaries of the POIs
and population.

2. METHODOLOGY

In this section the initial data inputs and the algorithmic ap-
proach to creating fuzzy lattice catchment areas will be covered.
This is achieved by integrating the foundational work in (Bhagat
et al., 2011) on node classification in network structures with
model-based label propagation techniques for resource alloc-
ation as done in (Challen et al., 2022). The methodology in
(Challen et al., 2022) focuses on how propagation rates adjust
as demand outstrips supply in non-overlapping catchment areas.
In contrast, our method suggests overlapping catchment areas
where each label has a set of probabilities associated with each
node at different drive-time intervals.

A label can be a binary, single or multi-label which can repres-
ent any characteristic of the associated node and an edge rep-
resents a similarity between two nodes. If a node is an indi-
vidual in a social network, a label can represent age, marital
status etc. and an edge between two individuals can represent
a shared characteristic such as a shared family connection, in-
terest etc. In this application, let the network graph be the full
geographical region which is subdivided into smaller grid cells
(whose centres then represent the nodes) and an edge between
two nodes is a shared line segment between two grid cells. La-
bels according to a chosen connectivity will be the POI asso-
ciated or classified with each grid cell. Initially only the nodes
which spatially overlaps with a POI will be labelled, the remain-
ing nodes will be unlabelled.

Using a semi-supervised learning approach to propagate labels
to neighbouring grid cells, the full geographical region can be
represented as a fuzzy lattice structure, with each grid cell hav-
ing a set of probabilities associated with each label, as outlined
in section 2.1. Network threshold distances for low-, middle-
and high-order POIs will then be overlayed on the fuzzy lattice
data structure to create fuzzy lattice catchment areas in section
2.2.

2.1 Fuzzy lattice data

Fuzzy lattice catchment areas uses a random walk approach and
label propagation to propagate labels to all nodes by only using
the link structure of the graph. Label propagation (Raghavan
et al., 2007) relies on an iterative process where each node
considers its neighbours. Each unlabelled node joins the com-
munity to which the maximum number of its neighbours belong
to. As discussed in (Raghavan et al., 2007) when a tie between
two labelled nodes occur, the label is determined by selecting
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one of the neighbouring labels based on a uniform random ap-
proach. In this research we will consider the approach in (Xie
and Szymanski, 2013) where a node can keep multiple labels
received from neighbouring nodes, allowing for an overlap of
catchment areas. The degree of overlap is captured by a prob-
ability and hence create a fuzzy lattice data structure.

Using node classification formulation as illustrated in (Bhagat
et al., 2011), consider graph G = G(V,E) that is subdivided
into N,n = 1, ..., N nodes V = {v1, v2, ..., vN} and let an
edge (i, j) ∈ E represent a shared line segment between nodes
vi and vj as defined by the Rook’s contiguity (Wang, 2014). Let
D be a N × N diagonal degree matrix indicating the number
of neighbouring edges to node vn, n = 1, ..., N and weights
matrix A be an N ×N adjacency matrix defining neighbouring
nodes using common edges between grids.

Consider geographical spatial POIs, P = {P1, P2, ..., PM},
m = 1, ...,M as a known set of M locations. The centre of each
grid cell vn, n = 1, ..., N will represent the nodes in graph G.
The grid size should be determined based on the specific geo-
graphical region of the study. In addition every node is assumed
to contain at most one POI, thus the grid size should be chosen
to maintain this at a minimum. Let Vm be the subset of the
M labelled nodes which contains a POI and Vu be the subset
of remaining N −M , initially unlabelled nodes, which doesn’t
contain a POI. Let V be ordered such that the first M rows are
the cells from Vm and the remaining N−M rows are the nodes
from Vu such that V = Vm ∪ Vu = {v1, ..., vM , vM+1, ..., vN}
(Bhagat et al., 2011).

Let Y be the full set of M possible labels and Ym be an M ×
M indicator matrix, carrying the initial M multi-class labels
indicating the POI associated with the corresponding node in
set Vm. Similarly let Yu be an (N−M)×M matrix indicating
the POI associated with corresponding nodes in Vu. The initial
label matrix, Y, is an N × M matrix with the first M rows as
Ym and the remaining N − M rows as Yu or 0 (as the nodes
in Vu are initially unlabelled).

