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ABSTRACT:

Most of the anthropic pollution arriving to seas and oceans is carried by rivers, leading to a dramatic impact on the aquatic flora and
fauna. Hence, several strategies have already been considered to reduce the use of plastic (and non biodegradable) objects, fostering
recycling, detect litter in the environment, and catch it. This work aims at implementing a litter detection approach usable also in
urban areas, hence considering a mini-UAV (Unmanned Aerial Vehicle) in order to reduce the issues related to flight restrictions.
The implemented strategy exploits a high resolution map of the area of interest, a properly trained deep learning litter object detector,
and a vision based localization system, which allows to remarkably reduce the positioning error of the UAV navigation system, in
order to provide estimates of the litter object positions with an accuracy at decimeter level for objects not too far from locations
recognizable in the map.

1. INTRODUCTION

As a matter of fact, most of the anthropic pollution (in particular
plastic) arriving to seas and oceans is carried by rivers. Indeed,
the river network passes through urban settlements, where lit-
ter is typically introduced in the fluvial environment, and then
conveyed towards the river mouth and, eventually, into the seas
(Lebreton et al., 2017, Schmidt et al., 2017), dramatically im-
pacting on the aquatic flora and fauna (Kurtela et al., 2019).

Since reducing the impact of anthropic pollution on the aquatic
environment is of major importance, several strategies have
already been implemented to reduce the use of plastic (and non
biodegradable) objects, fostering recycling (da Costa, 2021),
detect litter in the environment (Topouzelis et al., 2021), and
catch it (Gabrys, 2013).

Focusing on litter detection on the aquatic environment (e.g. on
seas, rivers, beaches), thanks to the remote sensing community
efforts, many methods have been developed during the recent
years to such aim. Depending on the available equipment (e.g.
Unmanned Aerial Vehicle (UAV), satellite imagery), the search
for litter has been investigated at different spatial scales.

Given their flexibility of use, portability and limited costs, the
use of UAVs for local surveys, mapping (Nex and Remondino,
2014), and in monitoring applications, is growing almost every-
where in the world. For instance, they can be used to investigate
the presence of litter on certain sections of rivers and beaches,
enabling the collection of high spatial resolution imagery (and,
more in general, multi-sensor data), without any time constraint
(unlike satellite images). A quick overview of the off-the-shelf
sensors currently available on UAVs include for instance RGB,
multi-spectral, and thermal cameras, LiDAR (Light Detection
and Ranging), and hyper-spectral sensors.

For what concerns litter detection (plastics, in particular) in the
aquatic environment (including also beaches and river banks),
∗ Corresponding author

(Geraeds et al., 2019) compared the effectiveness for litter de-
tection of visual inspections (done by an expert operator) on
RGB images acquired by a UAV flying over a river with those
on images collected from a bridge. Periodic operator-assisted
visual inspections on RGB images collected by a UAV have
been considered in (Merlino et al., 2020), whereas machine
learning methods (i.e. Support Vector Machine-based classi-
fication (Suykens and Vandewalle, 1999, Hsu and Lin, 2002))
have been introduced in (Martin et al., 2018) in order to auto-
matically detect litter on an orthomosaic obtained from UAV
RGB images of a beach. Near InfraRed (NIR) along with RGB
imagery has been deployed in (Taddia et al., 2021) in order
to filter out vegetation from the areas to be investigated for
litter detection on an orthomosaic representing the considered
case study area. Multi-spectral imagery has also been success-
fully used for plastic detection in the satellite case (e.g. for
plastic detection on seas and oceans (Biermann et al., 2020,
Themistocleous et al., 2020)), and, more recently, on the rivers
thanks to UAV-imagery (Cortesi et al., 2022, Cortesi et al.,
2021, Topouzelis et al., 2020, Gonçalves and Andriolo, 2022,
Maharjan et al., 2022, Cheng et al., 2021).

