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ABSTRACT: 

 

Precipitable water vapor (PWV) is one of the most critical data in many meteorological departments. This component has great 

spatial and temporal changes, so the global positioning system (GPS) always seeks to increase the accuracy of estimating the water 

vapor component in the troposphere. The waves sent by the satellites of this system are delayed due to passing through atmospheric 

layers such as the troposphere. In this paper, interpolation methods are used to estimate precipitable water vapor. Inverse 

multiquadric (IMQ) interpolation which is based on radial basis functions, artificial neural network (ANN) method, and inverse 

distance weighted (IDW) which are the most common method of interpolation in meteorology. A region in North America with 23 

GPS stations was randomly selected. Then, the interpolation of precipitable water vapor on a summer day is done using GPS data. 

The root mean square error value (RMSE) for the IMQ method was the lowest compared to other methods and was equal to 2.11 

mm. Finally, using the IMQ interpolation method, a dense map of Precipitable water vapor changes in the troposphere layer is 

developed for the study area. 
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1. INTRODUCTION 

With the advent of GNSS and advancements in geoscience 

studies and weather forecasting, further analysis of the 

atmosphere and its parameters has become particularly 

important. Furthermore, it has caused the emergence of different 

methods to achieve higher accuracy for estimating atmospheric 

parameters (Yang et al., 2019). The troposphere layer is 

essential in atmospheric studies, for the reason that GNSS 

signals reach the ground in a bent and delayed manner due to 

refraction caused by the troposphere layer (Nilsson et al., 2013). 

The tropospheric delay of the GNSS signal consists of dry and 

wet parts. The prediction of the zenith wet delay and the 

interpolation of its parameters is difficult due to the rapid 

temporal and spatial change of water vapor compared to the dry 

part (Smith and Weintraub, 1953). besides, the parameter of  

PWV is a function of ZWD and has many uses in weather 

forecasting programs (Chen et al., 2018). using interpolation, 

the desired parameters in the troposphere can be obtained. In 

general, interpolation is a process by which the value of a 

quantity at points with known coordinates can be obtained using 

the value of the same quantity at other points (Davis, 1975). 

Therefore, to get the amount of PWV that can be precipitated in 

the troposphere layer, we can use the interpolation methods 

such as inverse multiquadric, artificial neural network, and 

inverse distance weighted. To do that it is necessary to have the 

PWV value in the desired reference stations. Therefore, first, the 

tropospheric delay in the zenith direction should be calculated 

using the precise point positioning method (PPP) from the GPS 

observation. To calculate ZHD, pressure observations are 

needed, which can be obtained from equation (1) by using the 

dry experimental model of saastamoinen, which is one of the 

most accurate global prediction models (Mendes, 1999, 

Saastamoinen, 1972). 
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where P   is surface pressure ( hPa ),   is latitude and, h  is 

altitude (m). The value of the ZWD is calculated using equation 

(2) (Bevis et al., 1992): 

 

                  ZWD ZTD ZHD= −                          (2) 

 

Then, PWV is obtained from the following equation : 
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besides w  is water density and the parameters R ,  2k   and 3k  

are constants. mT  is the atmospheric weighted average 

temperature. Using the Bevis formula do that as follows (Bevis 

et al., 1992): 

 

                                m sT 85.63 0.668T= +                              (4) 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-4/W1-2022 
GeoSpatial Conference 2022 – Joint 6th SMPR and 4th GIResearch Conferences, 19–22 February 2023, Tehran, Iran (virtual)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-4-W1-2022-109-2023 | © Author(s) 2023. CC BY 4.0 License.

 
109



 

where Ts  is the surface temperature is in Kelvin at the location. 

 

2. METHODS 

2.1 Radial basis functions 

The radial basis function (RBF) is a universal interpolation 

method (Leyla, 2011). This method is defined as the weighted 

sum of transformations of the radially symmetric basis function. 