Assume that all unlabelled nodes can reach a labelled node in
a finite number of steps and will therefore have an associated
label at the end of the iteration process, i.e. graph G is label
connected (Azran, 2007). A graph is not label connected when
there remains unlabelled nodes at the end of the iteration pro-
cess. This will occur when there exists unlabelled node/s which
share no direct edges connecting them with the remaining struc-
ture in graph G. When considering a social network structure
this can happen when there are people who share no similar
interest with the remaining individuals in the network. For a
geographical application, a graph can be non label-connected
when there are grid cells which doesn’t share a direct edge with
the remaining grid cells due to natural/man-made boundaries
such as rivers, mountains, region/state border boundaries etc.

Consider transition matrix P, with Pt the corresponding matrix
at time t where ptij is the probability of reaching node vj from
vi in t steps. As t → ∞, pt→∞

ij will indicate the (i, j)th prob-
ability in Pt→∞ at which the process reached node vj , with as-
sociated label c ∈ Y , from vi in convergence with 0 ≤ pij ≤ 1
and

∑
j pij = 1. In matrix form

Ŷ = Pt→∞Y (1)

where

Ŷ =

[
Ŷm

Ŷu

]
and Y =

[
Ym

0

]
(2)

and Ŷ contains the output labels from the converged iteration
process for all nodes vn ∈ V .

Labelled nodes in set Vm are classified as absorbent states such
that they exhibit probability 1 of staying in the same node and
probability 0 of leaving the node. Therefore the labels of all
nodes vn ∈ Vm do not change. Since the nodes are ordered
in such a way that the first M rows in V are Vm and the last
N − M rows are Vu, the transition matrix can be split into 4
sub-matrices, indicating the probability to move between states,

namely P =

(
Pmm Pmu

Pum Puu

)
=

(
I 0

Pum Puu

)
.

The probability of transition from the unlabelled states to the
labelled states are captured in the (N −M) ×M matrix Pum

and from the unlabelled states to the unlabelled states are cap-
tured in the (N−M)×(N−M) matrix Puu. Since all labelled
nodes are defined as absorbent states, the probability of staying
in a labelled node is 1 and the probability of exiting a labelled
node is 0. This simplifies Pmm to an M ×M identity matrix I,
and Pmu to an M × (N −M) zero matrix 0.

Since the graph is label connected and there are M absorbent
states, the limiting distribution of lim

t→∞
Pt is

Pt→∞ =

(
I 0

(1−Puu)
−1Pum 0

)
(3)

as shown in (Bhagat et al., 2011; Azran, 2007). Substituting
equations (3) and (2) into (1) the labels can be computed by

[
Ŷm

Ŷu

]
=

(
I 0

(1−Puu)
−1Pum 0

)[
Ym

0.

]
. (4)

From (4), the labels for the absorbent state nodes contained
in Vm remains unchanged with Ŷm = Ym. The labels of
the unlabelled nodes are obtained by computing Ŷu = (1 −
Puu)

−1PumYm. The (N −M)×M matrix Ŷu will contain
the probability of each label assigned to grid vn ∈ Vu with the
sum over each row adding to 1. The process will iterate over all
nodes defined in G.

Figure 1. Demand for grids vn, n = 1, ..., 9 with POIs P1 and
P2.
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Consider the simple example illustrated in Figure 1. In this ex-
ample seven regions, Vu = {v1, v3, v4, v5, v6, v8, v9}, are unla-
belled and two regions, Vm = {v2, v7}, are labelled with asso-
ciated POIs P1 and P2 respectively. Let V be the ordered set,
contained in G, consisting of N = 9 nodes with the first M = 2
rows the labelled nodes and the remaining N−M = 7 rows the
unlabelled nodes, i.e. V = {v2, v7, v1, v3, v4, v5, v6, v8, v9}.
Let Ym an indicator matrix with the first column representing
label P1 and the second column representing label P2. Apply-
ing the methodology as described above, the probability of la-
bels P1 and P2 to be assigned to nodes vn ∈ V, n = 1, ..., 9 is
calculated in (5).