Despite such a plethora of sensors that can be mounted on a
UAV, the available options are quite reduced when considering
fluvial environments in urban areas. For instance, the European
Union recently imposed restrictions on the UAVs usable for ci-
vilian use (EU Regulations 2019/947 and 2019/945), in particu-
lar in urban areas. Such regulations are less restrictive for small
UAVs, which recently led to an increasing interest of civilian
UAV operators for mini-UAVs, e.g. weight ≤ 250 gr. Motiv-
ated by the latter considerations, this work aims at investigating
the feasibility of using a mini-UAV for litter detection on the
river banks, in a urban environment.

The paper is organized as follows: first, the considered case
study area and the used UAV are described in Section 2, then
the implemented strategy is presented in Section 3. Finally, the
obtained results are shown in Section 4, and some conclusion
are drawn in Section 5.
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2. CASE STUDY

2.1 Study Area

The study area has been identified as a portion of the Mugnone
river, in Florence (Italy). Fig. 1 shows part of the considered
area (100 m long).

More than 150 litter objects, indicated with red marks in the
figure, have been identified in the area shown in Fig. 1, with a
variable spatial density, reaching even more than 9 objects per
meter (linear density, e.g. on sections orthogonal to the river
direction) Fig. 2.

Figure 1. Litter objects (red marks) on the study area.

Figure 2. Litter (linear) density along the river direction in the
case study area.

2.2 UAV and dataset

The RGB imagery has been acquired by means of a DJI Mini 2
UAV, shown in Fig. 3, flying at a varying altitude over the area
of interest.

Table 1 summarizes the specific altitudes (with respect to the
river bank level) considered during the data collection associ-
ated to the area shown in Fig. 1: on the one hand, the higher
the flight altitude the less time is typically required to cover
a specific area. On the other hand, the lower the flight alti-
tude the higher is the spatial resolution of an image (i.e. the
smaller is the GSD value). Hence, the rationale of such multi-
altitude flights is that of investigating the ideal working condi-
tions in such a way to maximize the litter detection perform-
ance while minimizing the flight time. Such investigation will

Figure 3. DJI Mini 2 drone.

be considered in our future work, while in this paper the litter
detection is performed only at the lowest altitudes (20-30 m).

Altitude [m] GSD [cm]
20 1.0
30 1.6
40 2.1
60 3.1
80 4.2

Table 1. Ground Sampling Distance (GSD) as function of the
flight altitude with respect to the river bank level.

Furthermore, a different survey campaign has been conducted
in order to obtain a reliable, accurately geo-referenced, 3D re-
construction and an orthophoto of the whole area of interest
(500 m long, along the river direction).

3. METHODS

The proposed method is based on the use of a deep learn-
ing approach to detect litter objects from mini-UAV RGB im-
agery. The rationale is that the mini-UAV could be used to fly
either automatically or remotely piloted over the area of in-
terest. Then, the acquired imagery could be transmitted to a
computing station and processed in near real-time.

The resolution of the acquired imagery is reduced to no more
than 1 Mpixel in order to enable near real-time transmission
and analysis. Furthermore, it is worth to notice that this work
only investigates the analysis part, while the imagery transmis-
sion will be considered as a future development of the proposed
approach.

Quick object detection has been implemented using a Yolo v4
network (Bochkovskiy et al., 2020): transfer learning from a
Yolo v4 network originally pre-trained with the COCO (Com-
mon Objects in Context) dataset (Lin et al., 2014) has been done
with some hundreds litter images, taken from a public database
(Kraft et al., 2021). Fig. 4 shows a couple of examples of im-
ages taken from such public database.

Since the positions measured by the mini-UAV navigation sys-
tem may be affected by an error at meter-tens of meter level, the
visual information included in the acquired imagery is used in
order to improve the positioning accuracy of the UAV.

A high resolution map of the area of interest is assumed to be
available as an orthophoto obtained by the data acquired in a
previous UAV-photogrammetry survey campaign. Such ortho-
photo is assumed to be accurately georeferenced, e.g. at cen-
timeter level of accuracy, by using tens of control points prop-
erly distributed over the considered area, surveyed with geo-
detic GNSS receivers.
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(a)

(b)

Figure 4. Examples of images taken from the training database.

Some additional information, such as the river bed and the river
bank areas, is assumed to be available on such high resolution
map, and hence also usable in order to select only the areas of
interest (e.g. the river banks) to be inputted in the classification
procedure.