In this method, a set of distinct point data and corresponding 

observation values are considered, and the primary radial basis 

function used for interpolation is expressed as follows (Sharifi, 

2016): 

 

                              
i=1
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n
f(x)= w U (r)                                      (5) 

 

where n is the number of reference stations and U (r)i  is a 

function of the kernel interpolator. This function depends on the 

Euclidean distance. r is the Euclidean distance and wi  are the 

unknown expansion coefficients and can be calculated with the 

input values of the kernel interpolator through the linear system. 

The generalized version of the radial basis function of Hardy, 

which was developed for the preparation of topographic maps, 

is in the form of the following equation (Leyla, 2011): 

 

                  
m

u

i=1 k=1
k

n

kii
f(x)= U (r) p (x) +                  (6) 

 

i  and k  are unknown polynomial coefficients The second 

term of the equation (6) represents the polynomial function 

whose coefficients are as follows: 

 

                1 1p = , 2p =  , 3p =  , 4 hp =              (7) 

 

As a result of the linear interpolation system, the number of 

unknowns is more than the number of observations, and 

conditions are added for its solution. Therefore, 
m

u   more 

equations are needed to form a certain linear system. 

Consequently, equation (8) must hold (Leyla, 2011, Sharifi, 

2016). 
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Equation (8) is equal to: 
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In other words, in this article, according to the data in the 3 
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should be established.  

The combination of interpolation conditions and additional 

equations forms a linear system of equations, expressed as 

follows (Leyla, 2011). 

 

                                     
T

A P 1

0P 0

     
  =   
      

                         (10) 

 

where A is the design matrix and contains the kernel of the 

radial basis function, is a square matrix according to the number 

of reference stations and is defined as follows: 
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And the matrix P is defined as follows: 
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There are different kernels for radial basis function 

interpolation, in this paper we select the inverse multiquadric 

(IMQ) interpolator kernel. 

 

2.1.1   Inverse Multiquadric: IMQ method is based on radial 

basis functions. For n distinct data, The IMQ is expressed as 

follows: 

 
4n
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( , ,h)   is the coordinates of the station where the interpolation 

is done, and (φ ,λ ,h )i i i is the coordinates of the reference 

stations. 

 

The IMQ interpolator kernel is defined as (Sturgill, 2009): 
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where r is the Euclidean distance and c is the shape parameter 

determining the interpolation accuracy. The shape parameter is 

obtained by the cross-validation method (Sturgill, 2009).  

 

Interpolation based on the IMQ method requires discrete data, 

therefore, the following equation must hold (Leyla, 2011): 
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In this paper calculation is based on having the geodetic 

coordinates of the points from equation (16): 
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besides R is half the greatest length of the earth and s are the 

data points. 
 
The position of the control points, which in this paper is in the 

form of longitude, latitude, and altitude, and the information, is 

expressed as follows: 

  
T
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The unknown coefficients ,   of equation (13) are calculated 

via the following equation: 
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Then by using equation (13), PWV values in other places can be 

obtained. 

 

2.2 Artificial neural network 

ANN is an information processing system that mimics the 

brain's biological neural network by connecting many artificial 

neurons. Artificial neural networks can train and generalize. The 

work of a neural network is to create a specific output pattern 

according to a learning process based on the input pattern 

provided to the system. There are different types of neural 

networks. Perceptron neural network is used in this paper. 

because it is mainly used for interpolation (Zhang et al., 1998). 

 

2.2.1  Perceptron neural network: Multilayer perceptron 

neural networks (MLPNNs) is the most common type of neural 

network due to their fast performance, simple implementation 

process, and small training set requirement  (Kocyigit et al., 

2008). According to Figure (1), MLPNN consists of three 

consecutive layers: input, hidden, and output layers. The hidden 

layer processes the input information and sends it to the output 

layer. 