Ŷ =

[
Ŷm

Ŷu

]
=



1 0
0 1

0.72 0.28
0.83 0.17
0.45 0.55
0.62 0.38
0.66 0.34
0.38 0.62
0.52 0.48


. (5)

From the results in (5) it can be noted that all nodes in Vm

remained in the initial node and label associated with it with
probability 1. The nodes contained in set Vu however received
a probability associated with labels P1 and P2. It can be expec-
ted that a unlabelled grid will have a higher probability asso-
ciated with a labelled grid that is closer in the graph structure
than labelled grids that is further away. Node v3 has the highest
probability of being associated with label P1(0.83) and v8 with
label P2(0.62) as can be verified by the graph structure of G as
illustrated in Figure 1.

2.2 Fuzzy lattice catchment areas

Using the proposed fuzzy lattice data structure, realistic catch-
ment areas can be obtained on this structure using drive-time
thresholds. When assuming G is labelled connected, all nodes
will receive a set of probabilities assigned to each label in set
Y . This is however not practical when considering geographic
data and the threshold drive-time distance a person is willing to
travel to a given POI.

Consider the set of M POIs, P = {P1, P2, ..., PM}, m =
1, ...,M , with an associated drive-time threshold distance dPm

assigned to each Pm,m = 1, ...,M . The threshold drive-time
distance dPm depends on the order of the POIs and will be de-
noted by dPm

low, d
Pm
mid or dPm

high for low-, middle- or high-order
POIs respectively as discussed in (Green et al., 2016). For
each POI, we identify all nodes vn which are within a threshold
drive-time distance dPm of Pm.

Let GPm define the region such that GPm =
⋃
n

vn ∋ dvn,Pm ≤

dPm , GPm ⊆ G with dvn,Pm the drive-time distance between
the nearest network point of vn and Pm.

Let Ovn = {m : vn ∈ GPm} define the indices of POI, Pm,
that is snapped to the same network as vn. Nodes that are con-
tained in more than one GPm have an overlap of accessibility
to different POIs. There can however exist nodes which are not
contained in any set of GPm resulting in spatially disjoint areas.

Let all nodes which fall beyond the threshold drive-time dis-
tance dPm for each Pm be nullified in Ŷu i.e. the probabil-
ity for a node to be assigned to a label which falls beyond the

drive-time threshold is 0. If a region falls beyond the drive-
time threshold for all POIs, the region is spatially inaccessible
(disjoint) and will be assigned a probability of 0 for all labels
c ∈ Y . The matrix Ŷu is row standardised to ensure that all
rows adds up to 1.

Consider the example provided in Figure 2 with N = 9 grids
and POIs, P1 and P2. Suppose the values for dP1 and dP2

are such that GP1 = {v2, v3, v5, v6}, GP2 = {v4, v5, v7, v8},
Vm = {v2, v7} and regions v1 and v9 are spatially disjoint. Let
all nodes which fall beyond drive-time threshold dP1 for catch-
ment area of P1 carry a 0 probability to be assigned to label P1

and similarly P2. After the matrix Ŷu has been row standard-
ised, the results from (5) with drive-time thresholds applied is
provided in (6).

Figure 2. Demand for grids vn, n = 1, ..., 9 with POIs P1 and
P2 and corresponding drive-time thresholds dP1 and dP2 .

Ŷ =

[
Ŷm

Ŷu

]
=



1 0
0 1
0 0
1 0
0 1

0.62 0.38
1 0
0 1
0 0


. (6)

It can be noted that after standardisation that each node is only
associated with the POI falling within the same network. Node
v5 has an overlap of drive-time thresholds dP1 and dP2 and
hence retains the probability of being assigned both label P1

and P2. Nodes v1 and v9 falls beyond the drive-time thresholds
for all POIs and is therefore spatially disjoint with probability 0
to be assigned to label c ∈ Y .