The video frames acquired by the mini-UAV are processed by
an ad hoc developed SLAM (Simultaneous Localization and
Mapping, (Leonard and Durrant-Whyte, 1991)) algorithm.

The mini-UAV camera is assumed to be pre-calibrated, and the
video frame are down-scaled to approximately 0.5 Mpixel be-
fore being inputted in the SLAM algorithm, in order to make
the procedure executable in real-time.

To be more precise, the UAV imagery is assumed to be acquired
with camera in nadir orientation, and hence, the nowadays quite
standard visual ORB-SLAM approach proposed in (Mur-Artal
et al., 2015) is modified in order to take into account of such
prior information.

Including the nadir-camera view assumption in the SLAM al-
gorithm allows to implement a two-point/three-point algorithm
in order to determine a reasonable initial assessment of the
relative camera pose between successive frames (Troiani et
al., 2014, Masiero and Vettore, 2016), hence speeding up the
RANSAC (Random Sample Consensus (Fischler and Bolles,
1981)) step, and the overall procedure. To be more specific,
the two-point algorithm can be used in the UAV case assuming
also a constant flight altitude (on the considered frames) (He
and Habib, 2016, He et al., 2018). Indeed, the latter assumption
allows to reduce the number of independent variables to be es-
timated when considering the relative pose between two camera
frames (He and Habib, 2016, He et al., 2018):

p⊤2 [t]×Rp1 (1)

where the equation has been written assuming that the lens dis-
tortions have already been corrected, K is the intrinsic matrix,
mi are the coordinates of a point in the i-th camera frame and
pi = K−1mi are the corresponding normalized coordinates,
R and t are the relative orientation and translation between the
two cameras, which, assuming the z axis to be aligned with the
vertical direction, in these specific working conditions can be
written as:

t =

[
tx
ty
0

]
(2)

and

R =

[
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

]
(3)

where θ is the rotation angle around the z axis.

Finally, [t]× is the skew-symmetric matrix that allows to com-
pute the cross product of t with another vector as a matrix mul-
tiplication, i.e. [t]×b = t × b for any vector b. The reduced
number of parameters to be estimated in the essential matrix E,
obtained as E = [t]×R, is quite apparent. An additional con-
straint can also be imposed taking into account that E can only
be assessed up to a scaling factor.

It is worth to notice that the vision SLAM approach allows only
to track the UAV position in a local reference system: introdu-
cing some external information is needed in order to determine
the geographic coordinates of the UAV. In this work two ap-
proaches are considered to such aim:

a) using the GPS measurements of the receiver mounted on
the mini-UAV

b) exploit the already available orthophoto in order to determ-
ine some landmarks to be used for accurately georeferen-
cing the UAV.

The performance of the GPS-assisted approach, in a), is clearly
affected by the positioning error of the receiver mounted on the
UAV itself. Such an error in certain cases may be unacceptable,
hence b) has been implemented in order to improve the overall
positioning performance.

The rationale in b) is that of properly recognizing correspond-
ing points in the UAV images and on the previously computed
orthophoto. This is done by exploiting ORB (Oriented FAST
and rotated BRIEF (Rublee et al., 2011)) feature matching. Fur-
thermore, an outlier rejection step is implemented by exploiting
the already estimated geometry: indeed, the SLAM algorithm
already provides 3D information about the camera locations and
certain 3D points in the scene, despite in a local reference sys-
tem.

In this work, the outlier rejection step is implemented by con-
sidering just the horizontal point locations (e.g. those on the
orthophoto and those according to the SLAM). Nevertheless,
the extension to exploiting 3D information will be considered
in our future works.
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Given a set of corresponding 2D points {po,i} in the orthophoto
and {ps,i} in the SLAM reference system, i.e. just the planar
(x, y) coordinates in the SLAM reference system, then the geor-
eferencing transformation is obtained as follows:

{R̂, t̂, ŝ} = arg min
R,t,s

∑
i

||po,i − (sRps,i + t)||2 (4)

4. RESULTS

The procedure for litter detection and localization described in
the previous section is validated on a portion of the case study
area shown in Section 2.