 

 
Figure 1. The structure of the MLPNN model (Orhan et al., 

2011) 

 

There is no way to determine the number of neurons in the 

hidden layer. Therefore, the number of neurons is selected only 

by trial and error. If the network does not converge to the 

desired value, the number of hidden layer neurons are increased 

(Kocyigit et al., 2008, Subasi, 2005). Perceptron neural network 

training is based on the backpropagation algorithm. The weights 

in perceptron neural network training are adjusted in a way that 

the error between the desired output and the output is reduced. 

The values of the main inputs are actual values, where our 

inputs are the three variables of latitude, longitude, and geodetic 

height. According to the importance the entries are weighted. 

Each neuron j in the hidden layer sums its input signals xi 

impinging onto it after multiplying them by their respective 

connection weights wji. The output of each neuron is described 

as follows (Orhan et al., 2011, Sharifi, 2016): 

 

                          y f ( w x )
j iji
=                      (19) 

 

where f is the activation function using the weighted sum of 

inputs, ReLU activation function is used in this paper, is as 

defined as by Eq (20). and is of the form shown by Figure (2). 

ReLU is a non-linear function. In addition, this function is 

derivable and can be used for backpropagation, with few 

calculations (Dubey and Jain, 2019). 
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Figure 2. ReLU activation function (Dubey and Jain, 2019) 
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2.3 Inverse distance weighted (IDW) 

One of the most common spatial interpolation methods in earth 

sciences is the IDW method. In this method, the position of 

each point is considered separately, and the relative position of 

the points is not considered. In this method, the weight is a 

function of the inverse of the distance, and the closer points 

have a more significant effect on the estimation of the unknown 

point so that the points with the same distance from the point 

with unknown values are given the same weight. The closest 

points are given highest weight, and it follows as: (Shepard, 

1968, Sarma, 2010). 
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 are the weights and are obtained from the following 

equation: 

 

                           
2r

iw ni 2r
i

i 1

−

=
−


=

                                   (22) 

 

where r is the Euclidean distance between the sample stations 

and the location to be interpolated. And n is the number of 

reference stations. 

 

3. STUDY AREA AND DATA 

An area of 15448 square kilometers was selected in the state of 

Washington, USA. In this paper, 23 GPS stations of the 

UNAVCO network, a research institute related to earth 

sciences, have been used. The location and distribution of the 

stations are shown in figure (3).  

 

 
Figure 3. Map of the study area and the satellite positioning 

reference stations 

 

In addition, four stations of this network are considered as 

control stations to check the accuracy of interpolation. The 

details of these stations are shown in table (1). Besides, in this 

paper, the reanalyzed data of ERA-5 is used for accurate 

estimation of surface pressure and surface temperature for PWV 

calculation. The temporal resolution of ERA-5 data is 1 hour, 

and its spatial resolution is about 30 kilometers and provides 

data in 37 pressure layers. 

 

4. PROCESSES AND RESULTS 

In Bernese software, the data of GPS stations have been 

processed by the PPP method, and ZTD has been calculated in 

each station with a time resolution of 1 hour. Besides ZHD has 

been calculated according to the latitude and atmospheric 

pressure obtained from ERA-5 data at the stations using the 

Saastamoinen dry model. Then, with the difference of ZHD 

from ZTD, the troposphere delay is estimated, and using 

equation (3), PWV has been obtained for each station in 

millimeters. For interpolation by IMQ, using the cross-

validation method, the optimal shape has been determined so 

that RMSE be having the smallest value. RMSE values 

according to different shape parameters are shown in Figure (4). 

The shape parameter 5000 has the lowest RMSE value and is 

selected as the optimal shape parameter. Then, the Euclidean 

distance between the reference stations and the control stations 

is calculated. Using the design matrix formed by the IMQ 

interpolator kernel, the unknown coefficients in equation (11) 

have been obtained. Finally, the interpolation has been done by 

the IMQ method for the control stations. 