2.3 Comparing measures of spatial accessibility

Spatial accessibility can be measured by considering how the
distribution of supply and demand is connected in space (Wang,
2014). Supply can represent the capacity of a supplier such
as the number of beds available in a hospital (Challen et al.,
2022), the number of suppliers such as the number of primary
care physicians in an area (Wang, 2014; Luo and Wang, 2003)
or resources that are available such as a doctor’s resources as
done in (Shao and Luo, 2022). Demand usually represents the
population and communities that requires the specified services
or products. In this section the difference in spatial accessib-
ility when comparing fuzzy lattice catchment areas to 2SFCA
(Radke and Mu, 2000; Luo and Wang, 2003) will be illustrated.
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Let all POIs, Pm ∈ P have supply size (capacity) of S (Pm)
and all nodes vn ∈ V have an associated demand (population
size) of D (vn) as formulated in (Challen et al., 2022). Then
the supply-demand ratio for supplier m in region GPm can be
expressed by

RPm =
S(Pm)

D(GPm)
(7)

and the accessibility for all nodes vn, vn ∈ V is

Avn =
∑

m∈Ovn

RPm =
∑

m∈Ovn

S(Pm)

D(GPm)
. (8)

as illustrated by (Wang, 2014; Luo and Wang, 2003).

Consider the example provided in Figure 2 with N = 9 grids
and POIs, P1 and P2. Suppose the demand for all regions are
1 i.e., D(vn) = 1, n = 1, ..., 9 and supply for all suppliers are
4, S(Pm) = 4,m = 1, 2. Suppose the values for dP1 and dP2

are such that GP1 = {v2, v3, v5, v6}, GP2 = {v4, v5, v7, v8},
Vm = {v2, v7} and regions v1 and v9 are spatially disjoint.
Using 2SFCA, the supply-demand ratio for P1 and P2 are the
same as both have the same units of demand and supply i.e.
RP1 = RP2 = 1. Since region v5 has access to both P1 and
P2 the accessibility of v5 is Av5 = RP1 + RP2 = 2. The
supply-demand ratio and accessibility is a good indication on
how resources are distributed. This approach however doesn’t
take into account the structure of the data and all demand loca-
tions within a catchment area are given equal weights.

Consider the same application, but applied to fuzzy lattice catch-
ment areas to determine accessibility and supply-demand ra-
tio using a probabilistic approach. The supply and demand
associated with each grid and supplier will remain the same
i.e. D(vn) = 1, n = 1, .., 9 and S(Pm) = 4,m = 1, 2 but
the demand on catchment area level will change according to
the weight assigned by Ŷu. Let the demand be proportionally
assigned to each supplier’s catchment area using the probab-
ilities in (6). Then D(GP1) = 3.62 and D(GP2) = 3.38
which results in the supply-demand ratio for P1 to change to
RP1 = S(P1)

D(GP1
)
= 1.105 and P2 to RP2 = S(P2)

D(GP2
)
= 1.183.

Since region v5 still has access to both P1 and P2 the accessib-
ility of v5 is Av5 = RP1 +RP2 = 2.288.

Since semi-supervised learning takes into account the structure
of the data, a higher weight is placed on label P1 than for P2 for
region v5 due to the placement of the supplier. This results in
a lower supply-demand ratio for P1 compared to P2 since the
same level of supply needs to be provided to a slightly higher
level of demand.

When comparing fuzzy lattice catchment areas to other overlap-
ping catchment area techniques, such as 2SFCA, the advantage
of a probabilistic approach rather than assigning equal weights
can be demonstrated when comparing how the population size
(or demand in an area) and capacity at a given POI (or supply)
is distributed. This provides a better illustration of how demand
and supply is allocated based on the structure of the data rather
than assigning equal weights to each region. This will also be
illustrated in the next section with application to hospital bed
capacity and population size in South Africa.

3. Application

Access to hospitals for different parts in South Africa will be
investigated to test the proposed methodology. The facilities
which will be considered are district, central, military, mining,
regional and tertiary public hospitals as well as private hos-
pitals. All hospitals which provide basic healthcare services
and trauma related emergencies are considered as the POIs,
where specialised facilities such as rehabilitation and psychi-
atric centres are excluded.