First, Table 2 shows the performance of the deep-learning based
litter detection approach on the considered dataset, where pre-
cision, recall, accuracy and F1-score are defined as follows in
terms of the number of false/true positives, (FP /TP ) false/true
negatives (FN /TN ):

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

accuracy =
TP + TN

TP + FP + FN + TN
(7)

F1− score =
2(recall × precision)

recall + precision
(8)

precision recall accuracy F1-score
DL detector 85.7% 80% 70.6% 82.8%

Table 2. Waste deep-learning detector.

Furthermore, Fig. 5 shows an example of the litter detection,
whereas Fig. 6 shows a false positive and a false negative ex-
ample of detection errors.

Figure 5. Example of litter detection on an image of the case
study dataset.

Then, the UAV positioning performance is tested on the same
dataset. First, the reliability of the nadir camera orientation as-
sumption is checked: in order to obtain a reasonable assess-
ment of the real camera orientation, a set of ≈ 150 camera
frames have been processed with Agisoft Metashape, and, once
properly georeferenced, their optical axis directions have been
compared with the vertical (downward) direction, obtaining the
results shown in Table 3.

(a) (b)

Figure 6. Examples of detection errors: (a) false positive, (b)
false negative.

deviation from the vertical [deg]
mean 1.7

median 1.7
standard deviation 0.4

median absolute dev. 0.3

Table 3. Deviation from the vertical.

Then, the positioning performance is assessed for both the a)
and b) approaches considered in the previous section. The res-
ults obtained for the a) and b) cases are reported in the first and
second row, respectively, of Table 4. It is worth to notice that
m and D in Table 4 indicate the median error and the median
absolute deviation. Table 4 reports their values along the x and
y axes, and their 2D value.

Furthermore, the last two rows in Table 4 show the results ob-
tained by the SLAM approach when limiting the analysis to
locations close (less than 5 m) to a point matched with the cor-
responding one in the orthophoto, and far (more than 20 m) far
from any matched point.

mx Dx my Dy m2D D2D

[cm] [cm] [cm] [cm] [cm] [cm]
a) GPS 66 56 198 26 209 62

b) SLAM 53 63 30 22 61 67
b) close 29 12 21 5 36 13
b) far 143 6 87 12 168 13

Table 4. Localization error.

5. CONCLUSIONS

The paper considers the problem of litter detection on river
banks and localization when using a mini-UAV, which can be
a quite convenient solution in urban environments.

The litter detection is based on the use of a properly trained Yolo
v4 network, and the obtained results are quite encouraging (pre-
cision = 85.7%, recall = 80%). Nevertheless, our future work
will be dedicated to an improvement in particular in terms of
reduction of the false negatives. To be more specific, in accord-
ance with the results obtained in our tests, the trained network
is not enough sensitive when dealing with certain transparent
plastic objects, as shown in Fig. 6(b). It is also worth to notice
that a similar criticality has already been observed also when
dealing with plastic litter detection by using UAV multispectral
imagery (Cortesi et al., 2022).

For what concerns the positioning results, Table 4 shows that,
in the considered example, the UAV GPS-based approach leads
to some meters of 2D positioning error, as expected (the po-
sitioning error may be even larger in other cases). Instead,
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the SLAM approach exploiting points matched with the cor-
responding ones in the orthophoto allows to reach sub-meter
errors.

To be more precise, the localization error of the proposed
approach is quite dependent on the distance from the points
matched with the orthophoto ones, ranging from few decimet-
ers to even more than a meter. This behavior is quite standard
for any SLAM-based approach, where the assessed positions
are expected to drift from the correct ones if reliable position-
ing updates are not available.

To conclude, it is worth to notice that the characteristic size of
the litter objects is at decimeter level, hence the obtained loc-
alization error level is expected to be sufficient in real applic-
ations when the set of points matched with the orthophoto is
reasonably well distributed over the area of interest.

Future investigations will also be dedicated to the analysis of
the system performance, in terms of both litter detection and
localization error, when varying the UAV flight altitude.
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