 

 
Figure 4. Determination of the shape parameter 

 

By changing the number of hidden layers and trial and error, the 

number of hidden layers with a good answer is obtained. The 

number of neurons is also selected only by trial and error. 

Having too few neurons can reduce the stability of the system. 

Using more hidden layers, instead of increasing the number of 

hidden neurons, increases the processing power of the system. 

So, in this paper, an input layer, two hidden layers, and an 

output layer are used for perceptron neural network 

interpolation. Furthermore, the activation function of both 

layers is considered as the ReLU function.  Using this function, 

modeling time is reduced. The first hidden layer has twelve 

neurons and the second hidden layer has eight neurons. 30% of 

Table 1. Names and coordinates of control stations 

Altitude (m)  Longitude W( )  Latitude N( )  Station 

name 

2380.03 121.815367 46.899797 OBSR 

1538.67 122.217349 46.17813 P700 

1197.74 120.724609 46.950925 SC00 

183.25 119.544194 45.953335 P450 
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the data have been selected as test data, and 70% of the data 

have been selected as training data. The inputs, which include 

the latitude, longitude and altitude of the stations, are multiplied 

by their corresponding weight, and their sum is calculated. In 

the training step, the difference between the actual PWV values 

and the desired PWV is calculated. In this step, the weights are 

modified, and the network is trained. Finally, the latitude and 

longitude, and height of the control stations are entered into the 

system to obtain the PWV values. In the next step, the 

interpolation is done by the IDW using the data weighting based 

on the Euclidean distance between the reference stations and the 

control stations and using the mentioned equation (21).  

RMSE and relative root mean square value (RRMSE) are the 

evaluation criteria and comparison between the interpolation 

methods performed in this paper as follows: 
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where RPWVi  is  the real value and PWV  the interpolated value 

at each control station. And n is the number of stations. Table 

(2) shows the comparison of the results.  

 

The results obtained from RMSE of the interpolated models 

with a resolution of 1 hour are shown in Figure (5). Also, the 

comparison between RMSE between PWV obtained from GPS 

and PWV obtained from the IMQ interpolation method in each 

control station is shown in figure (6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Statistical comparison according to the results obtained 

Method RMSE (mm) RRMSE (%) 

IMQ 2.11 16.92 

ANN  3.02 24.25 

IDW 4.21  33.79 

Figure 6. Comparison between PWV obtained from GPS signals and PWV obtained from IMQ 

interpolation of the four control stations 

Figure 5. RMSE of different interpolation schemes (in hour) 
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In the last step, a dense PWV map is prepared using the IMQ 

method in the region. For this purpose, interpolation points have 

been selected on a regular grid in the area with proper 

distribution and a distance of about 6 km from each other. 

Then, interpolation using the IMQ method has been used to 

estimate PWV values at forecast points. Dense maps of PWV to 

investigate PWV changes with the best accuracy in 3 different 

hours of the day are displayed in Figure (7). 

 

 

Figure 7. Dense maps of  PWV values from top to bottom at 

00:02, 14:00, and 22:00 using IMQ method  

The amount of PWV is changing during the day. According to 

the figure (7), at 00:02, the amount of PWV is from 10.1 to 19.1 

mm, at 14:00 from 3.2 to 21.2 mm, and at 22:00 from 3.7 to 24 

mm.  

 

 

5. CONCLUSION 

In this paper, to improve the accuracy of PWV estimation in the 

troposphere, The IMQ method was used and compared with 

ANN and IDW methods. Four stations among the points in the 

area were considered as control stations. The RMSE value 

obtained for the IMQ method is 2.11 mm less than other 

methods, which means that the IMQ method has better accuracy 

than other methods. The RRMSE value obtained for the IMQ 

method is 16/9% mm, which is 9% better than the ANN method 

and 17% better than the IDW. As a result, the IMQ interpolation 

method is more suitable for sparse data, and the dense map 

created by the IMQ method shows the PWV changes very well. 
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