To illustrate the difference between areas which are highly ac-
cessible and areas with limited accessibility, two district muni-
cipalities1 in Gauteng and Eastern Cape province (as illustrated
in Figure 3) and their surrounding areas in South-Africa will be
considered.

Figure 3. South Africa with hospital accessibility catchment
areas application in Gauteng and Eastern Cape provinces.

(OpenStreetMap contributors, 2024).

The first district municipality is City of Johannesburg (JHB)
which is situated in the Gauteng province and is categorised as
a metropolitan municipality. This is the largest city in South
Africa with 4.8 million people of which 44% have completed
their high school certificate and 15% holds a higher educa-
tion qualification. The housing in this district is predominantly
formal dwellings (90%) where 95% have access to running wa-
ter on site as reported in the 2022 South Africa census2. The
provincial road network of Gauteng consists of majority paved
roads (76%) and 24% unpaved roads as reported by the National
and provincial Departments of Transport3.

The second district municipality is O.R. Tambo which is loc-
ated in the Eastern Cape province and isn’t categorised as one
of the six metropolitan municipalities in South Africa. This dis-
trict has a population of 1.5 million people of which 22% have
completed their high school certificate and 8% hold a higher
education qualification. The housing in this district was pre-
dominantly informal, with only 43.4% formal housing recor-
ded in 2011, but this value has increased significantly to 77% in
2022. Access to running water on site in this district is however
still only 43% as reported in the 2022 South Africa census2.

Even though the Eastern Cape is geographically larger than
Gauteng, this province has limited accessibility where major-
ity of the provincial road network is unpaved at 90% and only
1 District municipalities consists of multiple local municipalities. They

are administrative divisions which is accountable for providing basic
services within the area. Source: Education and Training Unit (ETU),
www.etu.org.za (accessed February 15, 2024)

2 Statistics South Africa, Census 2022 Municipal Factsheet,
census.statssa.gov.za (accessed February 23, 2024)

3 National Treasury, Chapter 7 - Roads and Transport,
www.treasury.gov.za (accessed February 23, 2024)
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Figure 4. High Accessibility: Illustration of supply-demand ratio
(Map A) and accessibility (Map B) at 5 minute drive-time

threshold, supply-demand ratio (Map C) and accessibility (Map
D) at 10 minute drive-time threshold and supply-demand ratio

(Map E) and accessibility (Map F) at 15 minute drive-time
threshold of City of JHB. (OpenStreetMap contributors, 2024).

10% is paved as reported by the National and provincial De-
partments of Transport3.

Using the proposed fuzzy lattice catchment areas approach let
graph G be South Africa which is subdivided into square grids
of size 500m×500m. This is the optimal grid size to ensure that
only one POI is allocated to each node. The demand allocated to
each grid, D(vn), is population size which is obtained from the
overlaying census and deeds office data as captured by Light-
stone (Pty) Ltd Ltd4 for 2022. The supply for each POI, S(Pm),
is the bed capacity for each hospital. Drive-times thresholds of
5, 10 and 15 minutes for all the POIs will be used as the value
for (dPm

low) low-, (dPm
mid) middle- and (dPm

high) high-order facility
drive-time thresholds. The highest drive-time threshold con-
sidered for this example is at 15 minutes based on the fifteen-
minute city concept (Pozoukidou and Angelidou, 2022).

Consider Figure 4 which illustrates supply-demand ratio and
accessibility for POIs situated in the City of JHB, and surround-
ing areas. The capacity of each POI is illustrated by the size of

4 Lightstone (Pty) Ltd procures its data directly from the Deeds office
and is comprised of a snapshot of all South Africa property ownership
as at 1993, with a full history of all transactions to augment with census
data.

Figure 5. Low Accessibility: Illustration of supply-demand ratio
(Map A) and accessibility (Map B) at 5 minute drive-time

threshold, supply-demand ratio (Map C) and accessibility (Map
D) at 10 minute drive-time threshold and supply-demand ratio

(Map E) and accessibility (Map F) at 15 minute drive-time
threshold of O.R. Tambo. (OpenStreetMap contributors, 2024).

the dot. The hospital with the largest capacity in South Africa
is Chris Hani Baragwanath public hospital5 with a capacity of
3,200 beds and approximately 6,760 staff members. It is the
third largest hospital in the world and is located in the bottom
left hand corner for all maps in Figure 4.

In Figure 4, maps A, C and E illustrate the supply-demand ratio
and maps B, D and F the accessibility at drive-time thresholds
of 5, 10 and 15 minutes respectively. One can note that as the
drive-times per POI increases that the supply-demand ratio of
each POI decreases as a higher level of demand is expected at
the same level of supply. At the lowest drive-time threshold of
5 minutes, the ratio of supply to demand is very high in areas
where the POI capacity is high. Maps B, D, and F demon-
strate accessibility, and as more POIs are included within the
drive-time thresholds, it becomes evident that nodes intersect-
ing multiple POIs have greater accessibility compared to nodes
connected to just one POI. When considering accessibility, it
can be noted that at the lowest drive-time threshold, high ac-
cessibility is only evident where multiple POIs are located in
the same vicinity. At the highest drive-time threshold (map F),
all nodes have high accessibility, which illustrates that in highly

5 Chris Hani Baragwanath Academic Hospital, chrishanibaragwanath-
hospital.co.za (accessed February 20, 2024).
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accessible cities, majority of people will have access to all basic
services within a 15 minute drive-time threshold.

When considering an area with low accessibility a different
view is observed when analysing how resources and demand
is distributed. Consider the district municipality O.R. Tambo in
Figure 5 where maps A, C and E illustrates the supply-demand
ratio and maps B, D and F the accessibility at 5, 10 and 15
minutes drive-time thresholds respectively. In the low access-
ibility region one can note that there isn’t a significant differ-
ence between the supply-demand ratio at 10 and 15 minutes
drive-time respectively. This is due to the fact that the number
of additional demand that is captured in extending the drive-
time isn’t as much as in a metropolitan area, since the number
of people in a square meter is less than in City of JHB. One
can note however that the supply-demand ratio for this region
is lower than in the highly accessible region for most POIs and
this is due to the supply capacity available at each of these POIs.

The capital of O.R. Tambo is the town Mthatha and there are
multiple towns and communities that are formed around it. From
Figure 5, Mthatha (situated close to the midpoint, but slightly
off-centre to the left in maps A to F) has one of the highest
health service per capita in its district, but since the district
O.R. Tambo is largely rural and has a limited budget capacity
(as reported by COGTA6) one can note that the accessibility to
hospitals for other towns in this district is very low. The access-
ibility for this district, illustrated in maps B, D and F, has the
opposite effect as in the highly accessible district. In City of
JHB, additional POIs are captured as the drive-time increases,
therefore the nodes have access to more hospitals and accessib-
ility increases as drive-time threshold increases. In O.R. Tambo
however, the POIs remain the only POIs in the 15 minute catch-
ment area. Therefore, as the drive-time threshold increases, ad-
ditional demand is added but the supply remains at the same
level, which will lead to a decrease in accessibility for nodes
that is in a 5 or 10 minute catchment area of the POIs. When
considering map F in Figure 5 it is noted that some regions have
no accessibility even at a 15 minute drive-time threshold. The
grayed out blocks indicate open areas with no demand. No de-
mand is identified with census and Lightstone (Pty) Ltd data
and occurs where there is vacant land, water bodies, commer-
cial or industrial structures and no residential homes.

On inspection when comparing the high accessible district to
the district with lower accessibility it can be noted how the
distribution of resources is affected as demand increases and
whether the supply can increase to match the level of demand.

4. Discussion

We introduce fuzzy lattice catchment areas which are overlap-
ping catchment areas and ensure a spatially even distribution of
demand and supply. Fuzzy lattice catchment areas are created
using the fundamentals of label propagation and is based on a
probabilistic approach. Applying fuzzy lattice catchment areas
has the advantage of creating more realistic, overlapping catch-
ment areas, allowing a person to choose from multiple POIs
within their accessibility range. This method ensures that de-
mand is proportionally assigned rather than concentrated in a
6 Department of Cooperative Governance and Tradi-

tional Affairs, Profile and Analysis: OR TAMBO Dis-
trict Municipality EC, https://www.cogta.gov.za/ddm/wp-
content/uploads/2020/11/ORTamnco-September-2020.pdf (accessed
February 23, 2024)

single region, which can lead to spatially uneven catchment
areas. Together with this, drive-time thresholds are considered
to ensure that the final catchment areas are representative of
services/or goods being provided by POIs and the target popu-
lation in that area.

The fuzzy lattice data structure is created by assuming the area
is label connected, therefore that each unlabelled node will re-
ceive a probability to be associated with labelled node in a finite
number of steps. This can be limiting however if there exists a
natural barrier in the geographical data where a labelled node
can’t be reached and it is not labelled connected. Future re-
search includes adjusting the edge weights (Bhagat et al., 2011)
between nodes which will enable the specification of barriers in
the graph structure. Fuzzy lattice catchment areas defines each
labelled node as an absorbent state which implies that the node
will assume the label with a probability of 1. This assumption
can however be relaxed as proposed by (Szummer and Jaakkola,
2001) where a labelled node is not required to be an absorbent
state. The relaxation of this assumption could be applied to
cases where the population that is placed in the same node as
a POI has a probability to be assigned to all POIs. In this ap-
plication the grid sizes were small enough that this didn’t have
an effect on creating spatially uneven areas, but if the nodes
are chosen at a larger size, relaxing this assumption could be
beneficial.

To accurately capture the hospital bed capacity in a third world
country such as South Africa can be challenging. How med-
ical resources, staff and accessibility to the resources are re-
ported can also be different between sources especially when
comparing public and private hospitals. The list of all pub-
lic and private7 health facilities were obtained as reported by
the hospital groups or by South African home affairs8. A few
independent reports, including one from PMG9, have however
raised concerns that the capacity at some of the hospitals are not
as reported and some having only half of the capacity available
due to budget cuts and lack of health care professionals. Vari-
ation on bed capacity other than that officially reported could
however not be taken into account and therefore the number of
beds per capita that is indicated could be a very conservative
estimate. In the approach taken by (Challen et al., 2022) cau-
tion was raised in creating overlapping hospital catchment areas
when considering specialised hospitals that doesn’t provide the
same service but as explained in this application only hospitals
that provide basic healthcare services were considered. Hence
when applying this method all POIs considered needs to provide
the same service or product. Another challenge when calculat-
ing catchment areas for low- and middle-income countries is
the setup and maintenance of basic infrastructure. Depending
on the accessibility of a region to main routes and the condition
of the roads, the drive-time (given the same distance) can vary
greatly between cities. The determination of the threshold for
drive-time or distance should be made independently for each
unique case, considering the type of service an industry offers
and how essential it is to the surrounding communities. Future
work will include investigation of a generalised application in
the healthcare sector using a simulation study.
7 SA Private Hospitals, www.saprivatehospitals.com. (accessed Febru-

ary 02, 2024).
8 Department of Home Affairs (DHA), List of Connected Health Facil-

ities per Province, www.dha.gov.za (accessed February 15, 2024).
9 PMG (People’s Assembly Monitor), SA Military Health Services brief-

ing on improving capacity and capabilities at Military Hospitals,
https://pmg.org.za/committee-meeting/37138/ (accessed February 23,
2024)
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Fuzzy lattice catchment areas is a very flexible approach for an
array of different industry type services and target population
scenarios. It can efficiently depict either an oversupply or un-
dersupply of a services to the nearby population by considering
the accessibility criteria based on drive-time or distance.

5. Conclusion

A realistic representation of facility catchment areas is crucial
for any city resource planning. This will highlight any con-
straints in a city, such as limited accessibility to basic services.
Fuzzy lattice catchment areas give a weighted and spatially even
approach to understand the supply-demand ratio for any POI to-
gether with the accessibility available to communities.

This approach can be applied in various fields where the target
population could only be a subset of the population for a spe-
cific industry type, for example only considering children in a
local community and their access to parks, schools, or daycare.
The algorithm has minimal assumptions and is mainly depend-
ent on the link structure of the geographical region, supply per
POI, demand at the desired nodes and drive-time thresholds.
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